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1. INTRODUCTION

Over the past decade nonlinear thermoelasticity has

been developed for martensitic transformations, es-

pecially for the study of reversible martensitic trans-

formations in shape-memory materials. The theory

has produced speci®c quantitative predictions, some

of which are being used as the basis of alloy devel-

opment programs and others which await exper-

imental veri®cation. Some of these predictions are

rather unexpected and have led to a revision of the

fundamentals of martensitic transformations.

Except for the review of Bhattacharya [1], which

itself is not readily available to many researchers,

the results and techniques presented here are other-

wise scattered throughout the literature of materials

science, continuum mechanics, mathematics and

physics. Some of the results are written in a form

that is not easily accessible to working materials'

scientists. The purpose of this review is to assemble

these results in a succinct, approachable presen-

tation, with a focus on the most recent develop-

ments.

There are many outstanding reviews of marten-

site, shape-memory, and related areas. In particular,

the books of Nishiyama [2] and Otsuka and

Wayman [3] cover the classical developments in

martensitic transformations, the latter including

modern research on shape-memory polymers and

ceramics. The forthcoming article of Miyazaki and

Ishida [4] is a recent review of research and appli-

cations of sputtered thin ®lms, with particular

emphasis on the TiNi system. The review by

Miyazaki and Otsuka [5] is also a valuable source.

These reviews, however, do not treat theoretical

issues.

To introduce the present approach, it is useful to

trace the historical background of the present line

of thought. In the 1950s fundamental advances

on martensitic transformationsÐcrystallography,

mechanism, kinetics, and macroscopic propertiesÐ

were made by Nishiyama, Kurdyumov, Christian,

Read, and others. As explained to us by

Lieberman, at the advice of Read, Lieberman and

Wechsler took the course of Mindlin on continuum

mechanics to learn some large deformation kin-

ematics that Read thought might be useful for

understanding the curious irrationality of the auste-

nite/martensite interface. The result was one version

of the crystallographic theory of martensite. While

this has been reviewed and applied hundreds, per-

haps thousands, of times, no further advance along

that line was made. The modern work reviewed

here continues precisely that line of thought. With

advances in continuum mechanics that occurred in

the intervening years, it was an easy step to write a

free energy function that would produce the auste-

nite/martensite interface by energy minimization,

relate it to crystal structure, and then to go on to
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the many other microstructures that are observed in
martensite and to investigate how these relate to

behavior.
A main result of the theory is the recognition

that some of the common microstructures in shape-

memory materials are only possible (as energy-mini-
mizing microstructures) with exceedingly special lat-
tice parameters. These results are collected in

Section 4. There is extremely good agreement
between measured and predicted lattice parameters
on materials that clearly show those microstruc-

tures. Advances of the understanding of the relation
between microscopic and macroscopic deformation
also played a key role, reviewed later in Section 5.
In recent months, workers in this area have turned

attention to ferromagnetic and ferroelectric marten-
sites (Section 6) and the behavior of martensite at
small scales (Section 7). For the former, the theory

has directly guided the development of these ma-
terials. Di�culties with the theoretical treatment of
18R martensites have also been recently overcome,

and there appears now to be the beginning of a sat-
isfactory theory (Section 3).
This review is unfortunately not comprehensive

even regarding research related to nonlinear thermo-
elasticity. The notable omissions include important
work on polycrystals [6±8], on geometrically linear
theory [9, 10], on hysteresis [11], on constitutive

equations (see for example Refs [12±17]), on the
simulation of martensitic transformations [18, 19],
and on Density Functional Theory computations of

atomic structure [20].
We use the following notation. Greek letters are

scalars, lower case bold letters are vectors in R3,

and upper case bold letters are 3 � 3 matrices. Unit
vectors have a superimposed hat. y�x� � Gx is the
direct form of the formula yi � Gijx j, where sum-
mation over the repeated indexes is assumed. A

superscript T denotes the transpose [[�AT�ij � �A�ji]],
and tr is the trace �trA � Aii). The symbol eijk
denotes the permutation symbol, de®ned uniquely

by the two requirements: (i) e123 � 1; and (ii) eijk
switches sign whenever any pair of indices are
switched (used in Section 5). The tensor product of

the vectors a and b is a
 b, which in components is
the matrix �a
 b�ij � aibj: If A and B satisfy
Bÿ A � a
 n, we say that they are ``rank-1 con-

nected''. Rotation matrices (called simply rotations)
are denoted by the letters Q or R, sometimes
adorned with superscripts, etc. The set of all ro-
tation matrices is SO�3� � fR:RRT � RTR � I

and det�R� � �1g: A rotation of c counterclockwise
degrees with axis pÃ is written Q � Q�c, Ãp �, so
Q�c, Ãp � Ãp � Ãp :

2. MICROSTRUCTURE BY ENERGY
MINIMIZATION

Over the past decade, nonlinear thermoelasticity
has been used to study various problems associated

with martensitic transformations in shape-memory
materials (for example Refs [21±24] and the refer-

ences therein). One of the successes of this theory is
its ability to predict detailed microstructures which
are observed in materials. Once the properly invar-

iant free energy function is de®ned, then there are
no further assumptions, and all of the common in-
formation about martensitic transformations fol-

lows by direct calculation: the twins in the
martensite, their types, all austenite/martensite
interfaces, more complex microstructures, the e�ect

of stress or electromagnetic ®eld on transformation
temperature.
In the simplest case, one begins with a Bravais

lattice determined by three linearly independent vec-

tors {e1,e2,e3}. In particular, a Bravais lattice is the
set of all points in three dimensions given by

niei � n1e1 � n2e2 � n3e3 �1�

where n i are integers. Among all lattice vectors,
there are special ones associated with the unstressed

austenite fea
1,e

a
2,e

a
3g and with (one variant of) the

unstressed martensite fem
1 ,e

m
2 ,e

m
3 g: From these lattice

vectors, one can calculate the point groups of auste-

nite and martensite, de®ned as the set of orthogonal
transformations of the lattice that restore the lat-
tice. For reasons that will be clear below, one needs

only the subsets of these groups consisting of el-
ements with positive determinant; we call these
groups }a and }m. These lattice vectors change
slightly with temperature, so the given ones corre-

spond to the transformation temperature. An
atomic scale free energy per unit reference volume
is postulated, which is a function of lattice vectors

and temperature only. Further, it is assumed that
there is a neighborhood (called the Ericksen±Pitteri
neighborhood [22, 25±27]) of the lattice vectors of

the parent phase and that this neighborhood con-
tains the lattice vectors of the product phase as
well. In particular, this implies that the point group
of the martensite is a subgroup of the point group

of the austenite, }mW}a.
A continuum theory is obtained from the atomic

theory by using the Cauchy±Born rule [28±30]. In

particular, a reference con®guration O � R3 is
de®ned which represents the domain occupied by
the body in unstressed austenite. Deformations of

the body, due to either transformation or elastic
distortion, are described by functions y:O4R3: The
deformation gradient has positive determinant for

physically realizable deformations, detry > 0: The
Cauchy±Born rule states that if F � ry�x� is the de-
formation gradient at x, then the underlying lattice
vectors in the deformed con®guration at y(x) are

given by

fe1,e2,e3 g �
�
Fea

1,Fea
2,Fea

3

	 �2�

This rule allows one to pass back and forth between
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the lattice and continuum pictures. For example,
using equation (2) one can take a continuum defor-

mation for compatible martensite variants and ®nd
out immediately if an interface between variants
represents a type I twin, a type II twin, a compound

twin, or none of these.
The basic assumption is that the free energy per

unit volume in O is a function of the lattice vectors

and temperature, as is consistent with a typical
atomic level calculation of total energy based on
the Born±Oppenheimer approximation. By the

Cauchy±Born rule, the free energy can be expressed
as a function of the deformation gradient and tem-
perature, j�F,y�, where F � ry�x�:
Lattices that are more complex than Bravais lat-

tices (so-called multilattices) are described generally
as the union of a ®nite number n of identical
Bravais lattices, displaced relative to the origin by

vectors fp1, . . ., png: In this case, the Cauchy±Born
rule applies to each of these Bravais sublattices, and
the free energy is a function of the deformation gra-

dient and n ÿ 1 ``shifts'': j�F,pn ÿ p1, . . ., p2 ÿ p1�:
Transformations for which pm

i ÿpm
1 6� F�pa

i ÿpa
1� are

associated with shu�ing. Often, for martensitic

transformations in complex lattices, it is su�cient
to focus on one Bravais sublattice and assume that
the shifts have been minimized out of the free
energy (see e.g. Refs [22, 23, 31, 32] and Section 3).

The free energy density j has two fundamental
invariance properties. The ®rst arises from consider-
ation of the Ericksen±Pitteri neighborhood and

concerns symmetry: for each temperature and de-
formation gradient, the free energy density j
satis®es

j�FQ,y� � j�F,y� for all Q 2 }a �3�

where }a is the point group of the austenite lattice.

The second is invariance under all superposed rigid
body rotations:

j�RF,y� � j�F,y� for all R 2 SO�3� �4�

Note that from equation (3) the symmetry of the
austenite dominates the free energy.

Let U be the unique, linear transformation that
maps the austenite lattice vectors to the martensite
lattice vectors:�

em
1 ,e

m
2 ,e

m
3

	 � �Uea
1,Uea

2,Uea
3

	 �5�

By rigidly rotating the martensite lattice vectors (if
necessary), we can assume that U is positive-de®nite
and symmetric. The Bain strain matrix B is UÿI. A
number of facts about the relation between U, }a,
and }m follow directly from the assumption that
fem

i g is in the Ericksen±Pitteri neighborhood of fea
i g

(see Ref. [22] for details). First, it follows that }m is
a subgroup of }a: Second, }m consists of exactly
those elements of }a that leave U ®xed in the fol-
lowing sense:

}m �
�
Q 2 }a:QUQT � U

	
�6�

Given the point groups, this is a very strong restric-
tion on the form of the matrix U, and this is
how the speci®c forms given below for various

transformations were determined. Third, if we
calculate all distinct matrices given by fU1, . . ., Ung
� fQUQT:Q 2 }ag, then (by Lagrange's theorem),

n � #}a
�

#}m, where #} stands for the number of
elements in the group }: Below, it will be clear that
fU1, . . ., Ung de®ne the variants of martensite.

Let yc be the transformation temperature, i.e. the
temperature at which the austenite and martensite
have the same free energy density. The structure-

and history-sensitive temperatures Ms, Mf , As, and
Af are not built into the de®nition of the free
energy, but follow by studying metastable states,
e.g. relative (as opposed to absolute) minimizers of

the total free energy. At yc, the matrices U and I

(the latter because of the choice of reference con-
®guration) are assumed to minimize the free energy

density j. By equations (3) and (4), if F minimizes
j at any given temperature then so does RFQ for
every rotation R 2 SO�3� and every Q 2 }a: Given

one minimizer, we always get multiple minimizers.
The quantity RFQ can be written RQQTFQ,
because QQT � I, and, again RQ is a typical el-

ement of SO(3). In summary, if F minimizes j then
so does SO�3�F1, . . ., SO�3�Fk, where fF1, . . ., Fkg �
fQTFQ, Q 2 }ag and SO(3)F stands for all matrices
of the form RF, R 2 SO�3�: Hence, j(F,yc) is mini-

mized for F belonging to the set

SO�3�I, SO�3�U1, . . . , SO�3�Un �7�

and these energy wells given by equation (7) are
depicted in Fig. 1.
At yc, there is the typical exchange of stability as-

sociated with a ®rst-order phase transformation.
Above the temperature yc, j exhibits only the aus-
tenite well, and below yc, j exhibits only the
martensite wells. The matrices fU1, . . ., Ung change

Fig. 1. Schematic of the energy wells at yc.
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slightly with temperature, and there is a positive-
de®nite symmetric matrix Ua(y ), Ua�yc� � I, that

describes thermal expansion of the austenite. (From
the assumption that there is only a single well
above yc, we have Ua�y� � QTUa�y�Q for Q 2 }a:

the classical restriction on thermal expansion
matrices.)
The total free energy is

�
O
j�ry�x�,y�dx� loading device energy: �8�

Whenever possible, the ®rst term of equation (8)
can be minimized by putting ry�x� on the energy
wells at the appropriate temperature y, insuring
compatibility by making y continuous. Sometimes

certain constructions, e.g. the austenite/martensite
interface, involve energy minimizing sequences
ry�1�, ry�2�, . . ., ry�k�, . . . with transition layers of

volume 1/k and with ry�k� bounded. If loads are
applied, then the minimization of equation (8) gen-
erally leads to a di�cult nonlinear elasticity pro-

blem.
In many cases, materials scientists use a geometri-

cally linear version of the present theory. This can

be obtained expanding j about a matrix on each of
its energy wells, i.e. for variant i, expand j��I� eH
� . . .�Ui,y� to second-order in e. Then from equation
(4), it is found that the free energy density only

depends on the linear strain matrix E��ru�ruT�=2,
where ru � eH and u�x� � y�x� ÿ x is the displace-
ment. The wells are de®ned by linear strain matrices

fE1, . . ., Eng and rotational invariance is replaced
by the condition that if Ei minimizes the linearized
free energy, then so does Ei+W, where WT � ÿW:
Schematically, each martensite well in Fig. 1 is
replaced by a line passing through Ui, and from the
approximation of the rotations, one can imagine

the possibility of errors. These are discussed in
detail in Ref. [33].
The variants and consequently the energy wells

for a number of di�erent transformations have been

determined. Some of the more common ones in
shape-memory alloys are as follows (all matrices are
given in the orthonormal cubic basis).

Cubic to trigonal transition: by assuming that the
length of the sides of the cubic and trigonal unit
cells are the same, then this transition is described

by the trigonal angle c solely. This is very nearly
the case in Ti±Ni (the R-phase) and Au±Cd alloys
(see Ref. [34] and the references therein) and
TbDyFe2 (see Ref. [35] and the references therein).

There are four variants, which have components

U1 �
0@ a b b
b a b
b b a

1A, U2 �
0@ a ÿb b
ÿb a ÿb
b ÿb a

1A,

U3 �
0@ a b ÿb
b a ÿb
ÿb ÿb a

1A, U4 �
0@ a ÿb ÿb
ÿb a b
ÿb b a

1A
where a � � ���������������������

1� 2cosc
p � 2

������������������
1ÿ cosc

p ��3 and b �
� ���������������������

1� 2cosc
p ÿ ������������������

1ÿ cosc
p ��3:

Cubic to tetragonal transition: many martensitic

materials undergo the cubic to tetragonal transition,
such as Fe±Ni±C, Fe±Pd, In±Tl, Ni±Al, Ni±Mn,
and Ni2MnGa, for example (see Refs [21±23, 36]

and the references therein). There are three variants,
which have components

U1 �
0@b 0 0
0 a 0
0 0 a

1A, U2 �
0@ a 0 0
0 b 0
0 0 a

1A,

U3 �
0@ a 0 0
0 a 0
0 0 b

1A,
respectively. The transformation stretches a and b
are proportional to the ratio of the tetragonal lat-
tice parameters to the cubic one.

Cubic to orthorhombic transition: this transition
can occur in one of two di�erent ways [22, 23, 37,
38]. All six variants may have diagonal components

exclusively, ``cube-edge'' variants [37]. This occurs
rarely, but one of the stress-induced phases in
Ni2MnGa is of this type. The other type is de®ned

by

U1 �

0BBBBB@
b 0 0

0
a� g
2

aÿ g
2

0
aÿ g
2

a� g
2

1CCCCCA,

U2 �

0BBBBB@
b 0 0

0
a� g
2

gÿ a
2

0
gÿ a
2

a� g
2

1CCCCCA,

U3 �

0BBBBB@
a� g
2

0
aÿ g
2

0 b 0

aÿ g
2

0
a� g
2

1CCCCCA,

U4 �

0BBBBB@
a� g
2

0
gÿ a
2

0 b 0

gÿ a
2

0
a� g
2

1CCCCCA,
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U5 �

0BBBBB@
a� g
2

aÿ g
2

0

aÿ g
2

a� g
2

0

0 0 b

1CCCCCA,

U6 �

0BBBBB@
a� g
2

gÿ a
2

0

gÿ a
2

a� g
2

0

0 0 b

1CCCCCA, �9�

respectively, where a, b, and g are the transform-
ation stretches, a 6� g, and they are determined as
for the stretches in the cubic to tetragonal tran-

sition. This transition occurs in the Cu±Al±Ni
shape-memory alloy (see Refs [23, 32, 33] and the
references therein), and these variants are called

``face-diagonal'' variants in Ref. [37].
Cubic to monoclinic transition: this transition can

also occur in two di�erent ways [37, 39]: (a) ``Face-

diagonal'' variants have a unique twofold axis
along a face-diagonal of the original cubic unit cell.
From Ref. [31], there are twelve variants of the
form

U1 �
0@ x r r
r s t
r t s

1A, U2 �
0@ x ÿr ÿr
ÿr s t
ÿr t s

1A,

U3 �
0@ x ÿr r
ÿr s ÿt
r ÿt s

1A, U4 �
0@ x r ÿr
r s ÿt
ÿr ÿt s

1A,

U5 �
0@s r t
r x r
t r s

1A, U6 �
0@ s ÿr t
ÿr x ÿr
t ÿr s

1A,

U7 �
0@ s ÿr ÿt
ÿr x r
ÿt r s

1A, U8 �
0@ s r ÿt
r x ÿr
ÿt ÿr s

1A,

U9 �
0@ s t r
t s r
r r x

1A, U10 �
0@s t ÿr
t s ÿr
ÿr ÿr x

1A,

U11 �
0@ s ÿt r
ÿt s ÿr
r ÿr x

1A, U12 �
0@ s ÿt ÿr
ÿt s r
ÿr r x

1A,
where the speci®c components are

x � a
ÿ
a� gsin�y�����������������������������������������

a2 � g2 � 2agsin�y�
p ,

r � agcos�y����
2
p ���������������������������������������

a2 � g2 � 2agsin�y�
p ,

s � 1

2

 
g
ÿ
g� asin�y�����������������������������������������

a2 � g2 � 2agsin�y�
p � b

!
,

t � 1

2

 
g
ÿ
g� asin�y�����������������������������������������

a2 � g2 � 2agsin�y�
p ÿ b

!

The transformation stretches are a � a=a0,
b � b=� 2

p
a0�, and g � c=� 2

p
a0� where the lattice

parameter of the cubic unit cell is a0 and the lattice
parameters of the monoclinic unit cell are a, b, and

c, and y is the angle between the edges with lengths
a and c. More traditional notation labels the mono-
clinic angle y as b. This transition occurs in the Ti±
Ni shape-memory alloys (see Refs [31, 39] and refer-

ences therein). (b) ``Cube-edge'' variants have a
unique twofold axis along an edge of the original
cubic unit cell. There are twelve variants with com-

ponents

U1 �
0@b 0 0
0 r s
0 s t

1A U2 �
0@b 0 0
0 r ÿs
0 ÿs t

1A,

U3 �
0@b 0 0
0 t s
0 s r

1A U4 �
0@b 0 0
0 t ÿs
0 ÿs r

1A,

U5 �
0@r 0 s
0 b 0
s 0 t

1A U6 �
0@r 0 ÿs
0 b 0
ÿs 0 t

1A,

U7 �
0@ t 0 s
0 b 0
s 0 r

1A U8 �
0@ t 0 ÿs
0 b 0
ÿs 0 r

1A,

U9 �
0@ r s 0
s t 0
0 0 b

1A U10 �
0@ r ÿs 0
ÿs t 0
0 0 b

1A,

U11 �
0@ t s 0
s r 0
0 0 b

1A U12 �
0@ t ÿs 0
ÿs r 0
0 0 b

1A, �10�

where
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r � a2 � g2 � 2ag�sin�y� � cos�y��
2
���������������������������������������
a2 � g2 � 2agsin�y�

p ,

s � a2 ÿ g2

2
���������������������������������������
a2 � g2 � 2agsin�y�

p ,

t � a2 � g2 � 2ag�sin�y� ÿ cos�y��
2
���������������������������������������
a2 � g2 � 2agsin�y�

p ,

and b � b=a0, a � 2
p

a=a0, gAc=a0 (see Section 3

for explicit expressions for the stretch g ), and y is
the monoclinic angle between the edges with lengths
a and c (see Ref. [40] and the references therein).
Other transformations that have been analyzed in

detail are the tetragonal to monoclinic [41, 42] and
the orthorhombic to monoclinic [22] (see also Ref.
[37]).

The construction of energy-minimizing micro-
structures often reduces to considering continuous
deformations with piecewise constant gradients on

the austenite and martensite energy wells. In par-
ticular, consider a body O which undergoes a
homogeneous deformation with piecewise constant

gradient of the form

y �
�

RF1x� c1 for x � ÃnR0, x 2 O,
F2x� c2 for x � Ãn > 0, x 2 O,

�11�

where c1 and c2 are constant vectors, F1 6� F2,
R 2 SO�3�, and nÃ is the normal to the surface divid-

ing the body into regions with either deformation
gradient. Necessary and su�cient conditions that
the deformation given in equation (11) is continu-

ous are: c1 � c2, nÃ is a constant vector, and

RF1 ÿ F2 � a
 Ãn �12�

Therefore, the regions undergo a common trans-
lation, the dividing surface is a plane, and the de-
formation gradients di�er by a rank-one matrix.

The Hadamard compatibility condition [equation
(12)] commonly arises in the construction of micro-
structures, and solutions to this equation can be
found as follows: if the deformation gradients F1

and F2 are known, then de®ne the symmetric stretch
C to be �F1Fÿ12 �T�F1Fÿ12 �, which from equation (12)
can also be written as C � �I � a
 FÿT

2 Ãn �T�I � a

FÿT
2 Ãn �: Necessary and su�cient conditions that sol-

utions to equation (12) for the vectors a and nÃ exist
are given by Proposition 1:

Proposition 1 [21, 22]. Necessary and su�cient con-

ditions for a symmetric 3 � 3 matrix C 6� I with
eigenvalues l1Rl2Rl3 to be expressible in the form

C � �I� Ãm 
 b��I� b
 Ãm �

with 1� b � Ãm > 0 and b 6� 0, Ãm 6� 0 are that l1 >
0 and l2 � 1: All solutions are given by

b � r���������������
l3 ÿ l1
p

� ���������������������
l3�1ÿ l1 �

p
Ãe 1

� k
���������������������
l1�l3 ÿ 1�

p
Ãe 3

�
�13�

Ãm � 1

r

 �����
l3
p ÿ �����

l1
p���������������

l3 ÿ l1
p

!�
ÿ

�������������
1ÿ l1

p
Ãe 1

� k
�������������
l3 ÿ 1

p
Ãe 3

�
�14�

with r a nonzero constant, and eÃ 1 and eÃ 3 are the
eigenvectors of C corresponding to the eigenvalues

l1 and l3, respectively, and k �21:

From Proposition 1, there are at most two sol-

utions to equation (12), and for each solution, the
rotation R can be found by direct substitution of
the vectors a and nÃ back into equation (12).

2.1. Twinning

A feature of the present theory is that all twins
and their modes are predicted directly. A macro-
scopic picture of a twin is shown in Fig. 2. The

compatibility equation is

RUi ÿ Uj � a
 Ãn �15�

where R is the twin rotation, a is parallel to the
twin shear, and Uÿ1j Ãn is parallel to the twin plane

normal in the deformed con®guration. The magni-
tude of the twin shear s is jUÿ1j Ãn jjaj: From Refs
[24, 43], if there exists a rotation Q � Q�1808, Ãp � in
the austenite Laue group }a (from equation (6),
only those rotations in the full austenite point
group with positive determinant need to be con-

sidered) such that Uj � QUiQ, then the solutions to
the twinning equation (15) are

Ãn I � Ãp , aI � 2

0@ Uÿ1j Ãp���Uÿ1j Ãp
���2 ÿ Uj Ãp

1A,
RI �

0@ÿ I� 2���Uÿ1j Ãp
���2 Uÿ1j Ãp 
 Uÿ1j Ãp

1AQ

�16�

and

Ãn II � 2

r

 
Ãp ÿ U2

j Ãp��Uj Ãp
��2
!
, aII � rUj Ãp ,

RII �
 
ÿ I� 2��Uj Ãp

��2 Uj Ãp 
 Uj Ãp

!
Q

�17�

where r is a nonzero constant that can be chosen to
normalize the twin plane normal. It can be immedi-
ately seen from the form of the rotation matrix RI

202 JAMES and HANE: SHAPE-MEMORY MATERIALS



and the Cauchy±Born rule [equation (2)] that the
®rst solution [equation (16)] is a type I twin, while

the second solution [equation (17)] is a type II
twin. If there are two 1808 rotations in }a relating
the variants, then the solutions are both compound
twins. Also, it can be shown that the twin shear s

is the same for both twin solutions [equations (16)
and (17)] and is given by

s � 2
�������������������������������������
jUj Ãp j2jUÿ1j Ãp j2 ÿ 1

q
:

Moreover, the Cauchy±Born rule can be used to
draw the lattice picture of the twins, and further,
all of the twinning elements, K1, K2, Z1, and Z2,
can be found for each of the twin solutions above
(see Refs [29, 36]).
Table 1 gives the results of the calculations for

four of the ®ve transformations given in the pre-
vious section. For the cubic to monoclinic tran-
sition with ``cube-edge'' variants [equation (10)]

consult Ref. [39]. We can see from this table that
all of the twin planes and twin shears can be
found, and that the predictions agree with exper-

imentally observed twins.
Of course, in some cases it is not true that there

exists a rotation Q � Q�1808, Ãp � in the austenite
Laue group }a such that Uj � QUiQ: But in some

of these cases (rarely), equation (15) still admits
solutions (to ®nd them, use directly Proposition 1)
[39, 41, 42]. In such cases, the two variants are per-

fectly compatible across a pair of interfaces, but
there is no mirror symmetry. An example occurs in
LaNbO4 [42]. In this case, all of the crystallo-

graphic information including the normals, relative
rotations, atomic positions, etc., arise perfectly
naturally from the present theory.

2.2. Austenite±martensite microstructures

At the critical temperature yc, both phases can
co-exist in a specimen giving rise to the austenite±
martensite microstructures. These microstructures
provide low-energy paths through which a speci-

men can transform.

2.3. Austenite±single variant of martensite interface

The simplest austenite±martensite microstructure
is two adjacent regions one with gradient on the

Fig. 2. Schematic of the twin microstructure.
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austenite energy well and the other with gradient on

a single martensite energy well. From equation (12),
the compatibility equation with variant Ui is

RUi ÿ I � b
 Ãm �18�

where the unknowns are the rotation R and the vec-

tors b and mÃ . The vector b is the shape strain, and
mÃ is the habit plane normal. From Proposition 1,
the necessary and su�cient condition that solutions

to equation (18) exist is that the symmetric stretch
U2

i has ordered eigenvalues l1Rl2 � 1Rl3: If this
condition is satis®ed, then the shape strain b and
habit plane normal mÃ are given by equations (13)

and (14), respectively (see Ref. [36]).
For all of the symmetry lowering transform-

ations, the austenite±single variant of martensite

interface is possible with special lattice parameters,
namely lattice parameters that give the needed
eigenvalues. Two alloys that do exhibit this type of

interface are certain special compositions of Ta±Ti
[45] and Ti±Ni±Cu [46]. For both of these material
systems, the composition was varied in order to

satisfy the condition on eigenvalues. Some 9R and
18R structures also very nearly satisfy this con-
dition (see Section 3). Table 2 gives the restrictions
on the transformation stretches for several tran-

sitions in order for this interface to be possible.

2.4. Austenite±twinned martensite microstructure

As is well known, the austenite±twinned marten-
site microstructure is governed by the crystallo-

graphic theory of martensite. So, our only purpose
here is to show how this structure emerges from
energy minimization and to summarize the less

well-known restrictions on lattice parameters that
permit this microstructure. The basic structure in
the reference con®guration is shown in Fig. 3. In

order for the deformation to be continuous, a tran-
sition layer is introduced between the austenite
region and the twinned martensite region. This
transition layer necessarily involves deformations

with gradients not on the energy wells, and so, the
microstructure is not an energy minimizer. If one

scales the width of the martensite layers and the
width of the transition layer by 1/k as shown in
Fig. 3, one gets a sequence of deformations; in the
limit as k41, the energy of this sequence con-

verges to the absolute minimum, and the limiting
interface between the two phases is a plane [21].
Necessary and su�cient conditions that the energy

of the transition layer tends to zero are that the
twinning equation (15) and the equation

ÅR
ÿ
lRUi � �1ÿ l�Uj

�ÿ I � b
 Ãm �19�

have a solution, the latter to be solved for � ÅR 2
SO�3�, b, Ãm �: This is equivalent to the standard
equation of the crystallographic theory of marten-
site [47]. The translation to the notation of the crys-

tallographic theory follows by substituting for RUi

using equation (15), then writing:

R P2 B� I

ÅR
z}|{

�I� la
 Uÿ1j Ãn �
z�������������}|�������������{

Uj

z}|{ � P1

I� b
 Ãm
z�������}|�������{ �20�

But, conceptually, there is a major advantage of
writing the equation in the form of equation (19).
That is, the matrix lRUi � �1ÿ l�Uj in parentheses

in equation (19) is precisely the macro-scale defor-
mation gradient of the twinned martensite.
Therefore, equation (19) is, just like equation (15),

simply the compatibility equation between two de-
formation gradients. Once this is noticed, the realiz-
ation that many more complicated energy

minimizing microstructures can be constructed by
checking similar conditions becomes clear.
An austenite±twinned martensite microstructure

is possible with pairs of distinct variants Ui and Uj

Table 2. Austenite±single variant of martensite interfaces. The
unique number of possible realizations of this particular inter-

face is also indicated

Transition Number/Restrictions Observed

Cubic to trigonal
[34]

Not possible

Cubic to tetragonal
[36]

3 if a=1

Cubic to
orthorhombic [38]

12 if a=1, b < 1, and
g > 1

Ti±Ta, Ti±Ni±Cu

12 if b=1, a < 1, and
g > 1

Cubic to monoclinic
in Ti±Ni alloy [31]

Not possible for
lattice parameters of

Ti±Ni
Cubic to monoclinic
in 6M martensites
[40]

24 if 6M unit cell Cu±Al±Ni, Cu±Zn,
Cu±Zn±Al,
Cu±Zn±Ga

Fig. 3. Austenite±twinned martensite microstructure.
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if a solution exists to the twinning equation (15)

and the habit plane equation (19). Again use is
made of Proposition 1. From Theorem 7 of Ref.
[21], necessary and su�cient conditions that there is

a solution are

d �def
a � Uj

�
U2

j ÿ I
�ÿ1

ÃnRÿ 2 �21�

and

Z �def
tr
�

U2
j

�
ÿ det

�
U2

j

�
ÿ 2� jaj

2

2d
r0: �22�

The volume fraction l of variant i is found from

l � 1

2

 
1ÿ

������������
1� 2

d

r !
�23�

with the function d from equation (21). Formulas
for the solutions are given in Ref. [21]. Detailed stu-
dies of lattice parameters satisfying equations (21)

and (22) can be found in Refs [21, 23, 24, 31, 33,
34, 36, 38, 41]. The occasional statement (used in
the literature on constitutive equations) about the

``24 habit planes'' in nontetragonal martensites is
incorrect (Table 3).

3. COMPLEX CRYSTAL STRUCTURES: 18R
MARTENSITES

Recently, the 18R martensites have been included

within the present theory by Hane [40], following a
revision of the nomenclature and choice of the unit
cell by Otsuka et al. [48]. These transformations
presented a long-standing di�culty for the theory,

which was especially problematic because the alloys
exhibiting this structure, such as Cu±Al±Ni, Cu±
Zn, Cu±Zn±Al, and Cu±Zn±Ga [49], comprise an

important class of shape-memory alloys.
The reason that the old view of 18R presented a

di�culty arises from a fundamental problem in the

interpretation of X-ray data for martensitic ma-
terials (see Ref. [50] for further discussion). In the
present theory, the deformation plays a basic role,

the energy wells being de®ned by special stretch
matrices fU1, . . ., Ung: But X-ray pictures do not
give a deformation, they only give a crystal struc-
ture. Having crystal structures for austenite and a

variant of martensite does not determine uniquely

U1; one needs also the correspondence, and the pro-

blem is exacerbated in complex lattices because

there can be many di�erent correspondences that

give similar values for U1.

The old description of 18R (with its correspon-

dence) gave a speci®c value for U1, and therefore

by monoclinic symmetry for fU1, . . ., U12g: In the

phenomenological theory, in order to achieve com-

patibility between austenite and a single variant of

martensite, a shear K was introduced which was

de®ned solely by a shear parameter k (see Refs [51±

55]). This shear parameter was adjusted so that the

deformation gradients I and RKU1, with R some

rotation matrix, satisfy a compatibility equation.

Formally, the parameter k was interpreted as being

related to the density of internal defects in the mar-

tensite phase (for example Refs [51±53, 55, 56]).

The only way to make this ®t into the present the-

ory was to ``extend the wells'' by including with

them a path of energy minimizers, parameterized by

k, leading away from each well SO(3)Ui: by frame-

indi�erence, this gave a huge set of energy-density-

minimizing states, which seemed inconsistent with

the mechanical behavior of these alloys.

In their study of Cu±Al, Nishiyama and

Kajiwara [57] originally proposed two unit cells to

describe the long-period stacking ordered structure

of the martensite: 6M and 18R. Recently, Otsuka et

al. [48] reconsidered the structure 6M. They favored

6M over 18R because the former correctly accounts

for the monoclinic symmetry and stacking of the

lattice, and this choice of a di�erent unit cell implies

a di�erent correspondence. To understand the revi-

sion introduced by Otsuka et al. [48] we refer to

Fig. 4. The parent phase from which is obtained all

of the long-period stacking ordered structures under

consideration is either a B2 or a DO3 ordered struc-

ture. The DO3 structure is obtained by stacking the

planes A1 and B1 as shown in Fig. 4 in the sequence

A1B1, while the B2 structure is contained in the

DO3 structure by considering the same planes, but

with lattice parameter a0/2. Both of these lattices

are cubic if the ordering is neglected. Following

Nishiyama and Kajiwara [57], the transformation

from the parent phase to the long-period stacking

ordered structures is assumed to take place by a

contraction along the [100] direction and an

Table 3. Austenite±twinned martensite microstructure. The unique number of possible realizations of this particular microstructure is
given as well

Transition Twin type Number Observed

Cubic to trigonal [34] Compound, {100} and {110} twins 36 for c> 908
Compound, {110} twins 12 for c < 908 Au±Cd, Ti±Ni

Cubic to tetragonal [21, 23, 36] Compound 24 Fe±Ni±C, In±Tl, Ni±Al, Ni±Mn
Cubic to orthorhombic [23, 32, 38] Compound 24

Type I 48 Cu±Al±Ni
Type II 48 Cu±Al±Ni

Cubic to monoclinic in Ti±Ni alloy [31, 33] Type I, {100} and {110} twins 96
Type II, h100i and h110i twins 96 Ti±Ni
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expansion along the [011] direction, in order to cre-

ate (011) close-packed planes as shown in Fig. 4,

and an expansion along the [011] direction. Certain

sites within this unit cell become unstable and the
atoms undergo shu�es in the [011] direction to

more stable positions. It is this shu�ing that creates

the internal defects within the martensite phase, and

it may happen that errors occur in the shu�ing

leading to stacking faults [58]. Long-period stacking
ordered structures are made up of stacks of the

(011) close-packed planes. Various stacking

sequences of these planes are found in a number of

shape-memory alloys. Some of the observed struc-

tures are denoted as 2H, 9R, and 18R in the
Ramsdell notation [49].

For de®niteness, consider those alloys with a

high-temperature parent phase of a DO3 ordered
structure as shown in Fig. 4. The low-temperature

product phase is a long-period stacking ordered

structure, which is shown in Fig. 4 as well, where

the (011) close-packed planes with ideal stacking

are depicted at the top right. Note that all of the
planes A, B, and C are equivalent, while all of the

planes A ', B ', and C ' are equivalent. In Fig. 4, the

thin line outlines the 18R unit cell. It is, however,

found in experiments that the stacking positions de-

viate from the ideal positions; thus, a modi®ed 18R

structure, called M18R, is needed. Tadaki et al. [59]

rationalize the deviation from the ideal stacking

positions as being due to the di�ering radii of the

atoms in the alloy. The M18R unit cell is outlined

at the extreme right in Fig. 4 by the thick line, and

the M18R is distinguished from the 18R by a

monoclinic angle y di�erent from 908.
On the other hand, each of the lattices, 18R and

M18R, can be indexed by di�erent unit cells

and two such were proposed by Nishiyama and

Kajiwara [57] and Otsuka et al. [48]. The unit cells

called 6M are consistent with the accepted monocli-

nic symmetry of the lattice. One such 6M unit cell

is indicated in Fig. 4 for each of the lattices 18R

and M18R, and the correspondence for both M18R

and 6M is evident from the ®gure. Both correspon-

dences yield stretch matrices fU1, . . ., U12g of the

``cube-edge'' type given above in equation (10), with

Fig. 4. At the left is shown the DO3 crystal structure along with the (011) planes and its stacking
sequence. In the middle is the 18R martensite, where the (011) close-packed planes with ideal stacking
are given at the top. The rectangle outlined by the thin line is the 18R unit cell and its corresponding
6M unit cell is indicated as well. At the right is shown the relationship between the 18R and M18R
unit cells; while, the relationship between a 6M unit cell (thin) for 18R and a 6M unit cell (thick) for

M18R is also indicated.
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the parameters a � ���
2
p

a
�
a0 and b � b

�
a0 and

stretch g and angle y indicated below.

Typically, the lattice parameters a, b, c, and y are
reported for the M18R unit cell. Unfortunately, a
common practice is for experimentalists to ignore

the monoclinic angle (M18R) and report the struc-
ture as orthorhombic (18R). For both the unit cells,
M18R and its corresponding 6M cell, the lattice
parameters a and b are the same, while the lattice

parameter c along the [011] direction and the mono-
clinic angle y are di�erent. Let cM18R and yM18R

denote the length c and angle y, respectively, for

the M18R unit cell, then the corresponding length
and angle for its 6M unit cell are

c6M � cM18Rsin�yM18R �
3sin�y6M � and

y6M � yM18R � tanÿ1
�

a

cM18Rsin�yM18R �
�
,

�24�

respectively [40, 48]. The energy well structure

obtained from M18R has the di�culty mentioned
above, while that obtained from its corresponding
6M is reasonable, as we now explain.

Using the energy wells for cubic to monoclinic
transformations of ``cube-edge'' type given in
equation (10) and the 6M unit cell, the austenite is

exactly compatible with martensite across an inter-
face if and only if [40],

cos2y � �1ÿ a2 �
ÿ
1ÿ g2

�
a2g2

�25�

where a � ���
2
p

a
�
a0 and g � ���

2
p

c6M

�
3a0: In fact,

four particular alloys have lattice parameters of the
cubic parent and monoclinic phases which very

nearly satisfy the condition given by equation (25).
To show this, let ~y be the monoclinic angle that
exactly satis®es equation (25), i.e. cos2�~y � �
�1ÿ a2��1ÿ g2��a2g2, using the measured values of
a and g for these alloys. From Table 4, we see that

the measured y is extremely close to ~y : If, after
accounting for experimental error, stacking faults

are needed at all to secure compatibility between
austenite and martensite, then it will be a very low
density. Using the measured lattice parameters a0,

a, b, and c, and the monoclinic angle ~y given by
equation (25), Hane [40] has calculated all of the
exact austenite/martensite interfaces for these alloys,
and has shown good agreement with experiment.{
This nearly exact compatibility between austenite
and martensite is a remarkable feature of the 6M
structure.

These calculations indicate the importance of tak-
ing into account the deviation from the ideal stack-
ing positions when measuring all of the lattice

parameters of these martensites. Further, it appears
that the deviation from the ideal is required in
order to have compatibility between austenite and
martensite, and that a nearly ideal stacking can be

obtained after the completion of the austenite to
martensite transformation and variant rearrange-
ment under stress.

Recent experimental observations by Sun et al.
[62] and Shield [63] have revealed unusual defor-
mations under stress. In the former case, smooth in-

homogeneous deformations are observed, having
gradients apparently quite far from the energy
wells. This could support the idea that the defor-

mation gradients associated with the shear par-
ameter k, if not the lowest, are still rather low
energy deformations. The interesting measurements
of elastic moduli by Rodriguez et al. [64] also sup-

port this idea: these authors report the moduli as-
sociated with the shear path as having value zero
(albeit with an error bar of 220 GPa). If a low-

energy path departs transversally from a point on
the energy wells, then (by linearization near that
point on the well), some particular wave speed must

vanish for linear theory, and it would be interesting
to measure directly that wave speed. So, in sum-
mary, the 6M correspondence seems now to be the
best, but a full understanding of the nature of this

apparent low-energy valley on the energy surface,
j � j�F,y�, awaits further study.

4. SPECIAL LATTICE PARAMETERS AND DESIGN
OF MATERIALS

Of special interest in the study of martensitic
transformations are microstructures known as the
wedge, triangle, and diamond, which are shown

Table 4. Lattice parameters for various alloys exhibiting the faulted martensites. The parameters given are for the 6M unit cells which are
found from data for either the M9R or M18R cells using equation (24). The angle ~y is that needed for compatibility from equation (25)

Alloy Parent phase Product phase

Cu±Zn±Al, 15 at.% Zn, 17 at.% Al [60] (DO34 6M) a0=5.996 AÊ a = 4.553 AÊ , b= 5.452 AÊ , c = 13.014 AÊ , y=94.28 and ~y=94.58
Cu±Al±Ni, 14 wt% Al, 4 wt% Ni [61] (DO34 6M) a0=5.836 AÊ a = 4.430 AÊ , b= 5.330 AÊ , c= 12.79 AÊ , y=95.68 and ~y=95.28
Cu±Zn±Ga, 20 at.% Zn, 12 at.% Ga [56] (DO34 6M) a0=5.86 AÊ a= 4.40 AÊ , b= 5.33 AÊ , c = 12.78 AÊ , y=94.98 and ~y=94.58
Cu±Zn, 39.3 at.% Zn [59] (B24 6M) a0=2.94 AÊ a = 4.412 AÊ , b= 2.678 AÊ , c= 12.84 AÊ , y=95.18 and ~y=94.58

{ It is interesting to note that the predictions of habit

planes in fact agree with earlier predictions based on the

M18R structure and the shear parameter, and its associ-

ated high density of internal faults [51±53, 55, 56]. The

reason for this is that in the earlier analysis by the phe-

nomenological theory, the value of the shear parameter is

precisely chosen so that the low-energy path goes from the

old M18R wells to the correct 6M wells.
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schematically in Fig. 5. Here we review the special

relations among lattice parameters which are
necessary and su�cient that such microstructures
are compatible and energy minimizing.
Certain metallic alloys, which undergo a marten-

sitic transformation, exhibit a spear or wedge
microstructure. A wedge of martensite, which grows
in a sea of austenite, consists of two regions of mar-

tensite separated by a planar interface called the
midrib, and separated individually from the auste-
nite phase by habit planes. The wedge nucleates

and grows as a coherent structure with both habit
planes and midrib plane appearing and growing
together. On heating, the reverse transformation

takes place with the wedge shrinking and ®nally dis-
appearing (see Refs [23, 32, 36] and the references
therein). The wedge is thought to be important for

the thermoelasticity and reversibility of the trans-
formation, because it provides a means by which
the specimen can transform from a point on its
boundary or grain boundary.

Within the context of the present theory, the
wedge is constructed by ®tting two austenite±mar-
tensite microstructures together coherently at the

midrib, using only deformation gradients from the
energy wells except on transition layers whose
energy can be reduced to zero by re®nement. Two

di�erent kinds of wedges have been considered:
those in which both martensite regions are single
variants of martensite; and those in which both

martensite regions are twinned. Bhattacharya [23]
gives necessary and su�cient conditions that the
wedge is compatible and energy minimizing: the
shape strains [b in equation (18) or equation (19)]

of the two martensite plates making up each half of
the wedge are parallel and the corresponding habit
plane normals [mÃ in equation (18) or equation (19)]

are not parallel. These conditions place rather
strong restrictions on the lattice parameters. The
most complete picture of these lattice parameter

restrictions in various cases is given by Hane and
Shield [36]. Among materials that clearly show the
wedge, these restrictions are satis®ed to a remark-

able degree of accuracy (see Fig. 6).
The restrictions on lattice parameters are sum-

marized in Tables 5 and 6. Notice that the wedges

with single variants of martensite are only possible
in materials with extremely special lattice par-
ameters, but such materials have the potential for
good shape memory, as discussed below. The gen-

eral restrictions on the lattice parameters for a

single variant wedge in both of the cubic to mono-
clinic transitions (``face-diagonal'' and ``cube-edge''

types) have not been worked out, but it is expected

that such microstructures are possible in materials
with lattice parameters which lie on surfaces in the

space of lattice parameters: two restrictions on the
lattice parameters are required.

The conditions for the twinned wedge are nearly

satis®ed in a Ti±Ni shape-memory alloy, but to
date, they have not been unambiguously observed

(see Ref. [31] and the references therein). One
reason for this may be the well-known problem that

the size scale of microstructures in Ti±Ni tends to
be intermediate between optical and electron mi-

croscopy. Also, the calculations in Ref. [31] indicate

that the conditions for the wedge are only approxi-
mately satis®ed, and a small amount of additional

elastic energy is required in order to make the de-

Fig. 5. From left to right, schematic of the wedge, triangle, and diamond microstructures. The gray
regions can be twinned or single variant.

Fig. 6. Plot of the projections of the surfaces on which the
twinned wedge microstructure is possible for the cubic to
orthorhombic transition with variants given in equation
(9). The transformation stretch b is ®xed at the value for a
Cu±Al±Ni shape-memory alloy, b=0.9178 (see Refs [23,
32, 44] and the references therein). The solid curves are
with type I twins and the dashed curves with type II
twins. The ®lled circle indicates the other two transform-
ation stretches for Cu±Al±Ni. The open circles are those
stretches at which the diamond microstructure with twins
is possible; and the point marked by a cross is an inadmis-

sible point (see Ref. [32] for more details).

208 JAMES and HANE: SHAPE-MEMORY MATERIALS



formation compatible. In any case, ``wedge-like''
structures are observed as part of the triangle mor-

phology. Further, the 6M martensites in the speci®c
alloys of Cu±Al±Ni, Cu±Zn, Cu±Zn±Al, and Cu±
Zn±Ga with lattice parameters given in Table 4

cannot support the wedge; in fact, these materials
have parameters that are far from the special lat-

tices parameters for the wedge.
Other special microstructures involve ®tting mul-

tiple wedges together coherently [36], so that they
are completely surrounded by austenite. Two such
microstructures are the triangle and the diamond,

which are depicted in Fig. 5. In fact, the diamond is
just two wedges back-to-back. These microstruc-

tures are possible only in materials with very special
lattice parameters: typically, the lattice parameters

must satisfy two restrictions which are summarized
in Tables 7 and 8. Since the single variant wedge
microstructure is not possible in the 6M martensites

in the particular alloys considered, then neither are
the triangle nor the diamond.

The diamond microstructure discussed above can
be contrasted with a similar microstructure pro-

posed by Schroeder and Wayman [65] and Saburi
and Wayman [66]. They call this morphology a self-
accommodating plate group. The plate group is

considered to be common to many shape-memory
alloys. In particular, a plate group is formed by

four habit planes symmetrically arranged about a
pole in such a manner that the average shape defor-

mation is nearly the identity. The compatibility
equations between the martensite regions are, how-
ever, not considered; in fact, it can be shown using

the data given in Ref. [66] that none of the inner
compatibility equations is satis®ed for their dia-

mond microstructures. Perhaps the observed micro-
structures are more complicated than as described.
Similarly, in Refs [67, 68], the authors propose a tri-

angle morphology to model a microstructure that
appears in Ti±Ni shape-memory alloys. Hane and

Shield [31] show that the proposed microstructure
cannot be energy minimizing according to the pre-

sent theory.
A material which undergoes, say, the cubic to

orthorhombic transition and which has the special
lattice parameters in order for a single variant
wedge microstructure to be possible (Table 5) has

the potential for good shape-memory properties.
One reason is that such materials can form the tri-

angle and diamond as well, which provides a simple
mechanism for self-accommodation. Also, the
absence of ®ne twinning and transition layers

means much less energy needs to be used to create
austenite±martensite interfaces, which should make

the hysteresis in such alloys small, as is consistent
with other low hysteresis alloys (certain 6M alloys

and Ti±Ni±Cu alloys), which also have untwinned
austenite±martensite interfaces. (For connection
between low hysteresis and exact austenite/marten-

site interfaces, see Ref. [11].) In addition, such ma-
terials have the ability to form austenite±twinned

martensite interfaces for any volume fraction and
any ®neness of the twins! This can be imagined by

drawing several neighboring parallel single-variant
wedges, so a jagged interface exists between auste-
nite and martensite. Such materials could form an

Table 5. Single variant wedges. The unique number of possible realizations of this microstructure is also indicated

Transition Number/Restrictions Observed

Cubic to trigonal [34] Not possible
Cubic to tetragonal [36] Not possible

Cubic to orthorhombic [38] 12 if a=1, g � b
� ����������������

3b2 ÿ 1
p

18 if b=1 , g � a
� �������������

2ÿ a2
p

Cubic to monoclinic in Ti±Ni alloy [31] Not possible for Ti±Ni
Cubic to monoclinic in 6M martensites [40] Not possible for Cu±Al±Ni, Cu±Zn, Cu±Zn±Al, Cu±Zn±Ga

Table 6. Twinned wedges. The unique number of possible realizations of this microstructure is indicated as well

Transition Twin type Number/Restrictions Observed

Cubic to trigonal
[34]

Compound, {100} twins 12 at c=116.48

Cubic to tetragonal
[23, 36]

Compound 12 if a2 � 1� 2b2 � 5b4

1ÿ 2b2 � 9b4
Fe±Ni±C, Ni±Al, Ni±Mn

Cubic to orthorhombic
[23, 32, 38]

Compound 12 if g2 � a2b2

4a2b2 ÿ 2a2 ÿ b2

Compound 12 if g2 � a2b2 ÿ 2b2

2a2 ÿ 2a2b2 ÿ b2

Type I 12 on surfaces Cu±Al±Ni
Type II 12 on surfaces Cu±Al±Ni

Types I and II (mixed twin) 24 on curve
Cubic to monoclinic in
Ti±Ni alloy [31]

Type I, {100} twins 12 Both possible for Ti±Ni,
not observed

Type II, h110i twins 12
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in®nite variety of di�erent microstructures at essen-

tially zero energy.

It would be extremely interesting, from both

practical and theoretical points of view, to seek

alloys that satisfy the special lattice parameter re-

lationships given here.

A warning about the literature. Often in the lit-

erature a picture is drawn of a microstructure, and

corresponding strain matrices are given. It is then

shown that the sum of these strains weighted by the

volume fractions is zero, as an argument for self-ac-

commodation (see Section 5, especially equation

(36) for further discussion). The example often cho-

sen is the diamond morphology. Above, we have

explained that the diamond morphology is only

possible with exceedingly special lattice parameters.

But in the literature the strains that are given

usually do not satisfy these restrictions, even ap-

proximately. Therefore, the strains that are given do

not correspond to the picture that is drawn. That is,

if pictures of reference and deformed con®gurations

were generated using those strains (and introducing

rotations as necessary to achieve compatibility

where possible), the deformed picture would necess-

arily have gaps, surfaces with discrete slips, or

would exhibit interpenetration of matter. In short,

it would not be compatible. This practice is wide-

spread and occurs in even some recent papers and

reviews. Of course, the experimental observations

do not justify the use of those ideal pictures. This

practice is unfortunate for materials science, i.e.

there are often compelling physical arguments given

to suggest that these special microstructures are

desirable for some interesting phenomenon such as

the shape-memory e�ect. We feel that the use of

special relations like the ones reviewed here could

be used as a basis to search for new alloys, which

would then be likely to exhibit those microstruc-
tures. While raising this criticism, the present

authors are well aware that the methods reviewed
here may not be so easily accessible, and the present
treatment is intended to remedy this situation.

5. MICROSTRUCTURE AND THE MINORS
RELATIONS

The main advances described in this review can
be attributed to two developments: improved
methods of constructing microstructures in the geo-
metrically exact case, and the development of gen-

eral restrictions on microstructure. Here we explain
the latter in simple terms. As asserted above, we
believe that the widespread use of these restrictions

would enhance the quantitative understanding of a
variety of materials in which ``deformation'' and
``microstructure'' play a role (e.g. materials under-

going coherent di�usional phase transformations,
plastic deformation, or magnetostrictive/piezoelec-
tric processes).
The minors relations are identities that connect

microstructural deformation to macroscopic defor-
mation. Physically, it is clear there must be some
connection: if the maximum strain on the micro-

scale is e, then, no matter how the microstructure is
arranged, the macro-scale strain cannot exceed e.
The minors relations apply only to the case of

coherent (i.e. continuous) deformations, but the size
of the deformation on the micro-scale is completely
unrestricted, as is the complexity of the microstruc-

ture. To describe the relations, we ®rst have to give
a precise interpretation of the terms macro-scale
and micro-scale. In the simplest view, we consider a
region O in three-dimensional space. Suppose that

the boundary of O, written as @O, is subject to a

Table 8. Diamond microstructures. The unique number of possible realizations of this microstructure is also given

Transition Number/Restrictions Observed

Cubic to trigonal [34] Not possible
Cubic to tetragonal [36] Not possible
Cubic to orthorhombic [38] 3 if b=1, g � a

� �������������
2ÿ a2
p

18 on curve with type I twins
18 on curve with type II twins

Cubic to monoclinic in Ti±Ni alloy [31] Not possible for Ti±Ni
Cubic to monoclinic in 6M martensites Not possible for Cu±Al±Ni, Cu±Zn, Cu±Zn±Al, Cu±Zn±Ga

Table 7. Triangle microstructures. The unique number of possible realizations of this microstructure is indicated as well

Transition Number/Restrictions Observed

Cubic to trigonal [36] Not possible

Cubic to tetragonal [34] 4 if a �
��������
5
�
3

q
, b �

��������
1
�
3

q
Cubic to orthorhombic [38] 4 if a=1, g � b

� ����������������
3b2 ÿ 2

p
12 if b=1, g � a

� �������������
2ÿ a2
p

Not possible with twins
Cubic to monoclinic in Ti±Ni alloy [31] Not possible for Ti±Ni
Cubic to monoclinic in 6M martensites Not possible for Cu±Al±Ni, Cu±Zn, Cu±Zn±Al, Cu±Zn±Ga
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deformation y�x� � Gx for x 2 @O as shown in Fig.
7. The line passing through O represents a material
line. After deformation, it becomes jagged, as

shown in Fig. 7(a), but its deformed end positions
are determined by the boundary deformation.
Hence, we have two deformations ymacro�x� and

ymicro�x�: In Fig. 7(a), ymacro�x� � Gx, and ymicro�x�
describes the detailed deformation of the scratch.
We ask the question: are there functions j(F) of the
deformation gradient F that behave particularly

well under averaging, in the sense that�
O
j
�rymicro�x�

�
dx �

�
O
j
�rymacro�x�

�
dx

� j�G� � volume of O �26�

holds for all ymicro�x� that satisfy the boundary con-

ditions ymicro�x� � ymacro�x� �Gx on @O? Such func-
tions j are called null Lagrangians. We can easily
®nd a necessary condition on the null Lagrangians,

by testing the relation of equation (26) against the
most common micro-deformation observed in mar-
tensite [Fig. 7(b)]. Consider two compatible defor-

mation gradients A and B, Bÿ A � a
 n, in a
simple layering with the volume fraction of A being
l 2 �0,1� as shown in Fig. 7(b). In this case,

ymacro�x� � �lA� �1ÿ l�B�x: To make such a micro-
deformation meet exactly these boundary con-
ditions, one needs to add a small transition layer,
but this can be done (as explained above) with a

bounded gradient; and by re®ning the layers, the
volume of this transition layer can be made arbitra-

rily small. Since the deformation gradient in the
transition layer is bounded and its volume is arbi-
trarily small, the transition layer makes a negligible

contribution to the left-hand side of equation (26).
When equation (26) is evaluated for this particular
micro/macro-deformation, we get (after dividing by

the volume of O ), the necessary condition

lj�A� � �1ÿ l�j�B� � j
�
lA� �1ÿ l�B

�
�27�

which must hold for all rank-one-connected
matrices A and B. Equation (27) is an algebraic

condition on j that was solved by Ericksen [69]:
j(G) satis®es equation (27) if and only if it is a lin-
ear combination of the three functions G, cofG,
and detG. In components (repeated indices

summed),

j�G� � aijGij � bij�cofG�ij�gdetG �28�

Here, cofG stands for the 3 � 3 matrix of cofactors

of G and aij, bij and g are any constants. If G is
invertible (the typical case for martensite), then
cofG is given by the simple formula cofG �
�detG�GÿT: Also, we have the component formulas,

�cofG�kr� 1

2
eijkepqrGipGjq and

detG � 1

6
eijkepqrGipGjqGkr: �29�

So far these are only necessary conditions that j
enjoys the averaging property of equation (26). But
a little calculation shows that they are indeed su�-
cient. One method is to show by di�erentiation that

d

dt

�
O
j
�
G� tru�x��dx � 0

when j is given by equation (28) and u satis®es
zero boundary conditions but otherwise is arbitrary.

Hence, the value of
�
O j�G � tru�x��dx at t � 0 is

the same as its value at t � 1: If we put
ymicro�x� � Gx� u�x�, we get equation (26).

Suppose now that a compatible micro-defor-
mation assumes only the values F1, . . ., Fn having
corresponding (positive) volume fractions l1, . . .,

ln, with
Pn

i�1 li � 1: Here, li is de®ned as the
volume of the subset of O where ry � Fi, divided
by the volume of O. We write equation (26) using

equation (28) ®rst with bij � g � 0, then with
aij � g � 0, and then with aij � bij � 0, so as to iso-
late the three terms in equation (28), and then we
use the arbitrariness of the coe�cients. We get the

following minors relations:

G �
Xn
i�1

liFi �30�

Fig. 7. Illustration of macro-scale and micro-scale defor-
mations. (a) The macro-scale deformation is linear, and
the micro-scale deformationis indicated for the inclined
``scratch''. (b) A layered micro-deformation consisting of
compatible deformation gradients A and B with volume
fraction l and (1ÿl ), respectively, and macroscopic defor-

mation ymacro�x���lA��1ÿ l�B�x:
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cofG �
Xn
i�1

li cof Fi �31�

detG �
Xn
i�1

lidetFi: �32�

These are remarkable relations. With a few unim-

portant exceptions they are the only relations
known that precisely relate the micro-deformation
gradient to the macro-deformation gradient. Their

remarkableness arises from the fact that one only
needs to know the micro-volume fractions and gra-
dients to impose them: they hold no matter what
the pattern of microstructure. They have been used

to deduce some facts about martensite that are
quite non-obvious at the outset.
In applications to martensite, F1, . . ., Fn typically

come from the energy wells. For example, for any
two compatible variants of martensite SO(3)U1 and
SO(3)U2, it is possible to choose a basis such that

they are diagonal with the forms diag[a,b,g ] and
diag[b,a,g ] (see Ref. [22]). The relations given by
equations (30)±(32) have been used to ®nd all

macro-deformations that can be produced by all
possible microstructures consisting of these two var-
iants of martensite [22]. The answer is ymacro�x� �
Gx where GTG has the form:0@C11 C12 0

C12 C22 0
0 0 g2

1A �33�

and C11, C12, and C22 satisfy the inequalities,

C11C22 ÿ C2
12 � a2b2,

C11 � C22 � 2C12Ra2 � b2, and

C11 � C22 ÿ 2C12Ra2 � b2: �34�

Despite a lot of work, the set of all macro-defor-
mations that can be obtained by using three tetra-

gonal variants of martensite is still unknown (this
has become known as ``the three-well problem'').
To explain in a very simple case how the minors

relations are exploited, let us analyze the relation

between macro-strain and micro-strain. A convex
function is a function satisfying

f�l1A1 � . . .� lnAn �Rl1f�A1 � � . . .� lnf�An �

for all choices of A1, . . ., An and l1, . . ., ln with
lir0 and

P
li � 1: It can easily be seen that if e is

a unit vector, then f �A� � jAej ÿ 1 is a convex func-
tion. But, if A is a deformation gradient, then
jAej ÿ 1 is the strain experienced by an elementary

line in the direction e, i.e. its [(deformed
length)ÿ(original length)]/original length. Applying
this f to the ®rst minors relation [equation (30)] and
using directly the de®nition of convexity, we obtain:

jGej ÿ 1Rl1�jF1ej ÿ 1� � . . .� ln�jFnej ÿ 1�

jGej ÿ 1R max
i2f1,...,ng

�jFiej ÿ 1�:
�35�

That is, the macro-strain of any line element cannot
exceed the largest micro-strain of the same line el-
ement. No such statement holds for the minimum

strain: even if every micro-strain in the direction e

is zero, then the macro-strain in the same direction
can be arbitrarily close to ÿ1. (For an example,

plot the macro-deformation corresponding to Fig.
7(b) with A� e1 
 e1� e2 
 e2� f� 
 e and B� e1 

e1 � e2 
 e2 � fÿ 
 e, l � 1=2, where jf2j � 1 and

jf� � fÿj � 1, fe1,e2,eg an orthonormal basis [70].)
Analysis of the minors relations often involves elim-
inating G between two minors relations and using

convexity in some way.
Self-accommodation refers to the existence of a

microstructure of martensite completely surrounded
by unstressed austenite. It has an obvious import-

ance for the ease of transformation, especially in
polycrystals. The framework for questions of self-
accommodation is exactly the one adopted here,

specialized to G � I: Using the minors relations,
Bhattacharya ([24], Table 3.1) has found necessary
and su�cient conditions on the matrices U1, . . ., Un
that permit self-accommodation. All of these argu-
ments follow the same pattern: use the minors re-
lations to derive some restrictions on U1, . . ., Un,
then explicitly construct a family of micro-defor-

mations that satis®es the restrictions.
In even the recent literature on martensite, the

property of self-accommodation is analyzed using a

procedure that is essentially misleading. It is useful
to describe its limitations here. The minors relations
apply to any gradient, not just the deformation gra-

dient. So we can apply them to the displacement
gradient ru of geometrically linear theory, with the
understanding of the inherent errors in geometri-

cally linear theory described above (see Ref. [33]).
So, let the micro-scale displacement have gradients
H1, . . ., Hn with corresponding volume fractions l1,
. . ., ln, belonging to the n energy wells fE1, . . ., Eng:
(Of course, here and in equations (30)±(32), n can
be much larger than n because a variant can have
di�erent rotations.) In geometrically linear theory,

the macroscopic displacement associated with self-
accommodation is umacro � 0: Each Hi is of the
form Ei �Wi, where Ei belongs to the set fE1, . . .,

Eng and Wi is skew. The ®rst minors relation is
then,

0 � l1H1 � l2H2 � . . .� lnHn: �36�

Add the transpose of equation (36) to itself to get

rid of all the skew matrices, then collect the volume
fractions corresponding to a single variant (i.e. put
�l i �

P
lj where the sum is taken over all lj corre-

sponding to variant i ). We get,
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0 � �l 1E1 � . . .� �l nEn: �37�

In the literature on martensite, equation (37) is

often used to judge whether a microstructure is self-
accommodating. That is not true. The truth is, even
in geometrically linear theory, one can have strains
fE1, . . ., Eng satisfying equation (37), but there does

not exist a compatible microstructure having those
strains.
For a deeper analysis let us return to geometri-

cally exact theory. The use of equation (37) is essen-
tially like using only the ®rst minors relation
equation (30). For variants of martensite, the third

minors relation [equation (32)] is automatically sat-
is®ed if the variants are chosen to have determinant
1, and everyone recognizes that this must be satis-
®ed for self-accommodation. So what is really being

omitted in con®ning attention to equation (37) is
the second minors relation of equation (31). But
equation (31) is a very strong restriction! For

example, the second minors relation is used in a
crucial way to derive the results of equations (33)
and (34). Also, Bhattacharya [24] shows using the

minors relations that the plate group associated
with a diamond morphology does not form a coher-
ent deformation satisfying homogeneous boundary

conditions.
That raises a natural question. Suppose all three

minors relations [equations (30)±(32)] are satis®ed
by G, F1, . . ., Fn and corresponding volume frac-

tions l1, . . ., ln: Does that mean there is a compati-
ble micro-deformation with gradients F1, . . ., Fn on
regions with volume fractions l1, . . ., ln, meeting

boundary conditions ymicro�x� � Gx, allowing for
the possibility of vanishingly small transition layers?
Unfortunately, the answer is no. They are only

necessary conditions. But in surprisingly many cases
of interest they are e�ective. The study of what are
the necessary and su�cient conditions on (G, F1,

. . ., Fn� has led to a rapidly growing sub®eld of
mathematics which grew from studies of martensitic
transformations [71].
In this section, we have only allowed very simple

macro-deformations, just linear ones. In fact, it is
of interest to be able to treat nonlinear macro-de-
formations, too. In fact, as can be imagined, the

minors relations in the form of equations (30)±(32)
hold in the general case when there is a separation
of scales. This means that typical micro-scale oscil-

lations of the deformation gradient occur on a scale
that is much smaller than the length scale oscil-
lations of the macro-scale deformation gradient. G
is in that case the macro-scale deformation gradi-

ent.

6. FERROMAGNETIC AND FERROELECTRIC
MARTENSITES

In recent years, people have begun exploring

martensitic materials that are also either ferromag-

netic or ferroelectric. Most of the research has

focused on the ferromagnetic case. The presence of

ferromagnetism or ferroelectricity o�ers a new

``handle'' on martensitic microstructure: by apply-

ing a ®eld, there exists the possibility either of indu-

cing the transformation between austenite and

martensite or of rearranging the variants of marten-

site.

Below we shall review explicitly the magnetic case

and point out as we go along the modi®cations that

are necessary in the case of ferroelectric martensites.

It has been known for some time that martensite

in Fe±Ni, Fe±Ni±C, Fe±Mn±C, Fe±Ni±Co±Ti, and

Fe±Pt alloys is ferromagnetic, and that Ms is shifted

by a magnetic ®eld. As shown by Shimizu and

Kakeshita [72], this shift is described by a version

of the Clausius±Clapeyron (C±C) equation (in the

literature on martensite, the C±C equation is attrib-

uted to Patel and Cohen [73], who ®rst applied it to

martensitic transformations). In the Fe±Ni ma-

terials, very large ®elds are required to shift the

transformation, on the order of 10 T for a 208C
shift. The recent interest has focused on the search

for materials in which a shape change can be

induced by small ®elds, the magnetic version of

shape-memory materials.

As will be explained in more detail below, the

®eld-induced redistribution of martensite and the

®eld-induced austenite/martensite transformation

can both be considered a form of magnetostriction.

That is, the shape change is accompanied by a

change of the local state of magnetization. In this

sense, they are not completely di�erent from giant

magnetostrictive materials such as TbDyFe2 (Refs

[35, 74] exploit this similarity to analyze its domain

structures). The main di�erence is that the martensi-

tic transformation is ®rst-order, and the austenite

can be ferromagnetic, while the transition to the fer-

romagnetic state in TbDyFe2 is second-order.

Consider a material that undergoes both a ®rst-

order martensitic transformation and a ferromag-

netic transition. Ferromagnetic transitions are

typically second-order: from a theoretical viewpoint,

they are discovered by linearizing the equilibrium

equations about the unstressed austenitic or marten-

sitic state and looking for a bifurcation. From a

physical viewpoint, the ferromagnetic state collapses

continuously to the nonferromagnetic state as the

temperature is raised to the Curie point. Therefore,

there are three fundamental temperatures in a mar-

tensitic material: the austenite/martensite transform-

ation temperature, the Curie temperature for the

austenite and the Curie temperature for the marten-

site.{ These three temperatures can be ordered in

six di�erent ways, leading to the various qualitative

{ The austenite/martensite transformation temperature

can be further expanded to the four temperatures Ms, Mf ,

As, and Af , but we shall focus only on the temperatures

with thermodynamic signi®cance.
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behaviors [75, 76]. For example, it is theoretically
possible to have a martensitic transformation in

which the austenite is ferromagnetic and the mar-
tensite is not, or vice versa. If the Curie temperature
for martensite is above the austenite/martensite

transformation temperature, then upon heating, this
Curie temperature would not be observed because
the specimen would ®rst transform to austenite. In

such cases, it could be observed by ®rst stabilizing
the martensite using stress, then heating.
The magnetic state of either the austenite or the

martensite is characterized by its magnetization m.
This is a vector-®eld de®ned on the deformed con-
®guration, y(O ). The direction of the magnetization
is a�ected by applied ®elds and stress, but its

magnitude is a function of temperature only:
jm�y�j � ms�y�{, where ms is the saturation magneti-
zation. In ferromagnetic shape-memory materials,

there are in general di�erent saturation magnetiza-
tions ma

s�y� and mm
s �y�, respectively, for the austenite

and for the martensite, and each is expected to

obey approximately the modi®ed Curie±Weiss law.
The condition jm�y�x��j � ma

s�y� applies for x such
that ry�x� is near the austenite well, and

jm�y�x��j � mm
s �y� applies for x such that ry�x� is

near the martensite wells. Thus, there is typically a
jump in the saturation magnetization at the auste-
nite/martensite transformation temperature. This is

true in the widely studied alloy systems Ni2MnGa
and Fe3Pd. The presence of this jump implies the
possibility of ®eld-induced transformation.

To understand quantitatively what can happen in
such a material, we need an expression for its free
energy. The general form can be adapted from

Brown [77] and James and Kinderlehrer [35, 74].
The free energy density includes a dependence on
magnetization, as well as deformation gradient and
temperature:

j�F,m,y�: �38�

The condition of frame-indi�erence is
j�RF,Rm,y� � j�F,m,y�, which holds for all ro-
tation matrices R in SO(3) and all values of

(F,m,y ). Hence, energy wells will always have the
form �RU,Rm�,R 2 SO�3�: (Important: the same R

goes in front of both U and m, so deformation gra-

dient and magnetization are rotated simul-
taneously.) Care has to be exercised in writing the
total free energy, because the deformation is de®ned

on the reference con®guration, O, while the magne-
tization is de®ned on the deformed con®guration;

we follow Refs [35, 74].
Suppose that the applied ®eld is h. h is the ®eld

that would be present if the specimen were

removed. In tests, it is usually arranged to be con-
stant. The applied ®eld energy (or Zeeman energy)
is:

ÿ
�

y�O�
h �m�y�dy � ÿ

�
O

h �m�y�x����detry
��dx: �39�

Finally, there is a contribution to the energy that
has no counterpart for ordinary martensite, namely

the demagnetization energy (abbreviated, demag.).
This is a nonlocal energy. That is, its value for the
union of two disjoint regions is not typically equal

to its sum evaluated for the two regions separately.
It is obtained by ®rst solving the magnetostatic
equation

div� ÿ rz� 4pm� � 0 �cgs units� �40�

for the magnetostatic potential z on all of space,
where m has been extended to be zero outside y(O ).

Given such a magnetization m, this equation has a
unique solution z up to an additive constant. The
demag. energy is then,

1

8p

�
R3

��rz��2dy � 1

2

�
y�O�
rz �m dx �41�

where the second form follows from equation (40)

(multiply by z and integrate by parts). Finally, there
are exchange and strain-gradient energies, which we
omit because they are unimportant for large bodies
(cf. Ref. [78]). Collecting the various contributions,

the total energy is�
O

�
j
�ry�x�,m�y�x��,y�
ÿ h �m�y�x����detry

��	dx� 1

8p

�
R3

��rz��2dy:

�42�

We note the following: the demag. energy is zero if
div m � 0, which is to be interpreted in the follow-
ing sense:

div m � 0, where m is smooth, and

�m2 ÿm1 � � n 0 � 0, at the interfaces with normal n 0:
�43�

Here, m1 and m2 are the values of the magnetiza-
tion on each side of the interface. The latter has the

interpretation that there are no poles on the inter-
faces of discontinuity of the magnetization.
There is an important distinction between ferro-

electric and ferromagnetic martensites. In ferroelec-
tric martensites, contributions to the demag. energy
from discontinuities of the polarization at the
boundary @y(O ) can be eliminated by the use of

{ Brown [77] advocates the saturation condition

jdetry�x�jm�y�x�� � ms�y�, representing the condition that

the dipole moment per unit deformed volume is only a

function of temperature. In the case of ferromagnetic

shape memory, this may at best apply near each of the

energy wells. Currently, the data are not su�ciently accu-

rate near the wells to decide between jm�y�j � ms�y� and
jdetry�x�jm�y�x���ms�y� so for simplicity we omit the fac-

tor jdetry�x�j:
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conductors. On such conductors, the electric poten-
tial z is constant, and in this case, equation (40)

must be solved subject to boundary conditions that
z is equal to a constant on the conductors and ad-
ditional conditions on the total charge. Even with

conductors absent, in ferroelectric martensites, free
charges will eventually leak onto @y(O ) and e�ec-
tively decrease the last term of equation (42). There

are no free magnetic charges, but in ferromagnetic
martensites, the same can be achieved by yokes of
soft magnetic material. This is treated in equation

(42) by enlarging O to include the yoke, and using
an appropriate j(F,m,y,x) for the yoke material
where x belongs to the yoke. Both yokes and con-
ductors can be problematic for ferromagnetic or

ferroelectric martensites because the latter may
undergo large changes of shape.
We now use equation (42) to predict some

aspects of the behavior of ferromagnetic shape-
memory materials. We follow all of the develop-
ments of Section 2, but now recognize that each

atom also has a magnetic moment, its dipole
moment per unit volume, whose local spatial aver-
age is represented by m. So any transformation that

restores the lattice gives the same value of j, as
long as we use the same value of m. Combining this
condition with the condition of frame-indi�erence,
we get that if (U, m) minimizes the energy density

j, then so does (RÃ UQÃ ,2RÃ m), where QÃ is any
member of the Laue group of the austenite and
ÃR 2 SO�3�: Here, we have also included the2repre-

senting the fundamental invariance of magnetism
with respect to time reversals (see Refs [35, 74]). In
ferroelectric martensites, one omits the2 invariance.

For convenience, we choose U to be positive-de®-
nite and symmetric (UÿI is the Bain strain). Then it
is convenient to put Q � ÃQ T and R � ÃR ÃQ T, and
recognize that Q and R are arbitrary elements of

the Laue group of austenite and SO(3), respectively.
It follows that the energy wells of j are of the form
(RQUQT,2RQm). In particular, they are given by��U1,2m1 �, . . . ,�Un,2mn �

	
�
�ÿ

QU1QT,2Qm1

�
:

Q 2 Laue group of austenite
	 �44�

together with all rotations of these, i.e.
(RUi,2Rmi), R 2 SO�3�: We wish to emphasize

that, while not yet common in materials science, the
precise statement of the conditions of invariance
and the precise placement of the energy wells is

absolutely crucial, since these determine all the
subsequent twin modes, their types, the possible
interfaces of magnetic domains, and more compli-

cated microstructures of these.
For various transformations, the stretch matrices

will have forms like those given in Section 2. For
each stretch matrix, there is often a single easy axis

of magnetization as indicated in equation (44), but
it is consistent with equation (44) that, say,
QU1QT � U1 but Qm1 6� m1, in which case variant

1 would have a pair of rather particular easy axes.
From the information that is currently available,
this appears to happen in Fe3Pd. The structure of

the energy wells is illustrated schematically in Fig.
8.
First, consider redistribution of martensite var-

iants induced by applying a ®eld. Ideally, we start

in variant 1 and apply a ®eld so as to induce a
transformation to variant 2. As expected and as
observed, this is accompanied by the presence of a

banded twin structure in which the volume fraction
of variant 2 gradually increases (Fig. 9). An import-
ant question is whether there is a low-energy path

connecting variants 1 and 2. We consider a simple
banded structure as shown in Fig. 10, with alternat-
ing states (FÃ 1,mÃ 1) (FÃ 2,mÃ 2), and volume fraction l. A
low-energy path avoids poles on the interfaces (i.e.

no contribution to demag. energy), has the states
(FÃ 1,mÃ 1) and (FÃ 2,mÃ 2) on the energy wells, and has the
deformation gradients compatible. That is � ÃF 2, Ãm 2�
��RU2,Rm2� and � ÃF 1, Ãm 1���U1,m1� with

RU2 ÿ U1 � a
 n and

�Rm22m1 � � UÿT
1 n � 0:

�45�

Here, n is the reference normal; n 0 �
UÿT

1 n �k�RU2�ÿTn� is the normal in the deformed
con®guration; and we have without loss of general-

ity put the rotation in front of (U1, m1) equal to I.
Even though equation (45) is the twinning

equation plus an additional equation and therefore,

apparently very restrictive, it has solutions in many
cases, which we now explain. In Section 2.1, we
showed that if U2 � QU1QT with Q a 1808 rotation
in the Laue group of the austenite, then the ®rst

Fig. 8. Schematic of the energy wells for a ferromagnetic
material.
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expression in equation (45) has a pair of solutions
(RI,aI,nÃ I) and (RII,aII,nÃ II) interpretable as type I/
type II twins. Formulas for the solutions are given
in equations (16) and (17). From equation (44), we

get that for such Q, m2 � RQm1: The forms of
RQ � RQT for type I/type II twins are given in
equations (16) and (17), from which we get immedi-

ately that,

m2 � n 0 � RQm1 � n 0 �
�

m1 � n 0, type I

ÿm2 � n 0, type II
: �46�

Therefore, by choosing the2sign properly in

equation (45), we have simultaneously satis®ed both
expressions of equation (45). Brie¯y: if the defor-
mation gradients are compatible and the magnetiza-
tions are crystallographic, then there are no poles

on the twin boundaries in a simple laminated struc-
ture. This remarkable result is understandable when
we pass to the crystallographic picture. Since (in the

deformed con®guration) the lattices on each side of

the twin boundary are related by a 1808 rotation

about the normal n ' (type I) or shear vector a (type

II), then corresponding crystallographic vectors

have the same projection on the normal, if the sign

of the each of the vectors is chosen properly. The

magnetizations in neighboring twin bands typically

point in quite di�erent directions.

To induce a reversible change of shape in ferro-

magnetic martensites, one needs to compete two

forces. Large-scale rearrangement of martensites

have been produced by alternating two ®elds in

di�erent directions [80], which utilizes the e�ect of

the second term of equation (42), or by competing

a ®eld and a stress [80]. [The stress a�ects the load-

ing device energy which has been omitted from

equation (42).] Researchers have also noticed the

e�ect of demag. energy [the last term of equation

(42)] in various tests, and a reversible change of

shape can also be produced by competing a single

®eld against demag. energy: in a specimen of suit-

able elongated or ¯attened shape, the demag.

energy favors one variant and the applied ®eld

favors a di�erent variant.

The most important magnetic measurement for

ferromagnetic shape-memory materials, in which

the change of shape is to be induced in the marten-

site, is the measurement of magnetic anisotropy.

Magnetic anisotropy quanti®es the di�culty of

rotating the magnetization away from an easy axis.

One can appreciate from Fig. 10 that if the nearly

vertical magnetization rotates into the direction of

the ®eld, then there will be no driving force on the

twin boundaries arising from the applied ®eld

energy [equation (39)].

Two alloy systems have been studied most exten-

sively, though many questions remain even about

these systems. These are alloys near the compo-

Fig. 9. Evolution of microstructure with increasing ®eld in Ni2MnGa. The ®eld values are (a) 6000 Oe,
(b) 10 000 Oe, and (c) 12 000 Oe, respectively [79].

Fig. 10. Redistribution of two magnetically hard marten-
site variants produced by an applied ®eld.
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sitions Ni2MnGa and Fe3Pd. The Heusler alloy
Ni2MnGa exhibits several stress-induced martensitic
phases [81±83] and an intermediate premartensitic

phase [84±86]. We just consider here the thermal
martensite, which is tetragonal [87]; apparently, the
other martensites have not been induced using only

an applied ®eld. Magnetic measurements in the aus-
tenite (Curie temperature, susceptibility, saturation
magnetization, magnetization vs ®eld and aniso-

tropy constants) are straightforward and are avail-
able for several compositions (see e.g. Refs [86±90],
and citations therein). The saturation magnetization

of the martensite is also widely available (e.g. Refs
[88±90]). Measurements of anisotropy constants and
magnetization curves of the martensite in the litera-
ture are widely divergent. This is because typical

measurements have been done on specimens with
microstructure; under such conditions, the true easy
axis can appear to be the hard axis [90].

Magnetization vs ®eld on single crystal specimens
of austenite and on a single variant of martensite
(obtained by detwinning the specimen before the

test) in an alloy near Ni2MnGa are given in Ref.
[90]; the resulting anisotropy constants are given in
Table 9. Note that the martensite is two orders of

magnitude magnetically harder than the austenite.
Magnetization curves relate to the energy density

j(F,m,y ), with the temperature y held ®xed at the
appropriate value, in the following way. The ``free''

magnetic energy of the austenite and martensite,
de®ned by,

jaus�m� � minU2Naus�I� j�U,m,y�

jmart�m� � minU2Nmart�U1� j�U,m,y� �47�

where the minimization is taken over positive-de®-
nite symmetric matrices in suitable neighborhoods

Naus and Nmart, are invariant under the corre-
sponding point groups of austenite and martensite,
e.g. jaus�Qm� � jaus�m� for Q in the point group of
the austenite. Physically, these give the magnetic

energy at the relaxed strain. There are simple, stan-
dard properly invariant forms of these functions,
the most common for cubic austenite and tetra-

gonal martensite (c-axis is easy) being,

jaus�m� � k1
�
m̂2

1m̂
2
2 � m̂2

1m̂
2
3 � m̂2

2m̂
2
3

�
� k2 m̂2

1m̂
2
2m̂

2
3 �48�

jmart�m� � kusin2y

where Ãm � m
�jmj and y is the angle between mÃ

and the c-axis of the martensite. The constants k1,
k2, and ku are the anisotropy constants and can be
obtained directly from magnetization curves. A
summary of the properties of Fe3±Pd and Ni2±Mn±
Ga is given in Table 9.

The other method of inducing a change of shape
is by ®eld-induced transformation. It is expected to
be governed by a magnetic version of the Clausius±

Clapeyron equation. But, in fact, the presence of
the nonlocal demag. energy, in general, forbids the
derivation of a local Clausius±Clapeyron equation

along classical lines. To proceed, normalize
equation (40) by dividing by ms and recall the form
of equation (48). It is then seen that the three terms
in the total energy equation (42) (magnetoelastic:

applied ®eld: magnetostatic) scale like (k or E: hms:
m2

s ), where k is a typical anisotropy constant and E
is a typical elastic modulus. It is seen from Table 9

that all three of these terms are roughly equally im-
portant for Ni2MnGa. However, if we neglect the
magnetostatic energy, we can consider homogeneous

states �ry�x� � Fa�h�, m � ma�h�� and �ry�x� �
Fm�h�, m � mm�h��, corresponding to austenite and
martensite, respectively, and parameterized by the

®eld strength h, that equi-minimize the total energy
[equation (42)] at a temperature y(h ). Here, the
applied ®eld has been assumed to be spatially
homogeneous with ®xed direction, h � he: When

Table 9. Typical magnetic properties of Ni2MnGa and Fe3Pd

Property Ni2MnGa Fe3Pd

Energy wells
b 0 0
0 a 0
0 0 a

0@ 1A ms(100)
b 0 0
0 a 0
0 0 a

0@ 1A ms(010) and ms(001)

a 0 0
0 b 0
0 0 a

0@ 1A ms(010)
a 0 0
0 b 0
0 0 a

0@ 1A ms(100) and ms(001)

a 0 0
0 a 0
0 0 b

0@ 1A ms(001)
a 0 0
0 a 0
0 0 b

0@ 1A ms(100) and ms(010)

Stretches a=1.013, b=0.952 a=1.01, b=0.98 (Msÿ408C)
Saturation magnetization ms =600 emu/cm3 (Ni51.3Mn24.0Ga24.7 at Ms) ms =1390 emu/cm3 (Fe70Pd30 at Ms)

Anisotropy constants of austenite k1=4 � 104 ergs/cm3, k2=ÿ10 � 104 ergs/cm3 k1=ÿ0.5 � 105 ergs/cm3 (approx. [91])

Anisotropy constants of martensite ku=2.5 � 106 ergs/cm3 ?
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h � 0, these must belong to the appropriate energy
wells for austenite and martensite. Now, in the stan-

dard way, one writes the condition that the two
states have the same total free energy (equation (42)
with demag. omitted), di�erentiates this condition

with respect to h, and evaluates at h � 0:

y 0�h�
��
h�0�

e � �ma�0� ÿmm�0�detU1 �
Zm ÿ Za

: �49�

Here, the integrals have been removed using
the homogeneity of the states, and the entropy

densities of austenite and martensite are
de®ned by Za � ÿ@j�Fa�0�,ma�0�,y�0��

�
@y and

Zm�ÿ@j�Fm�0�,mm�0�,y�0��
�
@y: Using equation (49)

and evaluating the entropy di�erence in terms of
the latent heat obtained from DSC measurements
(7.5 � 104 ergs/cm3) and transformation tempera-

ture (375 K), and a typical value for the jump of
the saturation magnetization of 10 emu/g [87], we
estimate for Ni2MnGa a temperature rise of 0.5 K/

T [92]. Given the approximation of dropping the
demag. energy, we conclude that the e�ect will be
hardly observable in this alloy at moderate ®elds.
We ®nish with a remark on the observations on

ferromagnetic martensitic steels summarized by
Shimizu and Kakeshita [72]. They are in a rather
di�erent regime from the one discussed here. Their

®eld is so large that the second term in equation
(42) completely dominates the other terms, by the
scaling argument given above. At their ®elds, the

magnetization of austenite and martensite have long
since been aligned in the direction of the applied
®eld, and the associated anisotropy energy is rela-

tively negligible. At those large ®elds, the important
energy concerns the breakdown of the constraint
jmj � ms�y�: The associated energy is modeled with
a high ®eld susceptibility. They show good agree-

ment between shifts of Ms with temperature and
predictions of a Clausius±Clapeyron equation based
on the applied ®eld energy and the high ®eld sus-

ceptibility energy.

7. MARTENSITE AT SMALL SCALES

Phenomena in martensitic materials such as the
shape-memory e�ect are most de®nitely structure-

sensitive. Hence, these phenomena are expected to
exhibit unexpected trends when the specimen is
scaled smaller and smaller.

For example, consider the habit plane dividing a
block of size L � L � L. A classical estimate gives
the twin spacing as proportional to L 1/2. More

recent studies (Kohn and MuÈ ller [93] and Schryvers
[94]) show that there are parameter regimes in
which branching of the twins is predicted to occur,

and the twin spacing varies with distance ` from the
habit plane according to the scaling law `2/3. Both
of these calculations assume that the twin spacing is
much smaller than body size. But in either case,

L 1/2 or L 2/3 exceeds L when L is su�ciently small
and there is expected to be unusual small-scale

behavior.
As far back as the 1950s, workers (see, e.g. Cech

and Turnbull [95]) noticed a scale dependence of

the martensitic transformation. By extrapolation,
this gave rise to the notion that the martensitic

transformation would be suppressed at small scales.
The e�ect was expected to be analogous to the for-
mation of ferromagnetic domains, su�ciently small

particles being single domain with coercivity two
orders of magnitude larger than bulk material (in,
e.g. Fe). The recent evidence both supports and

Fig. 11. Plane lattice crystal structure of the tail-sheath
of T-4 Bacteriophage extended (a) and contracted (b).
(c) dislocation model of coherent interface between ``aus-
tenite'' (extended) and ``martensite'' (contracted) [102].
Courtesy of G. B. Olson. Originally published in J.
Physique, 1982, 43, 855, with permission of EDP

Sciences.
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con¯icts with this view. In a study by Kajiwara et

al. [96] on 20±200 nm particles of Fe±Ni, most par-
ticles transform at temperatures near bulk values,
but particles that fail to transform do so down to

cryogenic temperature. Alternatively, 10±100 nm
particles of Fe±Ni prepared by a di�erent method
[97], and containing an intermediate volume frac-

tion of martensite, exhibited a (size dependent) mar-
tensite to austenite transformation upon heating,

but no subsequent austenite to martensite trans-
formation upon cooling. In polycrystalline ®lms,
which include the added e�ect of constraint, the ob-

servations exhibit general consistency: 080 nm thick
®lms of PbTiO3 with 70±100 nm grains are single
domain at room temperature (unlike in bulk) [98],

while NiAl ®lms of thickness 70±100 nm and grain
size 10±20 nm show an absence of twinning well
below Mf [99]. At larger sizes, micron scale sput-

tered ®lms of NiTi exhibit perfect shape memory
and properties close to those in the bulk [4, 100],

and MBE grown single crystals of Ni2MnGa of
thickness 500 nm also show substructures of ®ne
twins [101]. Even more spectacular is the recog-

nition that what appears to be a martensitic trans-
formation occurs in the nanoscale organism
Bacteriophage T-4 [102]. Collectively, these obser-

vations show that the current predictive understand-
ing of martensitic transformations at small scale is

rudimentary.
More speci®cally, in the latter example, Olson

and Hartman [102] note that a displacive phase

transformation of the martensitic type appears to
take place in several di�erent cylindrical protein
crystals. One occurs during tail-sheath contraction

as the organism Bacteriophage T-4 performs life
functions. The extended and the contracted forms

are shown in Figs 11(a) and (b), respectively. The
lengths c and c ' in this ®gure give the circumference
of the cylinders, where the outer diameter of the

cylindrical sheath is 24 nm extended and 32 nm con-
tracted. A coherent interface between the extended
``austenite'' phase and the contracted ``martensite''

phases can be rationalized as shown in Fig. 11(c).
The organism also appears to have a built-in mech-

anism for nucleation.
There has been signi®cant recent developments

on sputtered ®lms [4, 100, 103, 104]. The reader is

referred to the review of Miyazaki and Ishida [4]
for details. The important e�ect of the constraint of
the substrate has been studied in Refs [105, 106].

We discuss what can be expected from a theoreti-
cal viewpoint. Consider a single-crystal ®lm of

thickness h and cross-section S in its reference state,
and an orthonormal basis (e1,e2,e3) with e3 normal
to the ®lm. Here, xi is a coordinate in the direction

ei. Bhattacharya and James [107] begin with the free
energy equation (8), but including also a term for
interfacial energy. They then examine the asympto-

tic limit of the total free energy as h 4 0, extracting
along the way a limiting membrane theory (see Ref.

[107] for the details of this derivation). To describe
this theory, consider the free energy density j(F,y )
given in equation (8). F can be written �a1ja2ja3�
where the vectors a1, a2, a3 are the three columns of
F; when F � ry this notation becomes �y,1jy,2jy,3�,
where the comma denotes partial derivative, y,i �
@y
�
@xi: The membrane theory is based on the free

energy

h

�
S

j
ÿ
y,1jy,2jb, y

�
dx 1dx 2 �50�

where y(x1,x2) is now a mapping from the ``middle
surface'' S into R3 and b(x1,x2) describes defor-
mations of the ®lm relative to the middle surface.

The function b(x1,x2) is interpreted in the following
way: in the reference con®guration consider two
points A and B, one on the bottom of the ®lm and

the other on the top of the ®lm, B directly above A
[i.e. same (x1,x2)]. Now deform the ®lm in an arbi-
trary way, so that A and B go to A ' and B '. Then

hb�x 1,x 2 � � A 0B 0
���!

:

Thus, b measures in-plane shear and normal com-
pression of the ®lm.
The energy equation (50) is associated with the

``membrane'' energy because it is the part of the
energy that scales as the thickness of the ®lm.
Bending energy can be derived with a higher order

asymptotic argument [107]. It arises at order h 3.
For example, the bending energy per unit length for
a ¯at cantilever is EIk 2/2 where E is a certain elas-

tic modulus (not Young's modulus), k is the curva-
ture of the ®lm [equal to 1/(radius of curvature)],
and the h dependence appears in the moment of
inertia I of the cross-section, I � bh3

�
12: It is the

h 3 sensitivity of the bending energy that explains
the major recent developments in the use of vibrat-
ing cantilevers as sensors. For shape-memory actua-

tors, the opposite is often desired: the change of
shape of the ®lm should store as much energy as
possible, and therefore the design of the actuator

should be based on the membrane energy [equation
(50)].
The minimizers of equation (50) have been stu-

died using the energy-well structure for martensitic

materials [40, 107, 108]. The main observation is
that the presence of b instead of y,3 means that one
of the conditions of compatibility is lost in passing

from bulk to thin ®lm. The physical interpretation
of this condition is immediate. If strains in the
thickness direction di�er on each side of an inter-

face cutting through the ®lm, then these can be in-
terpolated by an h � h layer whose energy
contribution (h 2) is negligible relative to membrane

energies.
The latter suggests that in single-crystal ®lms

there will be the possibility of exact austenite/mar-
tensite interfaces, with no ®ne twinning, according
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to the minimization of equation (50). This turns out

to be true, and the appropriate condition of com-

patibility is an invariant line condition. The most

useful form of this condition is written in terms of

the ®lm normal e3 and the transformation stretch

matrix U 2 fU1, . . . , Ung: The necessary and su�-

cient condition for the existence of exact austenite/

martensite interfaces is e3 � �cof �U2ÿ I��e3R0, where

cof is de®ned above in equation (29). This is often

satis®ed; Table 10 summarizes the interfaces poss-

ible in low index ®lms of NiTi. These predictions

would be extremely interesting to explore exper-

imentally.

An advantage of ®lms is that the reduction of

macroscopic strain that is a consequence of the ®ne

twinning in the bulk austenite/martensite interface

is avoided in ®lms. Notice the large in-plane

stretches listed in Table 10. It is therefore interest-

ing to think about other structures that can be

made on a ®lm, which utilize the membrane mode.

One such structure, the ``tunnel'' is obtained by

releasing the ®lm along a strip whose edges are

exact austenite/martensite interfaces. The possibility

of a tunnel is more restrictive than a simple auste-

nite/martensite interface, because the latter may

produce an in-plane shear. Necessary and su�cient

conditions for a tunnel are: e3 � �cof �U2 ÿ I��e3 � 0

and trU2 ÿ e3 � U2e3 ÿ 2r0: Examples of materials

satisfying these conditions are given in Refs [40,

107].

More interesting is the possibility of trying to

release a ®lm on a compact polygonal region
bounded by austenite/martensite interfaces. In gen-
eral, the associated conditions are very highly
restrictive, but solutions become possible at special

lattice parameters when the normal of the ®lm is an
n-fold axis of symmetry of the austenite (nr2).
Then an n-sided ``tent'' is possible if also the con-

ditions given above for the tunnel are satis®ed.
These conditions hold for the particular
Cu68Zn15Al17 alloy whose lattice parameters are

listed above in Table 4. Figure 12 shows a picture
of the deformed shape of this tent, drawn using
these measured lattice parameters, so one can get a

good idea of the large strains that are predicted.
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