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Abstract

The energy functional of nonlinear plate theory is a curvature functional for sur-
faces first proposed on physical grounds by G. Kirchhoff in 1850. We show
that it arises as a I'-limit of three-dimensional nonlinear elasticity theory as the
thickness of a plate goes to zero. A key ingredient in the proof is a sharp rigidity
estimate for maps v : U — R, U C R". We show that the L2-distance of Vv
from a single rotation matrix is bounded by a multiple of the L2-distance from

the group SO(n) of all rotations. (© 2002 Wiley Periodicals, Inc.
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1 Introduction

A classical theorem due to Liouville says that if a smooth mapping v : 2 — R”,
Q C R”, satisfies Vv € SO(n), then it is affine, v(x) = Rx + c¢. There are nu-
merous generalizations of this fundamental result, of which the most general is
by Resetnjak [41]: If a sequence v®) converging weakly in W12(Q, R") satisfies
Vuv® — SO(n) in measure, then Vv® converges strongly in L?(2) to a single
matrix on SO(n).! These theorems play a pivotal role in solid mechanics and dif-
ferential geometry.

However, the latter fall just short of being useful when specific information
about the rate of convergence of the sequence is important. This is exactly the case
when one tries to rigorously derive two-dimensional plate or shell theories (in the
case that bending is considered) from three-dimensional nonlinear elasticity, the
small parameter being the thickness A of the plate. Such a derivation begins with
an underlying smooth stored energy function W defined on 3 x 3 matrices that is
minimized exactly on SO(3). A three-dimensional deformation v® defined, say,
on a thin domain 2, = S x (—%, %), S c RZ, has elastic energy

/ W (VP (x))dx,
Q2

and one seeks to understand the behavior as 7 — 0 of minimizers subject to ap-
propriate boundary conditions.
For compressive boundary conditions such as

h h
(L) @ =(=1,1°x (_55) , W@y =X F@0,0),

where a € (0, 1) is fixed and the minimum energy scales like /°. (The well-known
heuristic argument is made rigorous in Section 6 below. It is based on the intuition
that the plate will accommodate the boundary conditions by bending while keeping
its mid-surface unstretched.)

In contrast, the volume of the domain scales like #; i.e., it tends to zero much
slower. This means that Vv tends in a certain sense to SO(3). But the Reset-
njak theorem is insufficient to nail down the convergence properties sufficiently to
calculate, for example, the limiting energy

1.2 ! Vo (x))d
(1.2) s W(Vv™i(x))dx .
Q)

Because of the presence of the scales 1/h in front of the integral and 4 in the
domain of integration, a quantitative understanding is needed. Because such an

IFor a short modern proof using Young measures, see [22]. By an approximation result for Young
measures [45], the result also holds with the spaces W12 and L2 above replaced by wllang L1,
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understanding has hitherto been lacking, rigorous passage to the thin-plate limit
has remained an open problem (see [40] for a recent result).

The main results of this paper are (1) a quantitative rigidity theorem that gen-
eralizes the results of Liouville, ReSetnjak [41], and F. John [24, 25] and would
appear to be widely applicable, and (2) a rigorous derivation of the thin-plate limit
of three-dimensional nonlinear elasticity theory, under not just the special bound-
ary condition (1.1) but indeed any boundary condition compatible with keeping the
mid-surface unstretched.

The rigidity theorem is discussed following its precise statement in Section 3.
The remainder of this introduction is devoted to passage to the thin-plate limit.

The derivation of plate/shell theories is a problem having a long history with
major contributions from Euler, D. Bernoulli, Cauchy, Kirchhoff, Love, E. and
F. Cosserat, von Karman, and a great many modern authors. The classical lines of
research are reviewed by Love [36]. Nearly all are based on ansatzes for (exact or
approximate) minimizers of (1.2), leading to a great variety of plate/shell theories
in the literature that are not consistent with each other.

In terms of the question of which plate theory, if any, is actually predicted by
nonlinear elasticity for a thin plate, the field has hitherto been in a state of con-
fusion. One particular line of research going back to the Cosserats is the ansatz
that the energy density of the shell can be expressed as a function of the deforma-
tion gradient of the middle surface together with a number of vectors, and possibly
their gradients up to some order. These vectors model shear and compression of
the plate relative to the middle surface. These models are called Cosserat models
(for further discussion and references, see Antman [2].)

Recently rigorous results have appeared that compare the three-dimensional
minimizers to their two-dimensional counterparts [3, 6, 8, 11, 18, 29, 30, 31, 40].
The natural mathematical setting in which these results are usually formulated is
that of variational or I"'-convergence, which was introduced by De Giorgi [12, 13].
Here we discuss only such derivations that begin with nonlinear elasticity; there
is a large body of related research based on linearized elasticity in which SO(3) is
replaced by the linear space of skew matrices. However, in view of the fact that thin
plates can easily undergo large rotations that invalidate the assumption upon which
linear elasticity is based, these have limited applicability (however, this research
does shed light on the subject of “moderately thin plates” [11]). It is remarkable
and quite unexpected that the rigorous study of the three-dimensional minimizers
in the limit 7 — 0 often leads to Cosserat models. The I'-limit of the energy,

(1.3) % / W(Vv(x))dx,

Q2

is now reasonably well understood: This yields the so-called membrane theory
[8, 29, 30, 31]. It captures the energy that is proportional to the thickness 4, which
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includes stretching and shearing of the plate relative to the middle surface, as in-
duced, for example, by tensile boundary conditions (1.1) with a < 0. It assigns
zero energy to typical bent states of the plate, whose energy scales like /3. Here
we determine the I'-limit of the energy (1.2). This is more difficult since the limit
functional contains higher derivatives and one is thus dealing with a singular per-
turbation problem.

We now describe the limiting plate theory we obtain. For simplicity, we re-
strict ourselves in this introduction to the case when the stored-energy function is
isotropic (that is to say, W(F) = W(QFR) forall F € M* and all Q, R €
SO(3)). In this case, the second derivative of W at the identity is

2 T
Zg(l)(A A) =2ule)* + Atre)?, e= A—;A ,
for some constants A, u € R. The limiting two-dimensional energy functional to
which (1.2) I'-converges is then

1 2 - - . 3
(14 ()= 24 fs (ZMIIII ﬂﬂ/z(trH) ) on isometries v : § — R°,

400 otherwise.

Here II denotes the second fundamental form of the surface, i.e., II = (Vv)TVb
where b = 7= A = is the surface normal. The limiting energy is thus a quadratic
form in the (extr1ns1c) curvature tensor. See Section 6 for a detailed discussion,
including the interesting issue of the limiting boundary conditions and a natural
variational explanation for the emergence of the renormalized Lamé constant —~—
in place of the naively expected stiffer constant A.

+A/2

The limit energy (1.4) agrees with the expression proposed in the original work
of Kirchhoff [26, equation (9)], but not with the expression obtained by suppress-
ing the geometric nonlinearity (i.e., by approximating the constraint that v must
be isometric by v; = v, = 0 and replacing II by —V?v3), which much of the
subsequent literature has associated with Kirchhoff’s name.

Likewise, expression (1.4) does not agree with the expression obtained via
a standard nonlinear Cosserat ansatz (sometimes called the nonlinear Kirchhoff-
Love ansatz in the literature, even though it is not due to Kirchhoff) for the three-
dimensional deformation, which assumes that the fibers orthogonal to the mid-
surface deform linearly,

(1.5) v (x1, x2, x3) = y(x1, X2) + x3b(x1, x2) -

This leads to an energy of correct functional form but containing the incorrect
constant A in place of H /2 A simple physical explanation for why the amount
of stretch of the fibers is in fact nonconstant along the fibers is given in Section 7.
This variation along the fibers, missed by (1.5) and quantified exactly in Section 7,
turns out to contribute to the energy at the same order as the variation of the fiber
direction, captured by (1.5).
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Finally, the following special case of our result may be of some geometric in-
terest: The functional -5 th dist(Vy(x), SO(3))? dx I'-converges to the Willmore
functional arising in differential geometry [44] restricted to isometric surfaces,
1°(y) = é fs III|> dx when y is an isometry and +oo otherwise. As an imme-
diate corollary of this I'-convergence, we obtain existence of surfaces in R? that
minimize the Willmore functional in the class of isometries for appropriate bound-
ary conditions; see Section 6.

Modern interest in plate theories has blossomed with the ubiquitous presence
of thin films in science and technology. Interesting mechanical problems have
arisen out of studies of the delamination of films from substrates (e.g., Gioia and
Ortiz [21, 39]) and the behavior of so-called active thin films. The latter have
been modeled by energy densities W with multiple energy wells (Bhattacharya
and James [8]) of the form SO(3)A USO(3)B U ---, where A, B, ... are constant
3 x 3 matrices.

We believe our methods will be generally useful, but a great many interesting
open problems remain:

SHELL THEORY (REFERENCE STATE NOT FLAT): Shells can be more rigid
than plates, depending on their reference state. For example, bending a
corrugated shell (as in a corrugated roof) around an axis perpendicular to
the direction of the corrugations immediately activates the membrane en-
ergy and is therefore expected to lead to a different energy scaling than /*
(see also the next item). On the other hand, the extension to thin rods is
relatively straightforward. For the case in which the membrane theory is
not activated, the present results have been extended to shells in [19].

MEMBRANE THEORY NOT TRIVIAL: In this case, membrane and bending
energies are both present; i.e., the boundary conditions are such as to forbid
a simple overall scaling. Recent work of Ben Belgacem, Conti, DeSimone,
and Miiller [6] and Jin and Sternberg [23] reveals the subtlety of this issue.
They show that for boundary conditions that exert a small uniform com-
pression, the energy scales like 42, between membrane (k) and bending
(h?). In fact, the practical case in the delamination of thin films under
compression studied by Gioia and Ortiz appears to be of this type.

MULTIPLE ENERGY WELLS: Our results are decidedly “one well,” and quite
different and unexpected shell theories may arise in the case appropriate to
active films.

MULTILAYERS: This is important in films and is modeled by an explicit x3-
dependence of W. This case relates to the most important measurement of
stress in films (the wafer-curvature measurement) as well as the behavior
of the classic bimetallic strip.

PREDICTIONS OF THE THEORY: New predictions of the theory can now be
explored with some confidence. An interesting class of problems for such
exploration includes the recent studies of singularities of “paper folding”
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(see, e.g., Ben Amar and Pomeau [5]; Cerda, Chaieb, Melo, and Ma-
hadevan [10]; DiDonna, Witten, Venkataramani, and Kramer [14]; and
Lobkovsky [35]). These authors argue that certain canonical singularities
that arise during the crumpling of paper necessarily involve both mem-
brane and bending energies, and they construct an associated deformation
that exhibits a scaling of #%/3.

Several of the results presented here were announced in [20].

2 Notation, Bending Energy, and Euler-Bernoulli Theory

We will be concerned with variational integrals of the type

2.1) / W(Vv(z))dz
Q

that arise in the theory of nonlinear elasticity. Mathematically, €2 is a bounded open
subset of R, v : @ — R? is a sufficiently smooth mapping, and W is defined on
3 x 3 matrices, denoted M>*3. (Physically, S is the region occupied by an elastic
body in a reference configuration, v is the deformation, and (2.1) its elastic energy.)
A superimposed T indicates the transpose, and I the identity matrix. The set of
n X n rotation matrices (or simply rotations), {R € M"*" : RTR = I, detR = 1},
is denoted SO(n). For A € M"™*", let cof A denote the matrix of cofactors of A, i.e.,

2.2) (cof A);j = (—1)'*/ det Ay,

where ;\\, jis the (n — 1) x (n — 1) matrix obtained from A by deleting the i t row
and the j™ column. It is well-known that for v € W!2(Q), div cof Vv = 0.

In this paper C is a generic absolute constant (its value can vary from line to
line, but each line is valid with C being a pure positive number, independent of all
other quantities).

For A € M**3, we denote the Euclidean norm by |A| = ~/tr AAT. The dis-
tance from A to SO(n) is denoted dist(A, SO(n)). If det A > 0, A = RU is its
polar decomposition (R € SO(n) and U = v/ ATA), a short calculation shows that
dist(A, SO(n)) = |U — I|. More generally, if the condition det A > 0 is dropped,
we still have the inequality dist(A, SO(n)) > [(ATA)/2 — 1.

The key assumption of this paper is the usual assumption of geometrically non-
linear elasticity theory that the stored energy function W : M>*3 — R has a single
energy well at SO(3). Altogether, we assume the following:

(1) W e COM>3), W e C%in a neighborhood of SO(3),

(2) W is frame indifferent: W(F) = W(RF) forall F € M*>3 and all R €
SO(3), and

(3) W(F) > C dist’(F, SO(3)), W(F) = 0if F € SO(3).

We do not impose any growth condition from above; in fact, the condition W €
C%(M3*3)in (1) can be weakened to include W’s that take the value +oo outside an
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open neighborhood of SO(3), such as the following model functional for isotropic
materials, which goes back to St. Venant and Kirchhoff:

W(F) — WWFTF — 1?4+ 5(w(VFTF —1))?, detF >0,
400

otherwise;

see Section 6.

In the application to nonlinear plate theory, we shall be concerned with bounded
regions of the form 2, = § x (—%, %), where S C R? is strongly Lipschitz and
h > 0 is the small parameter. Consider an orthonormal basis {e], e;, e3} with
e3 pointing in the direction normal to S, and an associated rectangular Cartesian
coordinate system (z1, z2, z3). In order to deal with sequences of deformations
defined on a fixed domain, we change variables,

1

(2.3) X1=21, X2=22, x3=EZS,

and rescale deformations according to the rule y(x) = v(z(x)) so that y : Q; —
R3. We use the notation V'y = y,; ®e| + y,2 ®e, for the gradient in the plane, so
that

1
2.4) Vv = (V'y, Zyg) )

The total free energy of a plate of thickness 4 and cross section S is

(2.5) /W(Vv(z))dz = hf W(V/y, %y,3>dx =: EW(y),
Qn Q)

which is well-defined for y € W'2(Q;, R?) as an element of [0, co) U {oco}.

The I'-limit of %E ™ has been discussed by many authors, as summarized in
the introduction. This first I"-limit is the so-called membrane theory; it governs
stretching, as well as shear and compression parallel to e3, of the plate. We shall
be concerned with the case, arising from compressive boundary conditions such as
(1.1), when the membrane theory is trivial and the total energy scales as h>; the
latter is also the case of Euler-Bernoulli theory, as explained below. We shall say
that a sequence y” € W!2(2, R?) has finite bending energy if

1
(2.6) lim sup ﬁE(h)(y(h)) <00.
0

h—

Euler-Bernoulli theory concerns, say, a strip S = (0, L) x (0, w) bent in the
(x1, x3)-plane. The kinematics of Euler-Bernoulli theory is described by an iso-
metric deformation y : (0, L) x (0, w) — R of this strip,

2.7 y(x1, X2) = xpe5 + (fXI cos 9(s)ds)61 + (fXI sin@(s)ds)eg,
0 0



1468 G. FRIESECKE, R. D. JAMES, AND S. MULLER

where € W!2(0, L). The Euler-Bernoulli energy of the deformed strip is

L
(2.8) f—EIG/(s)2ds.
0 2

Here E is a phenomenological elastic modulus that Euler, in his fundamental pa-
per [16] of 1744, did not attempt to derive from three-dimensional considerations,
and the moment of inertia is / = wh?>/12, where  is the thickness of the strip.”
In Theorem 4.1 we show that if a sequence y’ has finite bending energy, then
(V'y®, % y,(h)) converges strongly to a particular (V'y, b) with values on SO(3)
and with (V'y, b) independent of x3. It follows that y is an isometric mapping of
S C R?, which, in the case of deformations in the (x;, x3)-plane, agrees with Euler-
Bernoulli kinematics. The detailed form of the Euler-Bernoulli energy will be
shown in Section 6 to agree with the rigorous thin-plate limit of three-dimensional
nonlinear elasticity, with a particular evaluation of the modulus E.

3 Geometric Rigidity

The basic rigidity result relevant to passage to the thin-plate limit is the follow-
ing:
THEOREM 3.1 Let U be a bounded Lipschitz domain in R", n > 2. There exists a

constant C(U) with the following property: For each v € W'-2(U, R") there is an
associated rotation R € SO(n) such that

3.1 IVv = Rll2@y = CU)ldist(Vv, SOm) I 2w -

The result also holds in L? for 1 < p < oo, as will be shown elsewhere. It is
sharp in the sense that neither the norm on the right-hand side nor the power with
which it appears can be improved.

An estimate in terms of € + /€, where € = ||dist(Vv, SOm)Il 12w, is much
easier to prove, but is insufficient for the application to plate theory, where one
needs to sum the estimate over many small cubes of size 4.

COROLLARY 3.2 (F. John [24, 25]) If Q is an n-dimensional cube, and if v € C!
with

3.2) |dist(Vv, SO(n)) || L) < 6
for & sufficiently small, then (3.1) holds for U = Q. In particular, for all such v,
1 1
3.3) [VU]BMO(Q) = sup - Vv — - va < C(n)d,
0co Q1) Qi)

where the supremum is taken over all cubes Q' C Q.

2In Euler-Bernoulli theory the only appearance of the thickness /4 of the strip is in the formula for
the moment of inertia.
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(Theorem 3.1 shows that (3.3) in fact holds for arbitrary § > 0 and arbitrary maps
v e Wh(Q, R") with ||dist(Vv, SO®)) |l = =< 8. This is immediate from the
equivalence of the BMO-seminorm and the BMO?-seminorm; see, e.g., [7, corol-
lary 7.8] and (3.1).) For the application to plate theory, it is crucial to remove
F. John’s restrictions on v, since they do not follow from smallness of the elastic
energy. Also, our proof of geometric rigidity makes no use of invertibility whatso-
ever, while John’s argument strongly uses the local invertibility of v.

Kohn [27] established optimal L?-estimates for v — Rx +const, but not Vv — R,
without these restrictions.

COROLLARY 3.3 (Y. G. ReSetnjak [41]) If v/ — vin WI2(U; R") and
dist(Vv/, SO(n)) — 0
in measure, then Vv — R in L>(U) where R is a constant rotation.

Resetnjak established related results for the more general case of nearly confor-
mal maps. An interesting open question raised by our work is whether these results
can also be made quantitative.

Before giving the proof of Theorem 3.1, we motivate some of its steps by con-
sidering the special case when the right-hand side in (3.1) is zero. Theorem 3.1
then reduces to the Liouville theorem that a W'2(U; R") map v that satisfies the
partial differential relation

3.4 Dv(x) € SO(n) a.e.

is a rigid motion, i.e., Dv(x) = const. (In the setting of Sobolev maps this was
first proven by ReSetnjak [41].) A short modern proof consists of two observations.
First, (3.4) implies that v is harmonic, and in particular smooth. (Proof: Dv(x) =
cof Dv(x) a.e.; take the divergence and use that divcof Dv(x) = O for all v €
W'2)) Second, the second gradient squared of any harmonic map can be expressed
pointwise via derivatives of the inner products v.; - v. j,

1
(3.5) 5A(|Vv|2—n) = Vv AVv+ |V2)? = V2]

but [Vv|?> — n = 0 when v satisfies (3.4).

Theorem 3.1 deals with approximate rather than exact solutions of the partial
differential relation, but both observations above will continue to play a certain
role. We will show that every approximate solution can be decomposed into a har-
monic part and a small part (see step 1 below), and generalize (3.5) into a smallness
estimate for V2v in terms of the L>-distance of v from SO(n) (see step 2 below).

It will be useful in the proof to work with functions whose gradients have a
bounded L*°-norm. For this purpose we need an approximation lemma similar to
one that appears in the literature [17, 34, 46]; this is proven in Proposition A.1.

We begin the proof of Theorem 3.1 by establishing a corresponding interior
estimate when U is a cube.
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PROPOSITION 3.4 Let Q be an n-dimensional cube, and let Q' be a concentric
cube having half the side length of Q. For each v € W'2(Q, R") there exists an
associated rotation R € SO(n) such that

(3.6) Vv = Rl 12y = C)[ dist(Vv, SOm)) [l 12(q) -

PROOF OF PROPOSITION 3.4: We first observe that it suffices to prove Propo-
sition 3.4 for maps v with ||[Vv|| =) < M for some constant M depending only
on the dimension n. Indeed, note that |A| < 2dist(A, SO(n)) if |A| > 2./n. Hence
an application of Proposition A.1 with A = 4./n yields a map V € W!1>(Q, R")
satisfying

IVViLe <4/nC:=M,

||VV—Vv||§2(Q) <C / V| dx
{xeQ:|Vu(x)|>24/n}
(3.7) <4C / dist*(Vv, SO(n))dx .
Q

Hence, if we prove (3.6) (or (3.1)) for V, the assertion for v follows by two appli-
cations of the triangle inequality, viz.,

Vv —=Rll2qy = IVV = Rll2q) + Vv =V V]2

< C|dist(VV, SOm) |l 12(q) + 2v/Cdist(Vv, SOm)) [l 20
(3.8) < C||dist(Vv, SOm)) |l 20 -

Hence we can assume from now on that ||Vv| 1~ < M for some constant M
depending only on the dimension 7.

Step 1. Let
3.9 & = ||dist(Vv, SOm) | 2(q) -
We may suppose € < 1. Since divcof Vv = 0, we have
(3.10) —Av = div(cof Vv — Vo).

The quantity |A — cof A|? is smooth and nonnegative, and vanishes on SO(n).
Hence, there is an absolute constant C such that

(3.11) |A — cof A|> < Cdist*(A4, SO(n)) for|A| <M.

Now (3.10) and (3.11) motivate the decomposition v = w + z, where z € W'2(Q)
is the unique solution to

3.12) —Az =div(cof Vv — Vv) inQ, z=0 onaQ,
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and w := v — z satisfies Aw = 0 in Q. Testing (3.12) with z and using (3.11), we
get

(3.13) /|vz|2dx < f |cof Vv — Vu|>dx < Cé?.
Q Q
Hence it suffices to show
(3.14) / dist(Vw, R)2dx < Cé?
Q

for some R € SO(n). In other words, we need to show that the harmonic part,
which carries information about the boundary values of v, is approximately linear
with gradient on SO(n). To estimate the oscillation of its gradient on the subset Q’,
we proceed in two steps. First, we derive a bound in terms of ¢!/2. This by itself
is not good enough. It allows us, however, to linearize about SO(n) and to derive
a bound of order ¢ for the oscillation of the symmetric part of the gradient. Then
Korn’s inequality can be used to control the skew part as well.

Step 2. The harmonic part w satisfies the identity (3.5). Let %Q =Q cQ’c
Q be strictly increasing concentric cubes. Choose a cutoff function n € C§°(Q)
withn > 0and n = 1 on Q”. Then

/|V2w|2ndx < sup(An)/ HVw|2 — n|dx
Q
Q

<c(/||w| —n|dx+2/|Vv||VZ|dx+/|Vz| dx)
(3.15) < C<f|dist(Vv,SO(n))|dx+ </|Vz|2dx> /|Vz| dx)
Q Q

Hence

(3.16) /|V2w|2dx <Ce.
Q//

Since w (and hence V2w) is harmonic on Q, the mean value property with r =
dist(Q”, 0Q’) gives

2

(3.17) sup |Vw(x)|*> = sup <Ce.
xeqQ xeQ

/ V2w(y)dy

B(x,r)

_
|BCx.r)

Hence there is an R € M™*" such that

(3.18) sup [Vw — R| < Ce!/?,
Q/
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and, in fact, we can choose R in SO(n), because

(3.19) / dist*(Vw, SO(n))dx <2 / (dist*(Vv, SO(n)) + |Vz|*)dx < Ce?,

Q Q
according to (3.13) and (3.9). For the rest of the proof, we may assume without loss
of generality that R = I, for otherwise we could apply the following arguments to
R"v and RTw in place of v and w.

Step 3. Linearizing dist(-, SO(n)) near the identity, we get

(3.20) dist(G, SO(n)) = ‘%(G + GO —I|+0(G - 1.

Lete = %(Vw + (Vw)") — I. We have on Q,
(3.21) le|] < dist(Vw, SO(n)) + Ce,
so that, using (3.19),

(3.22) / le|*dx < Cs>.
QI
By Korn’s inequality for the displacement u(x) := w(x) — x, we have (letting
R := Ié_’lfQ’ Vwdx)
R 1 ?
f|Vw—R|2dx =/ Vi— o /w dx < C/|e|2dx <Cé.
Q Q Q Q

But dist(ﬁ, SO(n)) < Ce by (3.19), so R can be replaced by a matrix on SO(n),
completing the proof of Proposition 3.4.

O

PROOF OF THEOREM 3.1: As in the proof of Proposition 3.4, we may assume
(3.23) IVVllpeowy < M,
M being a constant depending only on the domain U. We again write v = w +z as
in the proof of Proposition 3.4 (cf. (3.11)—(3.12)) The bound (3.13), whose proof
applies equally to general bounded Lipschitz domains, already holds on all of U, so
it remains to estimate the harmonic part w. To this end, let Q(a, r) = a+r (— %, Iyn
be the cube of side length » > 0 centered at a € R". We exhaust U by cubes
Q(ai, I",') with

(3.24) 2r; < dist(a;, 0Q) < Cr;
and such that each x € U is contained in at most N cubes Q(a;, 4r;). By Proposi-
tion 3.4 applied to w, there are rotations R; such that
(3.25) / |IVw — Ri|*dx < C f dist*(Vw, SO(n))dx .
Q(ai,2ri) Q(a;,4ri)
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Since w is harmonic, we deduce that

(3.26) r2 / IV2w|?dx < C / IVw — R;|*dx .
Q(a;,ri) Q(a;,2r;)

Using the fact that for x € Q(q;, ;) the distance between x and dU is comparable
to r;, we obtain

(3.27) f dist®(x, dU)|V*w|*dx < C / dist>(Vw, SO(n))dx .
Q(a;,ri) Q(a;,4ri)

Sum this over i, using the the inequality Zi XQ.4r) < N, to get the following
global result:

(3.28) / dist?(x, dU)|V*w|*dx < C / dist*(Vw, SO(n))dx .
U U
Now we use a weighted Poincaré inequality of the form
(3.29) min flf —G)Pdx < C/distz(x, AU)|V f|*dx
GEMVLXI’L

U U

for f € WH2(U, M"™"). This is an immediate consequence of [38, theorem 1.5]
or [28, theorem 8.8]:

(3.30) /|g|2dx <C} f(|g|2 + | Vg dist*(x, dU)dx
U U

for g € W2(U) N LAU). To pass from (3.30) to (3.29), fix § > 0 such that

loc

Cg]82 < %, and let ¢ = {x € U : dist(x, 9U) > §}. By the ordinary Poincaré

inequality for ¢, there exists a € R such that
C
(3.31) /lf —al*dx < C, f IV f?dx < 8—5 / |V £ dist*>(x, dU )dx .
q q q

Application of (3.30) with ¢ = f — a and the use of dist>(x, 8U)C11, < % for
x € U\ q yields

(3.32) /|f—a|2dx§
U

1 C .
> / |f —al*dx + (8—;’+1>c§,/|Vf|2d1st2(x,aU)dx,
U\gq U

and this implies (3.29).
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Apply inequality (3.29) to (3.28) to yield the existence of R (which, as above,
can be chosen on SO(n) using (3.19)) such that

(3.33) IVw — Rl 2y < Clldist(Vw, SOm) || 2wy -

Combining this with the estimate (3.13) with the domain Q replaced by U yields
the assertion of the theorem. ]

Remark. Theorem 3.1 is invariant under uniform scaling and translation of the
domain; e.g., the same value of C serves for AU + ¢, and the rescaled function
Av((x — ¢)/X) may be associated with the same choice of R € SO(n). Finally, we
note that, trivially, sequences of linear deformations with gradients approaching
SO(n) serve to show that the exponent on the right-hand side of (3.1) cannot be
improved.

4 Compactness of Sequences Having Finite Bending Energy

The quantitative rigidity estimate applies to a fixed domain, whereas the sets
of interest in plate theory are of fixed cross section and very thin, with thickness
h. The plate can then be viewed, except for a boundary layer near its edges, as a
union of cubes of side length /2. On each of these a deformation with finite bending
energy is nearly rigid, according to the quantitative rigidity estimate. In this way
of thinking, the goal of a compactness argument is to estimate how much this rigid
deformation can vary from cube to cube in the lateral direction.

THEOREM 4.1 Suppose a sequence y™ c W'2(Q; R®) has finite bending energy,
that is to say,

1 1
(4.1) lim supﬁ/distz ((V/y(h), Ey,;'”), SO(3))dx < 00.
Q

h—0

Then V,y™ = (V/y®, }lly,(h) ) is precompact in L>(2) as h — 0: There exists a
subsequence (not relabeled) such that

4.2) Viy®™ — (V'y,b) € LX)

with (V'y, b) € SO(3) a.e. Furthermore, (V'y,b) € H'(Q) and is independent
of x3.

Remarks. (i) One interesting aspect of this result is that (V’y, b) is much more
regular than naively expected.

(ii) If the factor 1/h? in hypothesis (4.1) is replaced by any factor (k) tending
slower to infinity with 2 — 0, then precompactness fails; see Section 5.

PROOF: The main technical object to be studied is a piecewise constant ap-
proximation of the rescaled deformation gradient, obtained via Theorem 3.1.
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Consider a lattice of squares

h h\?
4.3) Sen=a-+ (—5,5) , aehZ?,
and let
(4.4) Sv=J San-

Sa.3nCS

Undo the rescaling and apply Theorem 3.1 to v (z) = y® (¢, ,123) restricted to

the cubes a 4 (—5 —)3 this yields a piecewise constant map R™ : S, — SO(3)
such that
1 2
(4.5) / ‘(V/y(h) hy,(h)) —RM| dx < Ch*.
S/zx( % %

cav ST ), x e Sx (=4 h.

To estimate the variation of R’ from a cube to a neighboring cube, we begin
with the following simple estimate: Let b = a + x1e; + x2e3, X1, x5 € {—h, 0, h}.
Then Sb,h C Sa,3h SO

To simplify the notation, let V,y™ (x) = (V'y " (x), 4

1S4l IR® () — RO (@)]* <2 f IR® () — V,y ™ (x)|* dx
Sth(—j ,5)
(4.6) +2 f IRCM (a) — V,,y™® (x)|*dx .

Sth(—j 7)

Enlarge the second integral to the domain S, 3;, X (— 1 %) and apply Theorem 3.1 to

the flattened cube S, 3, % (=7, h ’l) Therefore, we have using (4.5) and its analogue
for the flattened cube,

@7 1Sl IR B) — R (@))? < C / dist*(V,u™, SO(3))dx .
Sa3nx(=%,3)

Since |[R®(a) = R®b)* < 2(|R™ (a) — R®M(@)* 4+ |R™ (b) — R®P(a)*), by
(4.7) and its special case a = b

(4.8) 1Syl Ry (@) — Ry(D))* < C / dist?(V,u™, SO(3))dx ,

11
Su,fihx(*js?)
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which also can be written, by using the piecewise constancy of R,

4.9) / Ru(x' + x1e1 + xa02) — Ry ()2 d’ <
Sa,h
C / dist(V,u™, SO(3))dx .
Saanx (=%,

Hence for ¢ € R? satisfying |¢|o 1= max{|¢ - e;], |¢ - e2]} < h,

(4.10) / IRV (' +¢) — RM () dx' <

Su,h

C / dist?>(V,y™, SO(3))dx .
Saznx(—3.3)

Now let S’ be a compact subset of S, and consider a difference quotient with more
general translation vector ¢ € R?, [¢], < cdist(§’,dS). Let N := max{[% .
el, [% - e2]}, where [-] denotes the integer part, and choose &g, ¢1, ..., {y+1 such
that o = 0, {y41 = ¢, and |1 — Gkloo < h. Then [RW(x" 4+ ¢) — RW()|* <
(N + 1) Y00 IRP G + 1) — RP(x' + 41, and hence

4.11) / IR®(x' +¢) — RP(x)2dx’ <

Sa.n
N
C(N+1) Z / dist?>(V,y™, SO(3))dx .
=g anx (4.1
Summing over all S, , N S" # @ and using that each x € § x (—%, %) is contained
in at most (N + 1)C of the sets S, 31 X (—%, %),

(4.12) /|R(h)(x’+§) — RPN dx’ <
S/

2
C('%‘H) / dise(V,y ™, SO@))dx < C(¢| + h)*.

§x(=72:2)

This key estimate readily implies compactness of R in L?(S’) for any sequence
h; — 0, as we shall now detail. Compactness is equivalent to validity of the
Frechet-Kolmogorov criterion (see, e.g., [1])

4.13) lim SI(l)p S;Llp ||R(hj)(. +7)— R ||L2(S,) =0.
=0k
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Fix € > 0. Clearly the supremum over the finite set {h; : h; > €} tends to zero
as |[¢| — 0, since || f(- + &) — fll12(s) tends to zero for any fixed f € L(S).
On the other hand, the supremum over the remaining set {h; : h; < €} satisfies
lim sup; o supy, - [R™ (- +¢) — R<hf>||§2(s,) < Ce?, by (4.12). Since € was
arbitrary, this establishes (4.13). Hence a subsequence of R" converges strongly
in L2(S’) to some R € L%(S’) with R(x") € SO(3) fora.e. x’ € §'.

We now show strong convergence of the unapproximated sequence V/, y®) on
the whole domain 2 = § x (—%, %). Since the sequence has bounded bending
energy, one immediately has subsequential weak convergence V,; y ) —~ (V'y, b)
in L*(Q). By (4.5), R"’ — Vv, y®) — 0 strongly in L*(S" x (-3, 3)). Con-
sequently, (V'y,b) = R for ae. x € §' x (—%, %). In particular, (V'y, b) is
independent of x3 and lies in SO(3) for a.e. x € §' X (—%, %). Since S’ was
an arbitrary compact subset of S, the above properties hold in all of €. Since
dist(V,,y", SO(3)) — 0in L*(2), we have |V, y"/[* - 3 = [R|> in L' (), so
that || V), y | 2@ — I(V'y, b)|l12(q), which together with weak convergence in
L?(R2) implies strong convergence in L%().

Finally, letting # — 0 in (4.12) yields

/ / _ / "2
/‘(Vy,b)(x +¢)— (V'y,b)(x)) dx' < C.
S/

Iq

which implies (V'y, b) € H'(S"). Because C is independent of S’, in fact we have
(V'y,b) € H'(S). O

S Noncompactness by Wrinkling

Bending energy occurs at order 2 while membrane energy occurs at order /.
(Recall that one power of & was absorbed by the change of variables leading to
(2.5).) It is therefore interesting to ask whether a sequence y® is compact if
we assume the energy is bounded by a power of i between h and h* (respec-
tively, between 1 and h? in rescaled variables). The answer is no: The simple
examples below, which only involve bending in the (x;, x3)-plane as captured by
Euler-Bernoulli kinematics generalized to finite thickness, show that (in rescaled
variables) there are sequences y that satisfy

1 1
(5.1) lim sup / dist® ((V/yU”, Ey,gm ) SO(3))dx < 0
Q

h—0
for & < 2 but arbitrarily close to 2, such that (V/y™, 1 y,%) converges weakly
but not strongly to SO(3). In particular, infinite bending energy is compatible with
zero membrane energy.
Let 0™ ¢ WI2(R) and S = (0, L) x (—b/2, b/2), and consider a sequence of
deformations of Euler-Bernoulli type (2.7), modified to account for finite thickness
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in a way that preserves zero membrane energy:

x|
YO (X', x3) = x200 + (f cos G(h)(s)ds>el
0

X1
(5.2) + ( / sin9<h>(s)ds)e3 + hxsb™ (x)) ,
0
where
(5.3) bM(x)) = —sin0™ (x))e; + cos 0P (x))es .
We have

L
(v/y(h)a Zy,; )>

dpb™
= (cos 0Me; +sin0Me; + hx; il sind™e; + cos Q(h)€3)
X1
d@(h)
(54) = R(h) <I — hX3 e ® €1> ,
dX]

where R® = cos0®Me; @ e; +sinfdMe; @ e; —sinfPe; @ e3 +cos8Wes @ e3 +
er» ® er € SO(3). For |%h(d9(”)/dx1)| < 1, (5.4) is the polar decomposition, so in

that case
) oy Low " ’
dist V'y ,Ey,3 ,50Q3) | = |hx; I el ®ep)
1
doM\?
5.5 = h%x} :
(5.5 x3< dx, )
Then (5.1) becomes
L1 /do™\?
(5.6) lim sup =% / — dx; < 0.
h—0 o 12\ dx

As a particular example, we may choose # ™ to be smooth and periodic with period
h? satisfying

6, on (0, 1h# — 1h7],
(5.7) 0™ (x1) = 36> on (2P + In7, 3P — 1n7],
6y on (2h# + Sh7, hP],
with0, > 0,1 >y > B > 0,and |d6" /dx;| < 2(6, — 6;)h~7. The condition

y < 1 ensures that |3h(d0™ /dx,)| < 1 for h sufficiently small, validating (5.5).
Thus,

2—a) b1 de® ’ 2p2—a—p-y)
(5.8) h E dx dx; < L6, —0))°h .
0 1
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So, if B + y is chosen sufficiently small, then (5.6) holds, but clearly the sequence
(V'y®™, Ly Y is not compact in L2.

6 The Limiting Plate Theory for Minimizing Deformations
Having Finite Bending Energy

Theorem 4.1 says that a sequence (V'y, % y,(h) ) with finite bending energy
is compact and its limit (V'y, b)) lies on SO(3); in particular, b = y; A y,. We
now show that if this sequence is (exactly or approximately) minimizing subject to
appropriate boundary conditions, then its limiting bending energy can be expressed
solely in terms of y, and there is a variational principle for the limit.

In the spirit of I'-convergence, we first study arbitrary sequences with finite
bending energy, not required to satisfy boundary conditions.

THEOREM 6.1 For h — 0, the functional h]—gE ") (as defined in (2.5)) converges

to the limit functional 1° given below in the following sense (amounting to T -
convergence on W12(Q2; R?) in the language of [9, 12, 13]):

(i) Ansatz-free lower bound. If a sequence y C W'2(Q; R?) converges to y
in W'2, then liminf),_o 25 E® (y™) > 1°(y).

(ii) Attainment of lower bound. For all y € W'2(Q; R?) there exists a se-
quence y C W2 converging to y in W'? such that lim,,_, h%E(h)(y(h)) =

1°(y).
The limit functional 1° is given by
() = i fS 0,ADdx" if y(x) 'is independent of x3 and y € A
400 otherwise.
Here the class A of admissible maps consists of isometries from S into R3,
A={y e W2S;R) : [y | =Iyal =1, y1-y2=0}
and 11 is the second fundamental form (or extrinsic curvature tensor)
My = ((V)'Vb), =yi-b;, b=yiny:.
The quadratic form Q> on M**? is defined by
(6.1 0.(G) = iIEIIiRg 0:(G +c®es),

2

where G is the 3 x 3 matrix Zi,j:l

linear elasticity theory on M>*3,

Gije; ® ej, and Q3 is the quadratic form of

3

W W
6.2 F) = H(F,F) = — (D F;; Fy .
(6.2) Q3(F) = oz (D(F, F) ijgzlaﬂjam() j Fu
Remarks. (i) In particular, as proved earlier (Theorem 4.1), if the sequence has

bounded bending energy, then the limit y has the higher regularity y € W22(S; R?).
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(ii) The result remains valid if strong W!2-convergence in (i) is replaced by
weak convergence, as proved below.

(iii)) An interesting technical aspect of our result is that no growth condition
from above was imposed on W. This means that in order to establish (ii), we will
have to construct approximating sequences whose gradient stays bounded in L,
even when the gradient of the normal of the limit map is not in L*°. This will be
achieved with the help of fine truncation arguments for Sobolev maps, discussed
in the appendix. In fact, for any given € > 0, the approximating sequences con-
structed can be chosen to satisfy dist(V,y?, SO(3)) < e for all sufficiently small
h. (This follows from (6.25) by noting that the constant C in that estimate is in-
dependent of ¢, and that ¢, introduced below (6.24), can be chosen as small as we
wish.) Consequently, the proof below shows that Theorem 6.1 remains valid when
hypothesis (i) on W is replaced by (i) W € C°(U) for some open set U D SO(3),
W = +oo outside U, W € C? in a neighborhood of SO(3). This in particu-
lar allows one to prove the full I"-convergence result in the setting considered by
Pantz [40] (adapted here to the case without boundary conditions). He works with
modified energies £ (y), which are +oco unless y € C' and |(Vy)TVy — I] < 8.

(iv) Consider the case when W is isotropic, i.e., W(RF Q) = W(F) for all
F e M*3 and all R, Q € SO(3), so that

F+FT
2 9

(6.3) Q3(F) =2ulel* + A(tre)?, e=

for some A, u € R. Then an elementary calculation shows that the quadratic form
on M>*? defined by (6.1) is
2
A
+ 22 6).
n+5

G+GT
2

02(6) = 2M'

Since II(x") is automatically symmetric for every x’, it follows that

& [sQulII? + ﬂj/;/z (tr ID?)dx’
(6.4) 1°%y) = if y is independent of x3 and y € A,

+o00 otherwise.

This agrees with the expression proposed on the basis of insightful ad hoc assump-
tions by Kirchhoff in 1850 [26], but not with a well-known simplified expression
that replaces the isometry constraint y € A by the condition y; = y, = 0 and Il by
—V? v3, which much of the subsequent literature has associated with Kirchhoff, as
noted in the introduction.

A large literature exists devoted to deriving the bending energy of an isotropic
plate under unproven assumptions on the three-dimensional deformations weaker
than those of [26]. The most advanced results are those of Pantz [40], who showed
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that Kirchhoff’s functional (6.4) is a lower bound for the I'-limit of a certain con-
strained elasticity functional, which is set equal to 400 except when the three-
dimensional deformation v : Q;, — R3isa C! diffeomorphism with

dist(Vv(x), SO3)) < §

for all x € €, and some sufficiently small §. As emphasized in Section 3 in our
discussion of F. John’s classical rigidity results (on which the results in [40] are
based), such restrictions on v do not follow from smallness of the elastic energy.
For our ansatz-free derivation of 1°, the sharp results of Section 3 are essential.

(v) Specializing further, if we have W (F) = dist(F, SO(3))?, then I°(y) =
1]—2 /. s III|>dx" on A, which, up to the numerical prefactor, agrees on isometries with
the Willmore functional arising in differential geometry.

(vi) For W isotropic as in (iv), S = (0, L) x (0, w), and deformations y € A
of Euler-Bernoulli form (2.7), we have II;;(x") = —6'(x;), and the remaining
components of II vanish, whence

(6.5) 1°0) 1EI/LG’( )2d E=2ut "
. == x1)“dxy, = .

y > A 1 1 128 )
Thus the functional form of 1° agrees with that proposed in Euler’s celebrated 1744
paper [16]; in addition, our result yields the plate modulus. To our knowledge,
ours is the first rigorous derivation of the functionals (6.5) and (6.4) from three-
dimensional elasticity.

(vii) Pantz [40, remark 1] raised the question whether in the description of the
admissible set A it suffices to assume regularity of the normal, i.e., whether in fact

6.6 A={ye WS R): |y l=ly2l=1
Yory2=0, y,i Ay € WH(S, RH Y.

This is indeed the case. First, observe that for any two maps y and z in Wh2(S, RY),
we have (v, Az),1 — (¥,1 A2),2= ¥,2AZ,1 — ¥,1 AZ,» in the sense of distribu-
tions. Second, if y is an isometry and z = y,; Ay,;, then y,» Az = y,; and
—y,1 Az = y,2. Thus Ay € L? in the sense of distributions. Hence y € Wf)’cz,

and we can apply the chain rule to differentiate the isometry conditions and obtain
Viij = (y,ij -2)2 = —(y,i -z,; )z. This yields y € W?22(S, R?) as claimed.

PROOF OF THEOREM 6.1(i): Consider an arbitrary sequence y® converging
weakly in W2(Q; R?), and let y denote its weak limit. To measure the deviation
of V,y® = (v/y®, % ygl)) from SO(3), we recall the lattice of squares S, and the
piecewise constant approximation R : S, — SO(3) introduced in (4.3), (4.4),
and (4.5), and consider the quantity G : S, — M>>3 defined by

RPN VP x) — 1

(6.7) GM(x', x3) p
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By the basic estimate (4.5) that followed from Theorem 3.1, we have
1G® 20511y < C-

Hence, extending G by zero to all of S x (—

(not relabeled) and a G € L*(2) such that

(6.8) G" —~ G inL* Q).

, %) = (2, there exists a subsequence

The first task is to estimate the bending energy from below in terms of G; the
second, to identify G in terms of the limiting deformation y.

We expand W around the identity, W(I + A) = %Q3(A) + n(A), where Q3 is
the quadratic form of linear elasticity theory introduced above, and n(A)/|A| 250
as |A| — 0. Letting w () := sup <, [n(A)|, we have

6.9) W +hA) > %Q3(hA) —w(|hAl)

where w(t)/t> — 0ast — 0. Define

I xe§, N {IGW(x)| < h~1/%)
0 otherwise.

(6.10) Xn(x) i= {

By the boundedness of G™ in L*(S x (—3, 3)) and the fact that S, D {x € § :

dist(x, dS) > Ch}, x, — 1 boundedly in measure. Hence
(6.11) uwG? —~ G inLX(Q).
Now using the frame indifference of W and (6.9),

i W(V (h))d > i W(V (h))d
2 hy x = 2 Xh hY x
Q Q

=13 Xn W((R(h))TVhy(h))dx
Q

1 () 1 (h)
(6.12) > [ 5 03(G™) = 5w (G dx
Q

As regards the first term, since Q3 is quadratic, the function yx;, can be pulled
inside @3, and since Q3 is nonnegative definite (by the hypotheses on W), it is
lower-semicontinuous with respect to the convergence (6.11). The second term on
the right converges to zero, because |G| is bounded in L?(2) and h|GP| < h!/?
wherever x, # 0, whence |G| - x,w(h|G™|)/(h|G™])? is the product of a
bounded sequence in L' and a sequence tending to zero in L*°. Putting these two
facts together we obtain

1 1
(6.13) hhm_}(glf—hz / W (Vyy™ydx > 5 / 05(G)dx .
Q Q
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Finally, we use the trivial bound

(6.14) 03(A) = 02(A)),

where here and below we use the convention that A’ denotes the 3 x 3 matrix
obtained from A by putting zeros in its third row and third column (cf. (6.1)).
Consequently,

/ 05(G')dx .

Sx(—=5.5)

N —

1
(6.15) 11ggf_h2 f W (Vyy™)dx >
Q

To identify the weak limit G’ in terms of y, we denote the matrix consisting of the
first two columns of G (respectively, G) by G (respectively, G) and consider
the finite difference quotient in the x3-direction

GP(x', x5 +72) — GW (¥, x3)

<

(6.16) = (R(h))T %V’y(h)(x/’ X3 +2)— %V’y(h)(x/’ x3)

HP (¥, x3) 1=

Z
Let Q' be any compact subset of 2 and let |z| < dist($2’, 3€2). By (6.8)

G(x',x3+2) — G(x', x3)
Z

H®» ~ H .= in L2(2).

By Theorem 4.1, R™ converges boundedly in measure to (V'y, b) € H!(2) and
b =y Ay, Itfollows that
%V/y(h)(x’, x3+2) — %V/y(h)(x/, X3)
Z
(6.17) —~ (V'y |b)H in L*(Q)).

= RW g

To identify H, note that the left-hand side equals

1 x3+z1 "
V(E/ PRE (x’,s)ds).
x3

Since v — b strongly in L%(Q2; R%), we have that the transverse average
% ;;3“ % yéh)ds converges strongly to % fx?ﬂ b ds, which moreover equals b by

the x3-independence of . Hence

IV yM (' x5+ 2) — 2V yM (x, x3)

(6.18) h —~ Vb inW Q).

Z
Combining (6.17) and (6.18), we have b € W'2(Q') and H = (V'y, b)"V'b. In
particular, H is independent of x3 and hence

G(x',x3) = G(x',0) + x3H(X') .
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Hence, by omitting the third row, we get
(6.19) G'(x',x3) =G (x',0)+ x31I(x"), L= (Vy)'Vb.

Since 2 was arbitrary, the above identity holds in all of Q2. Consequently, the
right-hand side of (6.15) becomes

1 1 1
6200 5 / 0:(G)dx = 5 f 0:(G'(, 0 + 5 / 20,(INdx |
Q Q

Q

the absence of a coupling term being due to the fact that f_lﬁz x3dx = 0. Drop-
ping the (nonnegative) first term and carrying out the x3-integration yields (i) of
Theorem 6.1. U

PROOF OF THEOREM 6.1(ii): If y ¢ A the assertion is trivial, so assume y €
A; in particular, y € W22(S;R?), y; Ay, = b € W'(S;R3). Since S
is Lipschitz, we can extend y and b to maps in, respectively, W22(R?; R*) and
W12(R?; R?). Next we invoke a truncation result for Sobolev maps defined on R”
[17, 34, 46], which yields, for any A > 0, the existence of y* e W2 (R?; R?) and
b* € WH°(R?; R3) such that

w(A)

(6.21) IV2y* s, VB e <A, IS <C 2

where
§*={x e R?: y(x) # y"(x) or b(x) # b* (1)},

00 = f Uyl + 93P + 92) + / (b +VBP) = 0

V2y|>2 Vb|>%
IVoyIz3 Vo123 as A — 00.

In fact, we may assume b* € C'; see, e.g., [17, theorem 1, p. 251].

An interesting consequence, which is related to the fact that in two dimensions
W2 embeds almost into L, is that for all sufficiently large A,

(6.22) ) = dist((Vy*(x), b4 (x)), SO(3)) < Cw(M)'/? Vx e S.

To prove this, note first that f* = 0 on S\ S*, and that f* is Lipschitz with
Lipschitz constant

10 = O _

Lip f* = sup Ch.

vty =yl

Next we claim that for a suitable constant § (depending only on §), for R :=
Sw(2)'? and all xo € S,

(6.23) B(xo, )N (S\ ") # .
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Otherwise, |B(xg, R) N S| = |B(xg, R) N S*| < |S*] < C%ﬁ), which contradicts
the fact that due to the Lipschitz property of S
A8*w())
)»2
as soon as 8§ < (C/A)'/%. This establishes (6.23). It follows that
f(x) < Lip IR < C8(@()'? Vxes

establishing (6.22).
Now consider the trial function

|B(xo, R) N S| > AR* =

2
(6.24) y“@hm>=y“u®+hmwwf»+ﬁ%dum

with truncation scale A;, = ¢/h and with d € Cé (S, R%). Let
R(x) := (V'y(x'), b(x")) € SOQ3),

and denote
1 2
RT (V/y(’”, Zyé’”) = R' ((v/y“, b+ hxa (VB d) + 2 (Vd, 0))
=14+ AW.
On the good set S\ $*, we have RT(V'y*", b**) = I and

(6.25) |AD| < C(hap +h+h*) < C(c+ho+hj) forallh < hy.

Hence, since W (I + A) < C dist(I + A, SO(3)) on bounded subsets on M>*3 (and
letting x;, denote the characteristic function of S \ §**), for all h < hy,

< SIADP <2C((V'b, d)|* + h§|V'd]*) € L' ()

— 1033 RT(V'b, d)) ace.

1 (h)
W+ A%

Thus by the dominated convergence theorem,

P 1 1
5 th(V y®, Eyéh))dx =5 [ W+ AMydx
Q Q

(6.26) — % / x2Q3(RT(V'b, d))dx .
Q

On the bad set S*, we have dist(I + A®, SO(3)) < C, giving, due to the local
boundedness of W, the estimate W (I + A™) < C. Consequently,
621 ~ [a W+ A® <C—|SM|—CA2 S*| >0 ash—0
(-)ﬁ(—Xh)(-l- ) < h2—§h| | =0 ash—0.
Q
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Combining (6.26) and (6.27) and carrying out the integration over x3,

(6.28) ifw v/ y® ly(’” N i/ 03(R"(V'b,d))dx' ash — 0
' h? W %] =? ’ '
Q S

It remains to construct a sequence whose energy converges to the right-hand
side above with d € W, replaced by

diin(x") := arg min Qg(RT(x’)(V’b(x’), d)) elL?,

in which case the right-hand side equals 7°(y). We use the density of WOI’OO in L2
and the continuity of the above right-hand side in L? to choose a sequence d’/ C
W, > such that

L / Q>(RT(V'b,d?)) < I°(y) + 1..
24 j
S

By (6.28), if h; is chosen sufficiently small, the sequence (6.24) with 7 = h; and
d = d; satisfies h%Eh-f (") < 1°0y) + % and y") — yin W2, as required. [
j

As explained in the introduction, sequences that satisfy rather innocent-looking
boundary conditions—even those for which the minimizing membrane energy is
identically zero—may necessarily have infinite bending energy for any sequence
satisfying them. The complete and explicit characterization of all boundary condi-
tions consistent with finite bending energy appears difficult. The theorem below,
however, identifies a simple such class, expected to be useful in practice. In partic-
ular, it applies to the classical boundary value problem of uniaxial compression:

EXAMPLE Let S be the rectangular domain (0, L) x (0, w), so that €, is the
standard plate (0, L) x (0, w) x (—%, %), and consider the following longitudinal
compression boundary condition on the unrescaled deformation v : ), — R3,
applied at the right and left end of the plate

v(@)|. o, =2F (@.0,0),

where a € (0, L/2) is fixed (and the remaining part of the boundary is left free).
Equivalently, the rescaled deformation y : @ = (0, L) x (0, w) x (— %, %) defined
by y® (x) = v(z(x)), z = (x1, X2, hx3) (see Section 2), satisfies

(6.29) YO, 22, x3)| o, = (0 Fa, xa, hxs)

Since we have assumed no particular convexity properties of W (such as those
in [4]) away from SO(3), the infimum of the total energy at nonzero 2 may not
be attained. We shall therefore consider deformations of the plate of sufficiently
low energy. Specifically, we say that a sequence y” c W!'2(Q; R?) with finite
bending energy is a low-energy sequence if its bending energy differs from that of
the infimum by a tolerance of w (), where the function w(h) — 0 as h — 0.

As above, our results could be stated in the formal language of I"-convergence,
but for simplicity we follow the direct approach.
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THEOREM 6.2 Let S be a bounded Lipschitz domain and let ' C 9S be a finite
union of (nontrivial) closed intervals (i.e., maximally connected sets in 05). Con-
sider

(6.30) $e WS RHNCIU(S; RY), be WH™(S;RY).
Suppose that y™ C W'2(Q2; R3) is a low-energy sequence in the sense that

1 0 1 (h)
(6.31) ﬁ/W(Vy 253 dx <
Q inf ! W(V’1>d+(h)
mn T A s 7 ) X w 9

yewl2(@:R3) h? Yo g 3
y satisfies BC Q

and suppose that the infimum on the right-hand side of (6.31) remains bounded as

h — oo. Here BC refers to the boundary conditions

(6.32) BC: y®M(x/,x3) = 5(x) + x3b(x'), x €T, x3e(-11).

Then there exists a subsequence, not relabeled, with the property (V'y™ % y3h)) —
(V'y, b) in L*(), the limit map vy is an isometry belonging to the class A intro-
duced in Theorem 6.1 and is independent of x3, and b = y | A y,. The limiting
bending energy of this sequence is

1 7, (h) 1 (h) T
(6.33) hmﬁ w(vy®. oy dx_— Qz(Vbe)dx—I(y)

y satisfies the clamped boundary conditions
(6.34) y=39 and b=b onT.
Moreover, y minimizes I° among all functions in A that satisfy (6.34).

Remarks. (i) The boundary condition BC comprises (6.29) as a special case,
as follows: Let I' = {0, L} x [0, w], let E(x/) = e3, and choose y to be a smooth
extension of the map y(x’) = x’ + (a,0) for x; = 0 and x, € (0, w), y(x') =
x" — (a,0) for x; = 0and x, € (0, w).

(ii) Note that we do not require that y be an isometry. It may happen that there
is no map y € A that satisfies (6.34). The proof given below shows in particular
that this happens if and only if the right-hand side of (6.31) blows up as 7 — O.

(iii) In the literature sometimes y’ is prescribed on an open set rather than
on the boundary. Our approach can easily be adapted to this setting. In fact, the
verification of (6.34) is easier since we do not need to study traces and their conver-
gence. For the construction of a low-energy sequence, one can use Proposition A.3.
In particular, remark (iv) below applies to both settings.

(iv) The sequence y” we construct also satisfies the condition that

1
dist ((V/y(h), - "”) 50(3)>
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If we assume in addition that b € C! (S; R?), then we can choose ym e Cl(Q; R?).
This allows one to establish the upper bound in Pantz’ approach [40] to general
limit maps in A rather than just C? isometries.

(v) If W satisfies a growth condition of the form W(A) < c,|A — I|* from
above, the assumptions on the boundary data can be weakened to ¥, b €
WL2(U; R*). Moreover, in that case the proof is simplified. If y € A and
b =y A y, satisfy (6.34), we can simply choose the trial function M (x) =
y(x') + hxsb(x') + h?(x3/2)d (x") with d € WOI’OO(S; R?). Then one passes to the
limit 4 — 0 using dominated convergence and minimizes out d at the last stage.

(vi) Two interesting problems are not immediately covered by our analysis but
are expected to be easy extensions. (1) Identify the shape assumed by a piece of
paper held on one edge. Suitably interpreted, the boundary conditions of Theo-
rem 6.2 apply, but we have not allowed a gravitational potential. This could be
considered, but in the usual expression for the gravitational potential with constant
reference density, the energy goes as the volume. A suitable scaling of the gravita-
tional constant, for example, would have to be introduced so that the bending and
gravitational energy would compete. (2) Identify the shape of a M&bius strip in R3.
This is not immediately covered because we have not allowed boundary conditions
relating one part of the plate to another, but it should be an easy extension, since
we have not used in the proof any restrictions on the topology of the deformed
configuration, and the class of finite-energy deformations has sufficient regularity
to forbid cutting and regluing the strip.

(vii) The latter calls attention to the issue of invertibility of the minimizers
of 1°. Clearly, we do not have global invertibility, and for some boundary con-
ditions the minimizer will interpenetrate itself. (In this respect, the results of Li
and Yau [33] on complete surfaces are optimistic when applied to shells, and the
physically natural condition of global invertibility probably has to be introduced in
some more explicit way.) On the other hand, local invertibility follows from the
fact that the normal is in the borderline space W !, according to results of Miiller
and Sverdk [37].

The above theorem entails an existence result for the limit problem.

COROLLARY 6.3 Let S, T, y, and b be as in Theorem 6.2.

(i) Let Qs be any quadratic form on M**? that arises via (6.1) and (6.2) from
some W : M**3 — R satisfying hypotheses (1), (2), and (3) in Section 2. Let Agc
be the set of maps in A that satisfy (6.34). Then I° attains its minimum in Apc
provided that this set is not empty.

(ii) There exists a minimizer of the Willmore functional % /. s 1|2 dx' among
isometries y € Agc provided this set is not empty.

Existence results for minimizers of the Willmore functional among closed sur-
faces not required to be isometric to any reference surface, but of prescribed genus,
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were obtained by L. Simon [42] through a direct study of minimizing sequences
and a careful study of “bubbling” phenomena.

PROOF OF COROLLARY 6.3: (i) is immediate from Theorem 6.2, and (ii) fol-
lows from (i) by taking W (F) = dist’(F, SO(3)). O

PROOF OF THEOREM 6.2: We first show that for every y € A satisfying the
two-dimensional boundary conditions (6.34), there exists a sequence y : § x
(—%, %) — IR3 that satisfies the three-dimensional boundary conditions (6.32),
y® — yin WI2(Q; R?), and

(6.35) hm— f Wy, - <§’>)dx =1%y).

Thus, in particular, the right-hand side of (6.31) is bounded if there exists a y € A
satisfying (6.34).
Second, we consider an arbitrary sequence y® that satisfies (6.32) and

(6.36) fimsup — [ w(vy®. Ly ax < 0o
. p h2 y ’ h y,3 X .
h—0
Q
Then by the compactness result (Theorem 4.1), a subsequence of V, y” converges
strongly in L2 to (V'y, b) € H'. Moreover, by Theorem 6.1,

(6.37) lim 1nf—/ (V’ ®), (h))dx > 1%(y).

We will show that in addition the limit satisfies (6.34). Combining this with the
construction of the ™, one immediately deduces that the limit of a low-energy
sequence minimizes /° subject to (6.34).

Suppose now that y € A satisfies (6.34) and recall that b = y; A y,. To
construct Y we use results from the appendix on the truncation of W!2- and
W?22_functions with prescribed boundary conditions. The notation will be as in the
appendix: A superscript A will denote the truncated function. For any truncation
parameter A > 0, define the following maps from S to R>:

(6.38) v=0-9"+9  G=0-b"+b.
By Proposition A.2,
IV2(y — ) llLoecsy < CA, IVgillzoisy < CO A+ IVD] Loos))
(6.39) s Co())
=< 2
where

Sy = {X/ € S:u () # y(x') orgu(x) # b(x’)} )
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{x'eS:1bl+Vb|=5)
+ f UyI* +IVyI* + [V [H)dx’
(¥ €S:|y[+IVy|+V2y[=5)
+ / 91>+ IV + V25 [H)dx’
(¥ €S:I9+IVI+IV2H=5)
(6.40) -0 asi— 00.

Arguing as in the proof of Theorem 6.1(ii), we again derive the bound
i / 2, (€
dist((V'v 42), SOB)) = Cl@) "+ & — ],

where @ is a modulus of continuity of V'y.
Letd € C}(S; R?) and consider the trial function

2
(6.41) FM (x) = vy, (1) + haxs g, (&) + h2"73 d(x),

with A, chosen as c/h; note that y™ satisfies BC. By the same arguments as
were applied to (6.24) in the proof of Theorem 6.1, we infer h%E Wy —
51 Js Q3(RT(V'b, d))dx', and, by a suitable choice of d = d" depending on h,
h%E M (y™My — [9(y). This establishes (6.35) and finishes the first part of the
proof.

We now show that the limit of an arbitrary sequence y® that has bounded
scaled energy and satisfies (6.32) will satisfy (6.34). To this end we show that the
difference quotient estimates obtained in Section 4 hold up to the boundary. This
will allow us, after mollification, to obtain W' bounds (up to the boundary) for a
very good approximation of V;,y™ and to pass to the limit in traces.

Let us first assume that an interval in I is contained in a flat part of the boundary
with normal (0, 1). We will show that the limiting boundary conditions hold on
that interval. To avoid additional notation, we assume that I" consists only of this
interval and

SOU:=(-1,1) x(-1,0), t>0,
aSNU =(—1,1) x {0},
I =[a,b] x {0}, [a,b]C(—1,1).
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We consider the lattice of squares

h h
(6.42) San=a+ <—5§> x (=h,0], a € (hZ)>.
Let
(6.43) Us=(—1+6,1—-6) x (=t+34,0),

where § > 0 is so small that [a, b] C (—1+68,1—6) and § < /2. Using Theorem
3.1 we obtain a map R™ : Us/» — SO(3) that is constant on each S, C Us> and
satisfies

(6.44) / IViy® — R®2dx < C / W (Vyy™)dx .
Sahnx(=5.3) Sanx(=5.3)
We have already shown in Section 4 that for a subsequence
Viy® — (Vy.b) in LU R, y e W(SiRY), b=y1Ay2,
R™ — (V'y,b) inL*(U;R>™).

To obtain more information on the trace of V,y® and R™ on x, = 0, we
first repeat the arguments in (4.6)—(4.12) to obtain difference quotient estimates for
tangential or downward translations. This yields
(6.45) / IRM(x' +¢) = RM ()| dx' < C / W (V,y™ydx < Ch?,

Z UxChb

whenever || < h and —h < ¢, < 0. Consider a kernel

(6.46) n(x) =m@GDmn), n € GO0, D), n =0, /ni =1,

R

and define the mollified function
(6.47) GM () = f h_2n<%)R(h)(x/ —2)dz’.

]RZ
Now (6.45) implies that
(6.48) IV'GPllwy <€, IG" = RM 2, < Ch.
Thus
(6.49) G? —~ (V'y,b) in W'(Us; R¥3).

In particular, the traces converge strongly in L2,

(6.50) G"(,0) > (Vy,b)(,0) inL*((=1+6,1—268); R>7).
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Since R™(x;, xo) = R™ (x;, 0) for x, € (—h, 0], we have

Z
(6.51) GM(xy,0) = /h‘ln] <E1)R(h)(x] — 721, 0)dzy ,

and, using (6.45),

1-6§
(6.52) / |IR® (x4 £1,0) — R? (xy, 0)\2de <Ch
—148

for |¢;| < h. This implies that G™ (-, 0) — R™ (-, 0) — 0in L? and thus
(6.53) R"(,0) > (Vy,b) inL*((—1+6,1—28);R>).
Finally, we will use (6.44) for squares that touch the boundary (i.e., a, = 0) to
relate R e; and b. For any f € W'2((0, 1)*) we have
(6.54) / |f —cl*dH* < C / IV f1>dx,
3(0,1)3 0,1)3

where ¢ = [ f. With the change of variables

1
(6.55) f@)= Eg(al +h(Zl —%),h(m—l),a—%),
formula (6.54) implies that for a = (ay, 0)
(6.56) ! / ! de2< ! / \ ! 2d
. h hg c = hz ) hg3 X .
(Sa,nM3S)x (=1, 1) Sanx(=%.%)
Apply this with
I
(6.57) g(0) = y" (x) — R<h><a)( § ) .
]’l)C3
For x’ € T" we have
(6.58) yP(x) = (') + hxsb(x)
and thus
1 2
(6.59) / 1 dxs = 5[b(x) = R @)es
. —g2 —C X —_— X ) — a)e .
-1 hg 3= 12 3

Combining this with (6.56) and (6.44), we obtain

1 . 1
(6.60) . / b— R<’”e3\2dH1 <3 / W (Vyy™)dx' .
Sa.nNC Sa,h

Summing over those squares S, ; that intersect the boundary x, = 0, we get

1 [h -
(6.61) E/ |b(x1,0) — R™ (x,, 0)es|” dx, < C,
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and, together with (6.53), we finally deduce
(6.62) b=b onT.

If (a subinterval of) I is not contained in a flat part of the boundary, we can first
flatten the boundary using the Lipschitz map (locally defined in a suitable orthonor-
mal coordinate system) ®(x, xp) = (x1, x2 — f(x1)). We can then consider the
partition S, j in the local image ¢ (SN ®~1(U)) (possibly using a smaller rectangle
U than in the argument above). Since Theorem 3.1 holds in an arbitrary Lipschitz
domain, we can apply it in the domains ®~!(S, ;) and obtain as before difference
quotient estimates for the functions R™ o &~ that are constant in Sa.n- Then we
can conclude as above. (]

7 Strong Convergence of the Rescaled Nonlinear Strain
for Low-Energy Sequences

Theorem 4.1 says that for sequences with finite bending energy the nonlinear
strain (V,y™Tv,y™)!1/2 converges strongly to the identity. For low-energy se-
quences, we find below, using the positive definiteness of the limiting energy, that
the asymptotic correction is of the form he(x), and we find an explicit form for the
linearized strain e.

According to Theorem 6.2, a low-energy sequence satisfying certain boundary
conditions has a limiting energy given by 1° of (6.33). Here we avoid the discussion
of boundary conditions by considering the more general situation of any sequence
that has the limiting bending energy 1°.

THEOREM 7.1 Assume V,y™ = (V'y(h), %yg’)) converges in L>(Q2) to (V'y, b)
and has limiting bending energy

(7.1) li 1 W(Vy™ydx = I°(y) < 00
- Mg J WOy =100 < eo.
Q

Then y € A and
v, y®Ty, 12 _
(12) [Vay vy ] N

h
Cmin(X") ® e3 + €3 @ Cmin(x)
2

x3 (H</x\> + ) in L2(9),
where Il = (V'y)TV' (y.1 A y2) is the second fundamental form of y, G denotes the
3 x 3 matrix obtained from G € M?*? by the formula G = Zi,/:l Gije; ® ej, and
Cmin € L2(S; R?) is the unique pointwise minimizer of the problem min, Q3(IAI +
c® e3).

To interpret this result physically, we confine ourselves for simplicity to the
case when W is isotropic, whence Q3 is given by (6.3). In this case, the elementary
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calculus problem defining ¢, has the unique solution cpin(x") = —ﬁH (x"es,
where H (x") = trII(x") is the mean curvature of the plate at x’. Hence, considering
for simplicity the case when y is smooth, the strain of any sequence y” converging
to y and achieving the minimum asymptotic bending energy /°(y) must agree to
o(h) with that of the prototypical such sequence

h?x?2

HX)—2)b(x), b=y Avy,,
Y (x) 2>(x) VIAY2

yP ', x3) = y(x) + (hx3 —

which corresponds to the unrescaled sequence (see Section 2)

2
v"(Z 23) = y(@) + (23 — zu); AIir(z/)%)b(z’).

As compared to the simple Cosserat ansatz (1.5), the fibers orthogonal to the mid-
surface are thus inhomogeneously stretched, depending on the mean curvature of
the plate. More precisely, if, say, H > 0 (corresponding to a concavely bent
plate such as (2.7) with 6'(x;) < 0), the fibers contract above the mid-surface and
elongate below it. This is intuitive from the lateral stretching of the material above
the mid-surface and its lateral compression below.

PROOF: Note first that by finiteness of the limiting bending energy and Propo-
sition 4.1, y € Aand b = y; A y,. Recall from Section 4 the lattice of squares
S; and the piecewise constant approximation R™ : §; — SO(3) of V™, and let
G™, x, be as in (6.7) and (6.10). By (6.8), we have G® — G in L*(Q); more-
over, by (6.19), the matrix G’ obtained from G by omitting the third row and the
third column is given by G'(x’, x3) = G’'(x’, 0) + x3II(x). By combining (7.1),
(6.12), (6.13), and (6.20),

Io(y) = lim sup !

h—0 h2

/W(Vhy(h))dx > limsup/XhW(vhy(h))dx
h—0
Q

1 1
> limsup - / 01t GM)dx = ~ / 0:(G)dx
hs0 2 2

Q Q

1 1
(13) - / 0:(G'(, 0N’ + 5 / 0 (6:II(x))dx
Q Q

Since Q; is nonnegative and positive definite on symmetric matrices, it follows first
of all that all inequalities are equalities, Q,(G’(x’,0)) = 0, and %(G’ +GT =
x3II(x"). Next, from (6.1) and the fact that Q3(A) = Q3(3(A + AT)) for all
A € M*% (which follows from the frame indifference of W), Q,(x3II(x’)) =
min, Q3(x3ﬁ + %(c ® e3 + e3 ® ¢)), which has a unique minimizer ¢,;, because
Q3 is positive definite on symmetric matrices. Consequently, from the pointwise
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inequality Q3(3(G + G")) > Q> (x31I(x")) and (7.3),

G + GT émin(x) ® €3 + €3 ® 6min(x)
2
Cmin (") ® €3 + €3 @ Cmin(x')
: )

For the latter, we have used that ¢yin(X) = X3¢min(x'), Where cpi, is given in the
statement of the theorem. Next, since Q3 is positive definite on symmetric matrices
(and therefore strictly weakly lower-semicontinuous), we have from the fact that
equality holds in the third inequality of (7.3)
G?» + (G G+ GT

N

2

On the set {x € Q2 : x,(x) = 1} we have

R(h)TVhy(h) -1
h 9

= xl(x) +

(7.4) = x3 (ﬁ(x/) +

(7.5) Xn in L2().

G = R™(x) € SOB), |hGP(x)| < h'/?,

whence
Viy® Ty ® = (RVTV,y M) T(RPTY, y ™)
(7.6) =1 +h(GPT 4+ G") +r2GPTG" |

so that on the same set,

1
@7 (W) (1 +Zh(G® + G<’”T>> < ClhG™P

for sufficiently small # > 0. Since, by (6.11), x,G" — G in L*(Q), we multiply
(7.7) by %Xh and get

1
[Viy®TV,y®]? — 1  G+GT

(7.8) ; in L*(Q).
It remains to remove the x;,. We have for A € M3*3,
(7.9) [(ATA)Y2 — I] < dist(A, SO(3)) < CW(A)'/?.

We have, using that all inequalities in (7.3) are equalities,

v, u™MTy, y ™13 — 2
limsup/(l — Xn) [Viu Zu I dx <
h—0 o
; ¢ (h)
(7.10) lim sup w7 1= xp)WVu')dx =0.
h—0
Q

Thus by (7.8) we have

[th(h)Tth(h)]% —1

(7.11) I

Lo
—>2(G+G) in L°(2).
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Combining this result with the form of 3(G +G") given in (7.4), we get (7.2). [

Appendix: Two Truncation Theorems

In the proof of the geometric rigidity result in Section 3, we needed to approxi-
mate functions in W'2(U, R™) by those in Wh°(U, R™).

PROPOSITION A.l1 Let n,m > 1, andlet 1 < p < oo. Suppose U C R”" is
a bounded Lipschitz domain. Then there exists a constant C(U, m, p) with the
following property: For each u € WUP(U,R™) and each » > 0, there exists
v:U — R" such that

@ [IVvllee@w) = CA,

() {xeU:ul) #v)}| < % |Vu|” dx,

{xeU:|Vu(x)|>1}

(iii) [V — V||, < C f |Vul|P dx.
{xeU:|Vu(x)|>1}

PROOF: Note first that (iii) is an immediate consequence of (i) and (ii). Indeed,

/ |Vu — Vol dx = f [Vu — Vo|Pdx <2° /(|Vu|p + |Vv|P)dx
U u#v u#v

§2p/(kp+|Vv|p)dx+2p / |Vul? dx

uF#v [Vu|>x1

<C / |Vul|? dx .
[Vu|>x

It remains to establish assertions (i) and (ii). This will be done in three steps,
passing from simple domains to general domains.

Step 1. The proposition holds for U = (0, 1)*~! x (0, H). (Only this case
was needed in the application to plate theory; see the proof of Theorem 4.1 in
Section 4.) The proof is very similar to that of the corresponding result in R". Since
the result (although not the constant C) is invariant under anisotropic dilations, we
may assume U is the unit cube Q = (—1, 1)". We follow the proof in Evans and
Gariepy [17, sections 6.6.2, 6.6.3], except we define

1
Rr={xeQ:——"0 Vu(z)|ldz < A, Vr <2/nt.
{x qre | IVwelds < s ﬁ}
QNB(x,r)
(Note that Evans and Gariepy use the integrand |u| 4+ |Vu| instead.) The main point
is that the Poincaré inequality still applies on Q N B(x, r) for r < 2./n; cf. Evans

and Gariepy [17, section 6.6.2, p. 253], proof of claim 2 in the proof of theorem 2.
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Step 2. The proposition holds for a standard Lipschitz domain, i.e., a domain
of the form U = {(x,x,) : x' € (0, D"!, f(x') < x’ < f(x') + H}, with a
constant C depending only on H and the Lipschitz constant L of f. To see this,
consider the obvious bi-Lipschitz homeomorphism ¢ from (0, 1)"~! x (0, H) to U
given by ¢ (y) = (', f(3')+y,), and for given u : U — R™ consider the pullback

i(y) = u@(), ye© D" x( H).
Then
Vil = (V) (@ ()Vel = LI(Vu)(@ ()] .
Applying step 1 with u and A replaced by ii and A := LA gives a map ¥ satisfying
{y € 0. 1" x (0, H) ri(y) # 9(}| <

C(H C(H, L
S ) / IVia|P dy < ¥ / |Vul|? dx .
AP AP

{ye(0,1)"=1x(0,H):|Vii|>1} {xeU:|Vu|>1}

Finally, let v(x) := (¢! (x)); then the asserted estimates are immediate.

Step 3. The proposition holds for a general bounded Lipschitz domain.

By assumption U can be covered by open sets U;, i = 1,2, ..., I, such that
either V; := U; N Q is a standard Lipschitz domain (up to a rigid rotation and
translation) or V; is a cube contained in U. It follows from steps 1 and 2 and the
invariance of the assertion of the theorem under translation, rotation, and dilation
that there exist Lipschitz functions v; : V; — R™ such that

(A1) Lipy; <Cx, |{xeViiyx) #u} |Vu|” dx .

<
=50
{xeV;:|Vu|>Ar}

Now consider a partition of unity {¢;} subordinate to the cover {U,}, i.e., ¢; €
CeW), Y.,¢; = 1inU, 0 < ¢ < 1. By trivial arguments each v; can be
extended to a Lipschitz function on R" with Lipschitz constant bounded above by
Lip v; times a constant depending only on the target dimension m. For ease of
notation, we appeal to Kirzbraun’s theorem, which says that this constant can in
fact be chosen equal to 1. Let

vV = Z ¢i v;.
]

Since v —u = ) _;(v; — u), we have

{xeU:v@) £u@}| =D |{x € U:¢i(wi —u) #0}]

§Z|{xe‘4:vi7&u}|§% / |Vul|? dx .

{xeU:|Vu|>1}
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Moreover,

A2 Vol <) ¢ilVul +‘Zw ® Voi| < cx+‘2vi ®V¢i'.

Now ), V¢ =V ) . ¢; = 0. Hence, for x € Uj,

(A.3)

= SC Z |U,‘—Uj|.

(1:VinV;£2)

o; Z v; ® Vo o Z(vi —v;) ® Vo

Leta ;= min{|V; N V;| : VNV, # &} > 0. Assume first that the following
inequality holds (with C as in (A.1)):

AP
{xeU:|u|>A}

c
(A4) / \Vul? dx < %.

Then there exists x € V; N V; such that v;(x) = v;(x) = u(x). Hence

sup |v; — v;| < (Lipv; + Lipv;)diamU < CA
viny;

whenever V; N V; # 0. Combining this estimate with (A.2) and (A.3), we infer
|[Vv| < CA. On the other hand, if (A.4) fails, then

1
AP
{xeU:|Vu|>1}

\Vul? dx > — .
AC

Therefore the assertion of the theorem holds with v = 0 since
4U|C 1

AP
{xeU:|Vu|>1}

{xeU:u#v}| < U< |Vul” dx .
The proof of the proposition is complete.
O

In the I'-convergence arguments in Theorems 6.1 and 6.2, we needed to truncate
WO2 'P_functions in order to cover the general case of stored-energy functions W not
required to satisfy any growth condition from above; readers only interested in the
case of W with quadratic growth may skip the result below, which was then not
needed.

PROPOSITION A.2 Let 1 < p <00, A > 0. Let S be a bounded Lipschitz domain
in R", and let T" be a closed subset of 0S that satisfies

(A.5) H Y BG&E,rHNT)>cr™! Viel,0<r<r,

where ¢ > 0.
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(i) Suppose u € WP (S) with
(A.6) u=0 onl
in the sense of trace. Then there exists u* € W>(S) such that

=0 onTl

and
lu* Iy < C(p. A,
(A7) {x e S:u*(x) #u)}| < C;f) / (lu| + |Vul)? dx .
{lu|+IVul= %)
In particular,
(A.8) lim (A" meas {x € S : u*(x) #u(x)}) =0.

A—00
Moreover, we can achieve u* € C! (S’).
(i) Suppose u € WP (S) with
u=Vu=0 onl.
Then there exists u* € W>*(S) such that

w=Vu*=0 onTl

and
lu* w2 < C(p, A,
(A.9)
{x e S:u'(x) #u)}| < C)ff) f (lu| + [Vul + [VZul)P dx .
{ul-+Vul+V2u|= 4}
In particular,
(A.10) Jim (A? meas{x € S : u*(x) #u(x)}) =0.

Remarks. (i) For § = R” this result was obtained by Liu [34] and Ziemer
[46], building on earlier work of Calderon and Zygmund. The main point here is
to preserve the boundary condition.

(i) A corresponding result holds for WX?(S). We have limited ourselves to
k =1 and k = 2 to avoid more heavy notation. For k = 1 the argument is simpler,
since one can use Kirzbraun’s theorem on the extension of Lipschitz functions (see,
e.g., Dolzmann, Hungerbiihler, and Miiller [15]).

(iii) Condition (A.5) states that the 7{"~! measure of the rescaled sets %(—)E +
I' N B(x, r)) is uniformly bounded from below. In fact, for 1 < p < n, it suffices
to assume that the Riesz capacity R; , is uniformly bounded from below, since
in this case one still has a (local) Poincaré inequality; for p < n, see, e.g., [46,
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corollary 4.5.3]. Lewis [32] calls such sets I" locally uniformly fat and establishes
a number of interesting properties, including a Hardy inequality (which is stronger
than the local Poincaré inequality) for 1 < p < n. For p > n no condition on I
(beyond compactness) is needed, since in this case u (and, for k = 2, also Vu) are
C*, and a Poincaré inequality holds in B(0, 1) as long as we fix the value at one
point.

PROOF: The proof follows closely the presentation in Ziemer [46]. We con-
sider only assertion (ii), since the proof of (i) is simpler. We first extend u to a
function in W22(R") with compact support; see, e.g., [43]. Let

(A.11) a = u|l + |Vu| + |V?ul,

and let Ma be the maximal function of a:

(A.12) Ma(x) = sup ][ a(y)dy .

r>0
B(x,r)

Consider the good set
A* = {x e R" : Ma(x) < A and x is a Lebesgue point of u, Vu, and Vu}.
We have that meas(R" \ A*) < A7P||Ma|?, < A7 P|al|}, for p > 1. In fact, a
covering argument (see Evans and Gariepy [17]) gives the stronger estimate,
(A.13) AP meas(R" \ A*) < C / lalPdx — 0 asi — 00.
{a>3)
By the Poincaré inequality we have for a.e. x € A* (see, e.g., Ziemer [46, theo-

rem 3.4.1])

1/p
(A.14) ( ][ lu(y) — u(x) — Vu(x)(y — x)|” dy> < Cr*Ma(x) < Cr*x.

B(x,r)

Removing if necessary a set of measure zero from A*, we assume from now on
that (A.14) holds for every x € A*. We claim that for x, 7 € A%,

|u(z) — u(x) — Vu(x)(z — x)| < Crlz —x|?,
(A.15) IVu(z) — Vu(x)| < Crlz — x| .

This follows from Ziemer [46, theorem 3.5.7]. We recall the argument since we
will use similar reasoning below. Replacing u by u(§) = u(% + 8&) where
3 = |x — z|, we may assume that |z — x| = 1 and z = —x. Let

(A.16) Pr(y) = u(x) + Vu(x)(y — x)
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and apply (A.14) for x and z with r = 1. Since the intersection B(x, 1) N B(z, 1)
contains the ball B(0, %), we conclude from the triangle inequality that

(A1) < [ o - Px<y>|f’dy)]/p <Ci.
B(0,1)
This implies that the coefficients of P, — P, are bounded by C4, i.e.,
[Vu(z) — Vu(x)| < Cx,
(A.18) lu(z) — Vu(z)z —u(x) — Vu(x)x| < Cx,
and this proves (A.15). We next claim that for x € A*
(A.19) lu(x)] < Crd(x)*, |Vu(x)| < Crd(x),
where d(x) = dist(x, I').
To see this, let x € I' be a point with |[x — x| = d(x). By assumption,
(A20)  H"NB(x,2d(x)NT) > H" ' (B&E, dx)NT) >cd'(x).
With the rescaling

- 1 ~ 1
(A.21) uE) = Wu(x +dx)E), T = Tx)(—x+l"),

it is sufficient to show (A.19) forx = 0,d(x) = 1, andu = a withu = Vi =0
on I', since (A.19) is invariant under this rescaling. Now H™! (f) > ¢, SO We can
apply the Poincaré inequality (see, e.g., [46, corollaries 5.12.8 and 4.5.3], and use
that for p > 1 positive, H"~'-measure implies positive B'? capacity),

(A.22) / | dx < C / |Vi|?dx < C / |V2ii|? dx < CAP.
B(0,2) B(0,2) B(0,2)
Combining this with (A.14) applied with u = &, x = 0, and r = 2, we find that
1/p
(A23) ( | o dy) <c.
B(0,2)

This yields the desired estimates for the coefficients of P, and thus (A.19).

Now define the extension u* in two steps. If meas(R" \ A*) = 0, we can take
u* = u. If meas(R" \ A*) > 0, then there exists a closed subset A* of A* N S such
that meas(R" \ A*) < 2meas(R" \ A%). Let B> = A* UT, and define on B* the
function

(A.24)

u(x) ifx e A*
v(x) = .
0 ifxerl.

Combining (A.15)—(A.19), we see that for x, y € B*,
(A.25) [v(z) — Pe(2)| < CAlz —x|*, |VP,— VP < Cilz—x],
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where

u(x) + Vu(x)(z —x) ifx € A*

A26 P.(z) =
(A.26) @=1, ifx eT.

Note also that the definition of A* immediately implies that
(A.27) lv] + |Vv| <A on B*.

We will show that (A.25) implies that v has an extension v : R” — R that satisfies
V|gr = v and

(A.28) [5(y) — P,(y)| < CAly —x|* Vx € B*, Vy e R".

Then theorem 3.6.2 of Ziemer [46] guarantees that there exists u* € W2 (R")
such that

(A.29) w=%=v onB*
and ||u*|| 20 < CA. In fact, one can define u* by mollification,
A —n X =Y\~
(A30) o= [ o <x)¢(—)v<y>dy,
p(x)

Rn
where p is a smooth approximation of the distance function (i.e., p € C*®(R"\ B*),
cdist(x, B*) < p(x) < Cdist(x, B*), and |[D*p| < Cop'™*!), and ¢ € C{° has
the property ¢ x P = P for all polynomials P of degree one (see [46, lemmas
3.6.1 and 3.5.6] for the existence of p and ¢). Note that Ziemer’s construction only
extends v to a neighborhood of B* of size 1. We may, however, assume without
loss of generality that diam S < 1 so that this construction suffices.
It remains to construct the extension v. We assume for simplicity that

(A31) (@) — P@)| < |z —x[*, |VP,—VP|<|z—x],

for x, z € B*. The general situation is easily recovered by scaling. We define, for
yeR",

(A.32) 0(y) = sup Pe(y) — Mly — x|,

xeB*

where M > 1 will be chosen later. It follows from (A.31) that ¥ = v on B*, and
we have the trivial bound

(A.33) 3(y) > P(y) — M|y —x|*> Vx e B*, VyeR".

To prove an upper bound, we first note that (A.31) and the closedness of B*
imply that the supremum in the definition of v is attained at x(y). Taking into
account that v(z) = P.(z) for z € B* and that P, is affine, we have for x, X € B*,

|Pz(y) = Px(¥)| = | Px(X) — Pc(x) + VPr(y —Xx) = VP (y — X)

_ _ _ 3 _ 1 _
(A.34) <|x =X+ |x =%y — % < S — %+ 5|y—x|2.
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Together with the trivial estimate |[x — x| < |x — y| + |y — x|, this gives

(A35) (y) = Pi(y) = Mly = > < P.(y) + (% - M>|y — XP 43y —x?.
Taking M = 4 and using (A.33), we arrive at the desired assertion, |0(y)— P, (y)| <
4|y — x|?, Vx € B*, Vy e R™.

To see that in (i) we can choose the functions u” of class C!, we first note that
for each ¢ > O there exist a C' function v* such that |meas{u* # v*}| < ¢ and
|V < C||Vu*| 1, where C only depends on n; see, e.g., [17, chapter 6.6.1,
theorem 1]. In particular, |Vv* — Vu*| < § := CAe!/" since the set where the two
functions do not agree cannot contain a large ball.

Let p be the smooth distance function from I" and define w* = (5 o p)v*. Here
n : R — [0, 1] is a smooth function that vanishes on [0, §'/?), is identically 1 on
(2672, 00), and satisfies n’ < 286~!/2. If we choose ¢ small enough (and replace A
by A/C), then w* has all the desired properties. (|

PROPOSITION A.3 Let S be as in Proposition A.2, and let T be an open subset of
S that satisfies

(A.36) H'(BG,r)NT)>cr" VieT,0<r<rp.

Then the assertions of Proposition A.2 hold if the boundary conditionsu = 0 on T’
andu = Vu = 0on " are replaced by

(A.37) u=0 onT
and

(A.38) u=Vu=0 onT,
respectively.

PROOF: The proof is the same as that for Proposition A.2. To derive (A.19)
we now apply a Poincaré inequality for functions that vanish on a set of positive
measure. g
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