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Abstract

Active materials are materials that change shape when exposed to an applied ®eld or a change of temperature.
We review recently developed theory for active materials, with emphasis on predictions and methods that can guide

the search for new materials. Special lattice parameters corresponding to certain special microstructures, texture,
new concepts for large strain actuators, and the behavior of active materials at small scales are discussed. # 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

The usual procedure in materials science, ®ne-tuned from prehistoric times, is to improve materials by
systematically investigating the properties of a series of samples made by varying over a limited range
the controllable variables involved in synthesis or processing. While sometimes disparagingly associated
with ``heat and beat'' metallurgy, the systematic method continues to have enormous success. The
current state of the development of the most successful shape memory alloy NiTi, excepting its
discovery, owes everything to this procedure (cf. Miyazaki and Otsuka, 1989).

This procedure does not, however, lend itself to the search for a totally di�erent kind of material.
Active materials such as shape memory, magnetostrictive, and ferroelectric materials often exhibit their
special behavior at exceedingly special compositions: crucial di�erences in behavior are found in NiTi
from 50.2 to 50.6 atomic % Ni. If 0.1% is regarded as an acceptable tolerance, and the alloy being
investigated is at least ternary, then the systematic procedure rapidly becomes di�cult. If several heat
treatments are also involved, then it can be considered hopeless as a tool for discovery. Nor is the
systematic method particularly e�ective when the method of synthesis inherently involves large changes.
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For example, when multilayer ®lms are grown, the e�ects of substitution of one material for another, or
the e�ect doubling of the thickness of a layer, often cannot be inferred from a trend based on small
changes.

The usual procedure in solid mechanics is to develop mathematical models grounded in the principles
of continuum mechanics and in macroscopic experiment. The models contain constitutive equations with
phenomenological constants, which are evaluated from well-de®ned experimental procedures. The
models are then used to predict the mechanical behavior, or to evaluate the reliability and strength, of
solids and structures. The predictions of the most successful of these models are now carried out with
the help of sophisticated numerical methods. Generally, this procedure has little impact on materials
science, because of the reliance on phenomenology.

To put solid mechanics in the service of materials science, two modi®cations are essential. First,
theories of solids have to be grounded in fundamental material constants. In active materials the most
important of these are lattice parameters, symmetry and atomic structure of parent and product phases,
latent heats, (electro-magneto-) elastic moduli, speci®c heats and saturation magnetization. Second, the
procedure experiment 4 theory 4 prediction has to be reversed. Instead, it has to be replaced by the
following:

1. formulate a concept of an interesting material behavior,
2. infer how such behavior could arise from certain constitutive equations that contain only

fundamental material constants,
3. relate the desired material constants directly to the composition of materials,
4. formulate a procedure for synthesis.

It should be appreciated that to bring predictive science to the study of the mechanical behavior of
materials, more is required than ``a close cooperation between solid mechanicians and materials
scientists''. The standard practice of solid mechanics also has to be fundamentally changed.

This philosophy has been followed by a small group of solid mechanicians over the past ®ve years.
The purpose of this chapter to report on the progress and prospects for the future in the context of
active materials. The focus is on shape memory and magnetostrictive materials, only because the
methods have been applied primarily to these. The research has been most successful when it is well-
focused on relatively simple behaviors. We are still quite far from assessing the implications on behavior
of a complicated di�usional phase transformation in a martensitic material, let alone contemplating the
®rst principles design of a heat treatment.

Step 2 above is di�cult. That is because, when the constitutive equations contain only fundamental
material constants, the complex microstructural changes in a material cannot be summarized by overall
phenomenological rate laws. One must really confront microstructure. For this purpose the progress
reported here has been crucially aided by concurrent research on the relation of behavior on di�erent
scales. In particular, modern mathematical methods associated with weak convergence, homogenization,
g-convergence, Young measures have proven to be useful for the problem of change-of-scale. The key
question addressed by these methods is, ``Precisely what (minimal) information from the microscale is
needed to calculate a certain macroscale property?''. It would bene®t solid mechanics and materials
science if these methods were more widely known: certainly anyone who deals with deformation and
microstructure would be helped by knowing the so-called ``minors relations'' (see James, 1990; Ball and
James, 1987, 1992).

Step 3 above is also not very well addressed by conventional solid mechanics. But it is directly related
to spectacular developments on the direct computation of material properties based on Density
Functional Theory (DFT). DFT is based on the observation by Honenberg and Kohn (1964) and Kohn
and Sham (1965) that the density r of electrons in quantum mechanics is subject to a variational
principle on R3 (Unfortunately, one of the terms in this integrand, the exchange-correlation energy, is
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not precisely known from full quantum mechanics and must be ``modeled'' using a kind of mean ®eld
theory called the local density approximation. Despite this, DFT contains only the positions of the
nuclei and their charges as data; see Parr and Yang (1989) and Friesecke (1997)). The future integration
of DFT and materials science is likely in the long run to lead to truly major advances in ``new materials
from theory''. It may one day even surpass the time honored method of preparing lots of alloys and
measuring their properties.

2. Predictions that are guiding the development of active materials

We give a sample of predictions that are being used for the development of shape memory materials.
As mentioned above, an underlying motivation for these results has been to understand why active
materials occur at such special compositions. While part of this is related to the sensitive dependence of
transition temperature on composition, another component is evidently the notion that certain
microstructures that promote the shape memory e�ect are possible with only extremely special lattice
parameters.

2.1. Special lattice parameters

Active materials have free energies with energy wells. That is, in the simplest case the free energy
density j(F, y ) depends on the deformation gradient F and temperature y. To take a particular
example, the shape memory alloy Cu-14.0 at.%Al-3.5 at.%Ni has six energy energy wells associated
with the variants of the g1

0 martensite phase for y < yc, yc being the transformation temperature, and
a single energy well for y>yc associated with the austenite phase. The austenite well is de®ned by the
identity matrix F=I while the martensite wells are de®ned by speci®c distortion matrices having the
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The function j(F, y ) is equi-minimized for y < yc by these six matrices and, according to the
principle of material frame-indi�erence, by all rotation matrices premultiplying these matrices (A
rotation matrix is a matrix R satisfying RTR=I, det R=1, and the superscript T denotes transpose). The
numbers a, b and g are related to lattice parameters of the material, so they are known to high
accuracy, e.g., for the Cu-14.0 at.%Al-3.5 at.%Ni discussed here, they are a=1.0619, b=0.9178 and
g=1.0230.

For other martensitic materials, the structure of the energy wells can be quite di�erent. For the
monoclinic phase of the NiTi alloy mentioned above there are 12 energy wells, determined in this case
by four constants, all of which are known accurately. Of course, the determination of the precise
structure of the energy wells, and how they relate to X-ray measurements, has involved fundamental
work in solid mechanics. In some of the more complex cases involving so-called ``shu�ing'', there
remain signi®cant open questions.

The total free energy is given by,�
O
j�ry�x�,y�dx�L �2�

where L represents the energy of the loading device. As a consequence of energy minimization, the
deformation gradient tends to lie on or near the energy wells, but since the deformation is assumed to
be continuous, the deformation gradient is subject to conditions of compatibility. Precisely, the
deformation gradient matrices on di�erent wells must di�er by a matrix of rank one, or, brie¯y, a rank-
one connection. These conditions, together with the speci®c energy-well structure of the material,
strongly restrict the spatial distribution of the deformation gradient, that is, the geometry of
microstructure.

The ordinary shape-memory e�ect is the following. A specimen is deformed by loading at a
temperature below yc, causing redistribution of the variants of martensite. Upon removal of the loads,
the specimen retains its deformed shape (a consequence of the variants of martensite having the same
free energy density). Upon heating to above yc, the specimen returns to its orginal shape (a consequence
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of there being a single energy-well for y>yc). Finally, upon cooling to below yc, the specimen retains the
original shape.

The last step is crucial. It permits the original shape to be reset. But more than that, it means that the
alloy exhibits self-accommodation: there is a compatible arrangement of variants of martensite that
exhibit no macroscopic change of shape (However, note that microscopically there are large distortions,
since none of the matrices in Eq. (1) is close to I). This, in turn, implies that there is an arrangement of
variants of martensite that can be completely surrounded by austenite, a situation that is thought to
favor easy nucleation. The precise necessary and su�cient conditions for self-accommodation are known
(Bhattacharya, 1992). Except for degeneracies they are:

1. the austenite is cubic and
2. the distortion matrices have determinant 1.

This is the most fundamental tool in the search for new shape memory materials.
In the Cu-Al-Ni alloy used as an example above, there is a persistent microstructural feature that is

seen during transformation from austenite to martensite. Termed the wedge, it consists of two ®nely-
twinned martensite plates that meet back-to-back at a ``midrib'', pictured schematically as the inset in
Fig. 1. It is also seen in quite a few other shape memory materials, e.g. speci®c alloys in the systems Cu-
Zn-Al, Ni-Al, Ni-Mn, Ni-Zn-Cu, Fe-Ni-C, Fe-Pt, Fe-Ni-Co-Ti. Observations suggest that it provides an
easy path for transformation, beginning from a point on a boundary or grain boundary. While its
prevalence indicates that it is in some sense generic, nothing could be further from the truth. In fact, an
analysis of the conditions under which a wedge can be energy minimizing in a free body (Bhattacharya,
1991) lead to extremely restrictive conditions on lattice parameters. A sample of Bhattacharya's results,

Fig. 1. Special lattice parameters for the wedge (inset) to be energy minimizing. Dashed/solid lines correspond to wedges made with

Type I/Type II twins. The dot corresponds accurately to the measured lattice parameters of Cu±14.0%Al±3.5%Ni.
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re®ned and extended by Hane and Shield (1998) are shown in Fig. 1, for the case of distortion matrices
as listed in Eq. (1). Here, for ease of presentation b has been set equal to 0.9178, the experimentally
measured value in Cu-14.0 at.%Al-3.5 at.%Ni, and the a-g plane is shown. For alloys with (a, g ) on the
solid or dashed curves, the wedge is energy minimizing. The dot accurately shows the measured (a, g )
for Cu-14.0 at.%Al-3.5 at.%Ni.

While a, b and g can be changed by changing composition, this Cu-14.0 at.%Al-3.5 at.%Ni alloy was
not discovered by systematically adjusting composition so as to lie on one of the curves shown in Fig. 1.
Rather, it was found by adjusting composition so as to have a repeatable shape memory e�ect and a
convenient transformation temperature. The systematic use of results like that shown in Fig. 1 is
extremely intriguing, and is now being followed by several groups.

The result shown in Fig. 1 really goes beyond the particular wedge microstructure. Mathematically,
the special relation between a, b and g really means that there is an ``accidental'' hidden rank-one
connection among the energy wells, which, by symmetry, turns into lots and lots of hidden rank-one
connections. This implies not only that the wedge is energy minimizing, but so are a host of other
similar microstructures.

A number of other special relations among lattice parameters are now emerging corresponding to
certain microstructures or behavior. Notable are the analysis of the X-interface (Ruddock, 1994), extra
twins in cubic to monoclinic transformations (Pitteri and Zanzotto, 1997), general conditions for the
existence of an austenite/martensite interface (Ball and Carstensen, 1997) and special relations satis®ed
by low hysteresis alloys (Ball et al., 1995). There is a growing belief, not con®ned to people deriving
these relations, that they will revolutionalize the search for new active materials.

2.2. Special textures

Another class of special relations that promises to be useful is based on the analysis of special textures
that promote the shape memory e�ect. The analysis of these involves two length scales. The
microstructural length scale is assumed to be much smaller than the length scale of the grains, which in
turn is assumed to be much smaller than the macroscale. To understand the behavior possible in a
polycrystal, ideas from both the analysis of microstructure and homogenization are necessary. The
analysis currently available covers the following kind of question: what macroscopic strains are possible
in a polycrystal using essentially stress-free states from the martensite wells, allowing all possible
compatible arrangements?

One of the most striking results (Bhattacharya and Kohn, 1996) is that with a cubic-to-tetragonal
transformation (three energy wells for y < yc) in a random polycrystal, the martensite is essentially
rigid. The constraints of 1) randomness, and 2) only these three particular wells, conspire to rigidify the
polycrystal. The result is robust: complete randomness is unnecessary and there is ¯exibility with regard
to lattice parameters. What does this mean in practice? In such systems, deformation of the martensite
will drive the material out of the wells. In practical terms, while a one-time shape memory e�ect might
be observed, the severe deformations caused by the often signi®cant departures from the wells destroys
the e�ect after a few cycles. This is the universal observation in such systems. Yet, surprisingly, there are
several large alloy development programs around the world whose goal is to ®nd a polycrystalline shape
memory alloy based on the cubic-to-tetragonal transformation, typically beginning from a martensitic
steel. In the author's view such attempts, without consideration of texture, are doomed.

There are a number of other results on texture. The results are quantitative, e.g. precise values or
precise bounds on recoverable strains, but I shall just describe them qualitatively. It turns out that the
[110] texture produced naturally by drawing NiTi wires is an ideal texture for producing large
recoverable strains (no surprise!). The natural texture of sputtered ®lms NiTi is also [110], but this is an
extremely bad texture for producing large recoverable strains, a result that is borne out by experiment,
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but which was puzzling prior to these theoretical results. However, the texture produced by melt
spinning is ideal. In Cu-based shape memory materials there are similar quantitative results, and a
similar signi®cant e�ect of texture on recoverable strain, which has motivated new attempts to grow
®lms of these materials.

3. New concepts: ferromagnetic shape memory

Magnetostriction is the strain in a solid produced by the application of a magnetic ®eld. In the early
1970's Clark and Belson (1972) measured unusually large magnetostriction at room temperature in
certain R-Fe2 alloys, where R is a rare earth element, approaching the magnetostriction observed in
pure crystals of Tb and Dy at very low temperatures. While these alloys have naturally large
magnetostriction, they are otherwise conventional ferromagnetic materials. They have a Curie
temperature, at which a second order transformation takes place. The free energy density j may be
thought of as depending additionally on magnetization, j(F, m, y ). Above yc, it has a single energy
well, while below yc it has wells de®ned by certain pairs ((U1, m1),..., (Uk, mk )), (Ui, mi ) dependent on
temperature. Because of the second order nature of the Curie transformation, each of these pairs tends
continuously to (I, o) as y4 yc from below.

For actuator applications these giant magnetostrictive materials had a de®ciency: they had large
hysteresis loops. This means that the magnetic domains are subject to pinning by defects. Clark and
coworkers formulated a brilliant strategy to solve this problem. By mixing appropriate amounts of
TbFe2 and DyFe2, they arranged for the alloy to have a nearly ambiguous easy axis (either [100] or
[111]), near the boundary between two magnetic phases. This has the e�ect of reducing the anisotropy
constants of the material, broadening domain walls, and thereby weakening the e�ect of pinning.

This intentional ambiguity is a recurring theme in the development of active materials, and it lacks a
clear theoretical foundation. A very similar example is found in ferroelectrics, which are often arranged
to be near the morphotropic boundary, a nearly vertical line in the phase diagram of PbZrxTi1-xO3 that
separates tetragonal from trigonal phases (Ja�e et al., 1971; Newnham, 1997). The intuitive idea,
explained in terms of the energy-well picture, is that the presence of an extra set of wells, where
ordinarily there would be barriers, has the e�ect of removing lots of barriers and thereby facilitating the
polarization (or magnetization) process. A related idea, close to the arguments in the preceeding section,
is that more wells means more microstructures available to ease the passage between two given states.
But all this is all very vague, and one of the outstanding theoretical problems in ``new materials from
theory'' is to lend some predictive understanding to this strategy.

Before continuing, let us make the ``ambigous phase'' strategy slightly more quantitative. In the
simplest model of magnetostriction j(F, m, y ) is approximated by its geometrically linear counterpart
~j �E,m,y�, where the small strain matrix E approximates (FTF)1/2-I, and the form of ~j is such that the
energy wells are pairs ((E1, m1),..., (Ek, mk )), where Ei � ~E �mi �, and the magnetizations (m1,..., mk )
minimize the anisotropy energy,
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Here k1 and k2 are called anisotropy constants and ms is the saturation magnetization, |m|=ms.
Clark's strategy is related to the fact that both k1 and k2 have opposite signs in TbFe2 and DyFe2.
Tetragonal/trigonal ambiguity is achieved at k2=-9k1. Perfect ambiguity is achieved at k1=k2=0.

The ambiguous phase strategy is not the only way to achieve large ®eld-induced strains. In fact, the
author, together with Manfred Wuttig and Robert Tickle, has been pursuing a strategy that in a sense is
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exactly opposite to the ambiguous phase strategy. That is, in certain ferromagnetic martensitic materials,
we have been trying to make |k1| and |k2| as large as possible.

To explain how opposite strategies can give similar results, it is helpful to return to ordinary
martensitic materials. The usual way of thinking about martensitic materials is in terms of soft moduli,
or, from the theorist's perspective, linearized theory. Upon cooling, the presence of the ®rst order phase
transformation is signaled by the rapid decrease of certain elastic moduli whose associated eigenmodes
resemble the impending transformation strain. But, in the 1970s and 1980s, it was noticed that while
some softening was evident in most cases, it was not always pronounced. That is, there are martensites
with very large transformation strains, modest softening, and very mobile twin boundaries (Krumhansl,
1987). Brie¯y: linearized theory does not tell the whole story. As an example, two compound twinned
variants of martensite in single crystals of Cu-14.0 at.%Al-3.5 at.%Ni can be made to move back and
forth large distances with a critical resolved shear stress of 1.5 MPa, and this for hundreds of thousands
of cycles (Abeyaratne et al., 1996).

Therefore, one can conceive the following idea. Arrange to have a material with a martensitic
transformation and a Curie temperature, so that the martensitic phase is ferromagnetic, has mobile
twin boundaries and high anisotropy. The latter is quite consistent with large transformation strain
since high structural anisotropy correlates with high magnetic anisotropy. With high magnetic
anisotropy, the magnetization stays rigidly attached to easy axes, and the application of a ®eld h
favors variants of martensite with magnetization parallel to h, owing to the presence of the term -h�m
in the energy density. This is illustrated in Fig. 2 for two tetragonal variants of martensite. Why is
the material relatively easy to magnetize? Because the magnetization process is due to redistribution
of martensite variants with mobile interfaces. Of course, depending on the direction of the ®eld, it
might be very di�cult to fully magnetize the material, because that would entail magnetization
rotation, but that does not matter. The deep question is: what really governs the mobility of
interfaces?

Using this strategy on alloys in the system NiMnGa, ®eld-induced strains some 50 times those of
giant magnetostrictive materials have been observed at moderate ®elds (Tickle et al., 1999; Tickle and
James, 1999; James and Wuttig, 1996James and Wuttig, 1998; Ullakko et al., 1996). While issues
remain, it appears that these will develop into an important class of actuator materials.

Fig. 2. Ferromagnetic shape memory illustrated using two tetragonal variants of martensite.
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4. The outlook for active materials at large and small scales

Applications of active materials have been growing rapidly. Areas of particular promise are in
vibration and motion control systems, pumps and valves, and data processing and storage. Biomedicine
has been a particularly fertile area for shape memory materials. In Fig. 3, we picture a beautiful stent
made of delicate ®ne strips of NiTi.

In applications of active materials, the moving parts of a machine are replaced by the movements of
microstructure. The value of active materials for applications arises from two features,

1. by cooperative microstructural changes, a small piece of material can e�ciently undergo a large
motion, and

2. they serve as energy conversion devices.

So it is interesting to ask, What happens if we scale a piece of shape memory material smaller and
smaller, say, even smaller than its own microstructural features? Will a small specimen of shape memory
material still display the shape memory e�ect?

Let us consider ®rst the macroscopic viewpoint, represented by Table 1. This shows work output per
unit volume of various actuators. It was obtained from macroscopic data, e.g., the entry for NiTi was
calculated by multiplying stress � recoverable strain in a shape memory cycle. Note the high value for
this alloy, sugggesting that, because of ``per unit volume'', this will be a good candidate for
microactuators. This is partly due to the ®rst order phase transformation that is being exploited, a fact
that has motivated the search for both ferromagnetic shape memory materials and relaxor ferroelectrics
based on ®rst order phase transformations (Park et al., 1998).

The values in Table 1 are also per cycle. The feature that hampers the use of shape memory materials
in many bulk applications is that they are slow to heat and especially slow to cool. But in thin ®lm
form, the heat transfer rates are signi®cantly increased. One estimate gives a frequency for the shape
memory cycle at several hundred Hz for a micron thick ®lm. This has motivated much recent interest in
the growth of ®lms.

Fig. 3. Stent laser machined from a tube of NiTi. Using the property of superelasticity, the stent expands to hold an artery open.

Courtesy of Brian Berg, Boston Scienti®c±SciMed. Width of strips is approximately 200 mm.
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But we expect a breakdown of this kind of macroscopic reasoning at small scales. A classical estimate
for the width of the twin bands present in the most common martensitic microstructure gives const.
L 1/2, where L is the length of the twin bands measured parallel to the bands. This yields the impossible
conclusion that for a cube of size L, with L su�ciently small, the twin bands will be wider than the
specimen. Obviously, the calculation breaks down, but we lack a reasonable one to replace it.

Anyway, the suggestion is that small particles will be single domain, like small magnetic particles.
This, combined with the likely absence of nucleation sites in small particles, suggests that small particles
would not transform at all. Experimental evidence from the 1950s suggested exactly that. But more
recently, con¯icting evidence has surfaced; a beautiful example of a martensitic transformation has been
identi®ed by Olson and Hartman (1982) in the nanoscale virus Bacteriophage T4. It exhibits a
remarkable 50% transformation strain. It also seems to have a built-in scheme for nucleation.

In ®lms there are some unexpected recent predictions. One of these says that for a suitably oriented,
su�ciently thin, single crystal ®lm, exact austenite/martensite interfaces are stable, i.e., without the ®ne
twinning that is almost always seen in bulk (Dong et al., 1999). Small scale structures based on these
would exhibit spontaneous strains signi®cantly larger than seen in bulk because of the elimination of
cancellation of strain due to the ®ne twinning. Could we really access directly the full transformation
strain of an active material at small scales, without the compromises of microstructure?

In a famous after dinner talk in the 1960s, Feynman imagined a scenario of milliscale machines
making microscale machines (Feynman, 1993a, 1993b [reprinted]), these making still smaller nanoscale
machines, which would compute, store information, even provide entertainment (The ultimate non-
virtual game: operator driven microscale vehicles under the microscope at war with a sea of protozoa).
This has launched a huge, dynamic, international e�ort to understand the behavior of materials at small
scales and do engineering at these scales. Mechanics is likely to play an important role in this activity,
especially as technology makes the transition from macroscopic methods like surface micromachining,
self-assembly and conventional patterning, to the essentially microbotic vision of Feynman, a
development that already can be predicted from the spectacular success of the atomic probe microscope.
With suitable development of small scale engineering one can imagine, for example, a small scale vehicle
that is injected into the bloodstream and is powered by active materials drawing energy from a remotely
applied ®eld, which simultaneously could serve for imaging. The vehicle could carry surgical tools and
thereputic drugs. A whole new strategy for therapy is suggested: rather than apply medicines at
essentially constant concentration over the body, with associated side e�ects, deliver much stronger
medicines, but with short lifetimes, directly to the a�ected area.
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