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Summary. We propose a new three-dimensional dynamic theory of transforming ma-
terials intended to make realistic simulations of the dynamic behavior of these materials
accessible. The theory is appropriate for materials whose free energy function rises
steeply from its energy wells. Essentially, the theory is the multiwell analog of ordinary
rigid body mechanics with three additional features: the full stress is not treated as ar-
bitrary (the average limiting tractions on each interface enter the theory as unknowns),
a certain component of the local balance of linear momentum is used, and kinetic laws
for interfacial motion are introduced based on ideas of Eshelby and Abeyaratne and
Knowles. In an interesting special case of the resulting equations of motion, all material
constants together with all information about the shape of the body collapse to a single
dimensionless constant. We prove well-posedness up to the time of a collision between
interfaces, and do a preliminary study of the problem of annihilation and nucleation of
interfaces. Conservation laws and a dissipation inequality are identified. We also give
generalizations of the theory to magnetic and thermodynamic piecewise rigid media.
A probable application area for the theory is the assessment of the use of transforming
materials at small scale as “motors” for propulsion or actuation.
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1. Introduction

The development of the theory presented here was motivated by the desire to write
down realistic three-dimensional dynamic equations for the response of single crystal
martensitic materials that are accessible to accurate simulation. These materials have
free energy functions with multiple energy wells and moving interfaces between phases
or between variants of the martensitic phase.

The difficulty with the study of the three-dimensional dynamics of transforming ma-
terials that undergo a shape change is well known. Even in the case of nonlinear elastic
materials with a single energy well, the simplest equations are three-dimensional nonlin-
ear hyperbolic conservation laws. After some time, these develop exceedingly complex
arrays of shock waves that dissipate energy. In fact, even the structure of elementary
shock waves in such materials (which are not genuinely nonlinear) is not known. These
equations can be regularized by the addition of viscosity or viscoelasticity, but the rela-
tion between the energy dissipated by the shock waves and that dissipated by viscous or
other mechanisms is completely unknown; moreover, most workers believe that viscosity
or viscoelasticity are not the important dissipative mechanisms in these materials. The
situation with multiple-energy-well materials is significantly less clear. These equations
exhibit all the difficulties of three-dimensional hyperbolic conservation laws together
with change-of-type from hyperbolic to elliptic, caused by the presence of energy wells.
Not only is the structure of elementary shock and phase boundary interactions unknown,
but the admissibility criterion appropriate for phase boundaries is not yet settled. (The
search for the correct admissibility criterion has been an active area of research for the
past 20 years with important contributions from Abeyaratne and Knowles [1] [2], Dafer-
mos [11], Escobar and Clifton [14], Slemrod [37], Truskinovsky [39], and others.) Part
of the problem with the assessment of these admissibility criteria is the near absence of
three-dimensional dynamic solutions in experimentally accessible situations.

Fortunately, there is a class of martensitic materials with features that suggest a sim-
plification of the dynamic equations. These are materials for which the free energy grows
steeply away from its energy wells. This class includes many important examples, par-
ticularly some examples of recent interest. With such materials, it is common practice
in the experimental literature to analyze the static microstructure or the conditions for
transformation of a stressed specimen by evaluating various expressions using the lattice
parameters of the unstressed phases. As an extreme example, we mention recent work of
Vasko, Leo, and Shield [40] on the fracture of Cu-14.0wt.%Al-3.5wt.%Ni. Under load,
they observe various austenite-martensite interfaces emanating from a sharp crack tip. In
a variety of specimens with various orientations relative to the loads and various crack ori-
entations, they measured the traces of these interfaces on the plane of observation. Then
they determined theoretically an austenite-martensite interface (from among the 96 possi-
ble ones) using a maximum work criterion based on the crack tip stress field. They thereby
select a unique austenite-martensite interface, and they calculate the angle its trace makes
on the plane of observation relative to the plane of the crack; all of these calculations are
done using the unstressed lattice parameters. They find that the selected interface agrees
with the observed one in all cases, and the disagreement between the measured angle
and predicted angle is less than a degree. Thus even with the unusually large stresses at
the crack tip, there seems to be good reason to use lattice parameters of the unstressed
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phases. In essence, they are constraining the deformation gradients to be on the energy
wells (except for negligible transition layers) but allowing the stresses to be nonzero.
As we quantify in Section 3.2, even under reasonably large stresses, the deviation away
from an energy well is much less than the distance between the wells in this material.

Other interesting examples are the recently discovered ferromagnetic shape memory
materials. These are martensitic but also ferromagnetic, and they can be made to undergo
very large strains by applying a magnetic field. The main search criteria currently being
used to seek new examples of these materials are mobile interfaces, high magnetic
anisotropy, and high stiffness. The latter two criteria translate into steep growth away
from energy wells, which in the ferromagnetic-martensitic case are defined by special
pairs of (magnetization, deformation gradient).

In ordinary nonlinear elastic materials, steep growth away from energy wells means
high stiffness, and the dynamic behavior can often be modeled using ordinary rigid body
mechanics. Piecewise Rigid Body Mechanics (PRBM) is the multiwell analog of rigid
body mechanics. The body is divided into a number of subbodies separated by interfaces.
On each subbody the deformation gradient lies on an energy well. As interfaces move,
the subbodies rotate and translate and exchange mass due to interfacial motion. There is
also overall rotation and translation. These motions are subject to the balances of linear
and rotational momentum for the whole body and for subregions of the body. The Cauchy
stress is an arbitrary symmetric tensor (the reaction stress due to the constraint of rigidity)
on the subbodies, except that the average of its normal component on the interfaces enters
the theory in a nontrivial way. Also, a certain component of the local balance of linear
momentum on subregions bounded by interfaces is retained. As expected, we observe
that such a theory is incomplete. To remove the indeterminacy, we introduce a kinetic law
for the interfaces, in the spirit of work of Eshelby [15] [16] and Abeyaratne and Knowles
[1] [2], after deriving an expression for the configurational force on an interface in the
framework on piecewise rigid body mechanics. All the dissipation in PRBM occurs at
the interfaces. We show that the resulting theory is well posed (Section 8). We also
have made a considerable effort to put the equations in their most useable form, and to
reveal their basic structure in the sense of dynamical systems; in particular we identify
conservation laws, a quadratic form representing the kinetic energy, and a dissipation
inequality. An observation (Section 8.3) about a matrix that we term the mass distribution
matrix is also expected to simplify numerical implementation considerably.

The special case corresponding to a cantilever, fixed at its root, and containing a
parallel array of any number of interfaces (Figure 2) is worked out in Remark 8.1.
The equations of motion are highly nonlinear; yet, when the cantilever is chosen to have
constant reference density ρo, uniform cross-sectional area, and the kinetic law is chosen
to be linear with mobility µ, then the unforced equations are determined by the single
dimensionless number

T

a2Lµρo
, (1)

where T is a typical time, L is the reference length of the cantilever, and a is a certain
dimensionless scalar that depends only on the lattice parameters of the two phases (see
Section 4 for the formula for a = |a|). This number embodies all the input to the
equations in this case, including all information about the shape of the body and all
material constants. This number compares inertial to configurational forces. With such
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a complete collapse of material and geometric data, the case of the cantilever provides
an attractive way to test the existence and forms of kinetic relations. (There is a similar
collapse for nonlinear kinetic relations, Remark 8.1.) The latter comprises one of the
most important problems in the study of phase transformations.

Interfaces separating phases can collide for certain choices of the time evolution of
applied forces. Our existence/uniqueness theorem breaks down at an annihilation. In
terms of the dynamical system, an annihilation represents a singular perturbation. Both
the mathematical and physical treatment of an annihilation in PRBM are quite delicate,
and we confine attention to a few theorems and remarks. The physical treatment is subtle
because, as explained in Section 8.3, it is not expected that the conservation laws hold
through an annihilation. It is thus an open issue what precisely should be the the new
initial data with which to restart the initial value problem (with the pair of colliding
interfaces removed).

We give generalizations (Section 9) of PRBM to include magnetism (Piecewise Rigid
Magneto-Mechanics, PRMM) and thermodynamics (Piecewise Rigid Thermodynamics,
PRT). In the former, we use the energy wells appropriate to a magnetoelastic (or fer-
romagnetic shape memory) material and we include magnetic forces and torques and
magnetic configurational forces. We also require a version of Maxwell’s equations to
determine the field from the magnetization. In the latter, we allow a general form of
(anisotropic) Fourier’s law and we allow the “heights” of the energy wells to depend on
temperature, which permits the introduction of latent and specific heats into the theory.

The use of high stiffness “at the wells” is not the only way to make dynamic phe-
nomena in transforming materials accessible to simulation. Another method is to derive
appropriate models of lower dimensional continua for these materials; this has been done
recently by Purohit and Bhattacharya for strings [34] and beams [35] . These achieve
simplification by reduction to a single spatial coordinate x , leading to partial differential
equations in (x, t).

The main appealing feature of PRBM and its generalizations is that, like rigid body
mechanics, it is eminently useable. As indicated above, we hope it can be used to answer
fundamental questions about the forms (or validity) of kinetic laws. For example, it is
expected to be possible to calculate natural frequencies and damping vs. frequency of
a shape memory cantilever containing a system of parallel interfaces, and to relate the
behavior back to the form of the kinetic law. One could hope that its simplicity will allow
the whole idea of the use of Eshelby-Abeyaratne-Knowles kinetics to be tested, though
due respect has to be paid to its assumptions. Another appealing feature of the theory is
that, except for the kinetic law, the shape of the body, and applied forces and fields, the
input for the theory is only fundamental material constants, as listed below.

PRBM . . . lattice parameters of (parent and) product phases, reference density;
PRMM . . . lattice parameters of (parent and) product phases, reference density, easy

axes of magnetization, saturation magnetization;
PRT . . . lattice parameters of parent and product phases, reference density,

thermal conductivity tensors of each phase, latent heat of transformation,

specific heat of each phase. (2)
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There are a number of interesting open questions posed by our theory. These mainly
concern the precise formulation of the theory when complex microstructures are con-
sidered. Even in the case of a simple laminated microstructure, one could pose initial
data modeling a sequence of finer and finer microstructures. Fine microstructures would
actually be expected in some cases if the initial microstructure was created by the pre-
vious passage of an austenite/martensite interface through the body (Section 9.2). One
could associate to this initial microstructure a Young measure of a special type (e.g.,
the weighted sum of two Dirac masses). Then, it would be interesting to know whether
the dynamic equations posed here imply a dynamical system for the Young measure,
e.g., whether the Young measure at any time is determined by its initial value. If not,
which seems likely, it would be fascinating to understand what additional information
about the microstructure is needed, or, what other mathematical objects associated with
microstructure solve a dynamical system, that is, are determined by their own initial
conditions. PRBM seems to be the simplest, realistic theory with which to study these
phenomena.

Other open questions concern the treatment of the important case of noninvertible
kinetic relations and the physically acceptable treatment of nucleation and annihilation.
More generally, the development can be considered as a prototype for other “rigid body
theories” in which mobile defects, treated with the kinetics based on ideas of Eshelby,
are surrounded by stiff material.

While ordinary rigid body mechanics is applied routinely and with great success to
the motion of large bodies like satellites and airplanes, the natural application area for
PBRM is for MEMS (microelectromechanical systems) using transforming materials.
Briefly, this is because at small scales, bodies of transforming material are expected to
have only a few domains, and also because transforming materials (particularly hard
ones) and dynamic phenomena are of particular interest. Also, shape memory materials
having such multiwell energies exhibit the largest work output per cycle per volume of
any actuator system (Krulevitch et al. [27]), and therefore are expected to be useful small-
scale “motors.” These issues are explained in more detail in [23] [25]. In fact PRBM
arose as the generalization of a model for the motion of a MEMS cantilever made of
ferromagnetic shape memory material [23]. The present version of the theory would be
suitable for predicting the motion of the cantilever, detached from its base, so it could
“swim” freely in, say, a Stokesian fluid, driven by a harmonically applied magnetic field.

2. Rigid Body Mechanics

Piecewise rigid body mechanics (PRBM) bears the same relation to the nonlinear elastic
theory of phase transformations [6] as ordinary rigid body mechanics does to nonlinear
elasticity theory. Therefore, to set the stage and notation for PRBM, and especially to
motivate a strategy for proving that PRBM is well posed, we consider a formulation and
the well-posedness of ordinary rigid body mechanics. Rigid body mechanics is based, at
least intuitively, on the assumption that the body is sufficiently stiff that elastic deforma-
tions are negligible. To understand this better, consider the following formal argument.
Consider a nonlinear elastic material governed by a frame-indifferent Helmholtz free-
energy function ϕ(F), defined for 3× 3 matrices F ∈ R

3×3 with positive determinant. It
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is crucial for ordinary rigid body mechanics that this underlying free energy has a single
energy well which is conventionally taken to be at SO(3):

ϕ(F) ≥ 0, ϕ(F) = 0 if and only if

F ∈ SO(3) := {Q ∈ R
3×3: QT Q = I, det Q = +1}. (3)

Let us assume for simplicity that

ϕ(F) = ϕµ̄(F) := µ̄ dist(F,SO(3))2, (4)

where dist(F,K) denotes the shortest Euclidean distance from the matrix F ∈ R
3×3 to the

compact set K⊂ R
3×3 . In fact the right-hand side of (4) defines a frame-indifferent elastic

material, and its linearized shear modulus is exactly µ̄. An open, bounded, connected
reference configuration� ∈ R

3 is given together with a reference mass density ρo: �→
R
+. The dynamic initial value problem for the motion y: �× (0, T )→ R

3 is formally,
in the absence of body forces,

ρoytt = div

(
∂ϕµ̄(∇y)

∂F

)
,

y(x, 0) = yo(x),

yt (x, 0) = vo(x), x ∈ �; (5)

for smooth motions. If also there are no surface tractions applied to the body, then by
the usual argument, (5) has an energy integral,∫

�

{
1

2
ρo|yt (x, t)|2 + ϕµ̄(∇y(x, t))

}
dx = const., (6)

the constant being the value of the integral at t = 0. Since the system (5) is nonlinear
hyperbolic, it is well known that the acceleration of a typical solution of (5) blows up in
finite time and shocks form. This invalidates the passage from (5) to (6). Physically, the
shocks dissipate energy and it is well accepted that, however we interpret a solution of
(5), the energy integral (6) should hold with inequality:∫

�

{
1

2
ρo|yt (x, t)|2+ϕµ̄(∇y(x, t))

}
dx ≤ const.

=
∫
�

{
1

2
ρo|vo(x)|2+ϕµ̄(∇yo(x))

}
dx. (7)

To model a very stiff material, we do formal asymptotics by letting the shear modulus
get large, µ̄→∞. To have a reasonable physical problem, we would then let the initial
data (at least yo) also depend on µ̄ so as to preserve the initial total energy, which we
label

(KE+ PE)|t=0 =
∫
�

{
1

2
ρo|v(µ̄)

o (x)|2 + ϕµ̄(∇y(µ̄)
o (x))

}
dx

= const. (independent of µ̄). (8)
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The corresponding sequence of solutions y(µ̄)(x, t) then satisfies∫
�

{
1

2
ρo|y(µ̄)

t (x, t)|2 + ϕµ̄(∇y(µ̄)(x, t))

}
dx ≤ const., (9)

from which we deduce that for each t ∈ (0, T ),∫
�

dist(∇y(µ̄)(x, t),SO(3))2 dx→ 0, as µ̄→∞. (10)

It is known (e.g., [6]) that, not only does this imply the strong convergence of∇y(µ̄)(x, t)
to the set SO(3), but in fact it implies that∇y(µ̄)(x, t) converges strongly (i.e., pointwise)
to a particular matrix R(t) ∈ SO(3), i.e.,

y(µ̄)(x, t)→ R(t)x+ c(t) (strongly in W 1,2(�)), (11)

for each fixed t > 0. The right-hand side is the starting kinematic assumption of rigid
body mechanics. This convergence is strong enough to pass to the limit in the balances of
linear and rotational momentum to get the standard equations of rigid body mechanics.
The dimensionless parameter that emerges from this calculation is obtained by dividing
through (8)–(9) by (KE+ PE)|t=0/ vol(�):

µ̄ vol�

(KE+ PE)|t=0
. (12)

When the shear modulus is much larger than the initial total energy per unit volume and
no forces are applied, one expects that rigid body mechanics is valid. This argument has
many variants—for example, there is a corresponding argument in the adiabatic case
with the Helmholtz free energy replaced by the internal energy—but they lead to similar
conclusions. If applied loads were allowed, then these would contribute power terms to
the total energy which would introduce more dimensionless numbers whose asymptotics
would have to be respected. Nevertheless, even in its most hopeful form this argument
has important implications for PRBM that we discuss below.

Now we return to a formulation and well-posedness of ordinary rigid body mechanics.
Consider a rigid motion,

y(x, t) = R(t)x+ c(t), (13)

where R: (0,∞)→ SO(3) and c: (0,∞)→ R
3. Let � and ρo be as above and define

the following:

M :=
∫
�

ρo dx, (total mass),

xc := 1

M

∫
�

ρox dx, (center of mass of �),

yc(t) := y(xc, t), (center of mass of y(�, t)). (14)

It is useful to eliminate c(t) using these definitions to get the equivalent expression,

y(x, t) = R(t)(x− xc)+ yc(t). (15)
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Let F denote the total applied force and To be the total applied torque calculated about
yo ∈ R

3. Assuming that (15) is expressed in an inertial frame, the balance of linear
momentum is

d

dt

∫
�

ρoẏ dx = F, (16)

and the balance of rotational momentum is

d

dt

∫
�

ρo(y− yo) ∧ ẏ dx = To. (17)

In the usual way, substitution of (15) into the balance of linear momentum and use of
the definitions (14) yields Newton’s second law for the center of mass:

M ÿc = F . (18)

It remains to reformulate the balance of rotational momentum in a way that illumi-
nates well-posedness. If R(t) is differentiable, then (by differentiation of the relation
RT R = I),

Ṙ = RW, WT = −W, (19)

where the tensor W is skew. It has an associated axial vector ω ∈ R
3 defined unique-

ly by

Wa = ω ∧ a, for all a ∈ R
3. (20)

The vector ω ∈ R
3 might be termed the referential angular velocity; the conventional

angular velocity is Rω. We also recall the identities R(a∧b) = Ra∧Rb and a∧(ω∧b) =
[(a · b)I− b⊗ a]ω, which hold for all R ∈ SO(3), a,b,ω ∈ R

3. Substitute (15) into the
balance of rotational momentum (17) and use the definition of the center of mass in �:

d

dt

[
R(t)

{∫
�

(x− xc) · (x− xc)I− (x− xc)⊗ (x− xc) dx
}
ω

+ M(yc(t)− yo) ∧ ẏc(t)

]
= To. (21)

Define the inertia tensor of � by

I =
∫
�

{(x− xc) · (x− xc)I− (x− xc)⊗ (x− xc)} dx. (22)

Since � is given, we assume I is known. Carrying out the differentiation in (21) and
substituting from the balance of linear momentum, we get the useful form

Iω̇ + ω ∧ Iω + RT ((yc − yo) ∧ F) = RTTo. (23)

This equation links R and ω which are also linked by the kinematic relation (19); to
account for this fact, it is useful (when considering well-posedness) to treat R and ω as
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independent functions subject to (19) and (20). Summarizing, the balances of linear and
rotational momentum for a rigid motion are equivalent to the system of equations

ẏc = vc,

M v̇c = F,

Iω̇ + ω ∧ Iω + RT ((yc − yo) ∧ F) = RTTo,

Ṙ = RW, W = ω ∧ . (24)

Here, we have broken down (18) into two first-order equations. These are to be augmented
by the initial conditions for the position and velocity of the center of mass, the referential
angular velocity, and the initial rotation:

yc(0) = yo
c,

vc(0) = vo
c,

ω(0) = ωo,

R(0) = Ro ∈ SO(3). (25)

Let us assume that the force F and torque To are assigned continuous, bounded
functions of (y, v,ω,R, t) defined on all of R

3 ×R
3 ×R

3 ×R
3×3 × [0,∞), satisfying

a Lipschitz condition in (y, v,ω,R). Then, observing that the inertia tensor is invertible
under our assumptions on �, we see that the initial value problem is in the standard form
Θ̇ = f (Θ, t), Θ(0) = Θo, with

Θ = (yc, vc,ω,R) ∈ R
3 × R

3 × R
3 × R

3×3. (26)

The standard existence-uniqueness-extension theorem for ODEs (e.g., Hartman [18])
then states that the initial value problem (24)–(25) has a unique continuously differen-
tiable solution for all t ≥ 0. The only issue that remains is the status of R(t) ∈ R

3×3

delivered by this theorem. Using (24)4 and (25)4, we have

d

dt
(RRT ) = RWRT + RWT RT = 0,

(RRT )(0) = I, (27)

which shows (also using continuity, or Liouville’s theorem for det R) that R(t) ∈ SO(3),
t ≥ 0. As is well known by the experts, the above is not the basis for computing
solutions numerically. Naive time-discretization of (24)4 leads to departures from the
strictly convex manifold SO(3), which is easily remedied by using manifold coordinates,
like Euler angles or quarternions. If the force and torque also satisfy certain rather strong
conditions, the system (24) is Hamiltonian, in which case it is desirable to use a numerical
method that exactly preserves the Hamiltonian structure at the discrete level, or else
preserves one or more conserved quantities, if they occur. These issues are discussed
for example by Kane, Marsden, and Ortiz [26], and related numerical issues arise1 in
PRBM, but we do not address them in this paper.

1 More specifically, the system of equations of PRBM has conservation laws, but it is not Hamiltonian.
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3. Piecewise Rigid Body Mechanics

3.1. Free Energy of Materials That Undergo Structural Phase Transformations

The simplest geometrically exact free-energy for a material that undergoes a structural
phase transformation has the formϕ(F, θ), where F ∈ R

3×3, det F > 0 is the deformation
gradient and θ > 0 is the absolute temperature. As above, ϕ is frame-indifferent:

ϕ(RF, θ) = ϕ(F, θ), for all R ∈ SO(3), (28)

and all F ∈ {R3×3: det F > 0}. The key feature of ϕ that sets it apart from free energies
of ordinary nonlinear elastic materials is that ϕ has energy wells.

A theory for the structure of the energy wells for martensitic materials that undergo
first-order transformations is available [6]. It rests on an important crystallographic
construction of Ericksen [12] and Pitteri [32]. The main results from that theory are
the following. There are two point groups Pm ⊂ Pa associated, respectively, with (low
temperature) martensite and (high temperature) austenite phases and a set of positive-
definite, symmetric 3 × 3 matrices, U1, . . . ,Un where n = order of Pa

order of Pm
. The matrices

U1, . . . ,Un satisfy

QU1QT = U1, for all Q ∈ Pm,

{U1, . . . ,Un} = {QU1QT : Q ∈ Pa\Pm}. (29)

Given the two groups, (29) is a strong restriction of the forms of these matrices; various
special cases have been worked out (Ball and James [6], Bĕlı́k and Luskin [7]) and a
comprehensive study for all pairs of groups will appear in a forthcoming book (Pitteri
and Zanzotto [33]). Finally there is assumed another positive-definite symmetric matrix
Ua associated with the austenite phase. Though it is not reflected by the notation, all of
the matrices U1, . . . ,Un and Ua depend weakly on temperature θ due to ordinary thermal
expansion, and in all cases Ua|θ=θc = I, where θc is the transformation temperature. The
key assumption about ϕ is that it is minimized at Ua for θ > θc, and it is equi-minimized
at U1, . . . ,Un for θ < θc. Accounting for the fact that ϕ is also frame-indifferent, we
shall assume that ϕ is smooth and all minimizers of ϕ are given as follows:

For θ > θc, ϕ(·, θ) is minimized on SO(3)Ua,

At θ = θc, ϕ(·, θ) is minimized on SO(3)I ∪ SO(3)U1 ∪ · · · ∪ SO(3)Un,

For θ < θc, ϕ(·, θ) is minimized on SO(3)U1 ∪ · · · ∪ SO(3)Un. (30)

Here we have used the notation SO(3)A = {RA: R ∈ SO(3)}. A classical special case
is the cubic to tetragonal transformation (n = 24/8 = 3), with

U1 =



η2 0 0

0 η1 0

0 0 η1


 , U2 =



η1 0 0

0 η2 0

0 0 η1


 ,

U3 =



η1 0 0

0 η1 0

0 0 η2


 . (31)
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This example will be studied below in the case for (the thermal martensite in) the
ferromagnetic shape memory material Ni2MnGa, which has measured values η1 =
1.013, η2 = 0.952 at θ = θc ([38]).

3.2. Motivation and Formal Statement of the Theory

In piecewise rigid body mechanics (i.e., the purely mechanical version of the theory),
we neglect the temperature dependence of the free-energy density. That is, we neglect
the small temperature dependence of the matrices U1, . . . ,Un or Ua , and we assume
that we are sufficiently below or above the transformation temperature that no phase
transformation takes place.2 The interesting case is below the phase transformation
temperature where there exist multiple wells, in which case the theory governs the
rearrangement of martensite variants. We assume this for definiteness in the formu-
lation below. The motivation for PRBM is similar to that of rigid body mechanics.
Consider, for example, the Cu-14.0 wt.%Al-3.9 wt.%Ni alloy mentioned in the in-
troduction, for which a great deal is known. This undergoes a cubic to orthorhombic
transformation (n = 24/4 = 6) with six variants of martensite. The structure of the
matrices is

U1 =




α+γ
2

α−γ
2 0

α−γ
2

α+γ
2 0

0 0 β


 , U2 =




α+γ
2

γ−α
2 0

γ−α
2

α+γ
2 0

0 0 β


 ,

U3 =




α+γ
2 0 α−γ

2

0 β 0
α−γ

2 0 α+γ
2


 , U4 =




α+γ
2 0 γ−α

2

0 β 0
γ−α

2 0 α+γ
2


 ,

U5 =



β 0 0

0 α+γ
2

α−γ
2

0 α−γ
2

α+γ
2


 , U6 =



β 0 0

0 α+γ
2

γ−α
2

0 γ−α
2

α+γ
2


 , (32)

with the measured values α = 1.0619, β = 0.9178, and γ = 1.0230 (Otsuka and
Shimizu [31]). A simple calculation shows that the minimum Euclidean distance be-
tween wells3 is

min
i, j
{dist(SO(3)Ui ,SO(3)Uj )} = 0.055. (33)

All of the linearly elastic moduli of the orthorhombic phase of this alloy have been
measured (Yasunaga et al. [42] [43]). Near transformation temperature, where they are

2 Because of the release of latent heat upon transformation, and its important side effects, the case of phase
transformation is more reasonably treated under piecewise rigid thermomechanics in Section 9.2.
3 The distance between each pair of wells is either 0.055 or 0.181, corresponding to approximately 5.5% and
18% strain. The smaller strain corresponds to wells related as in U1 and U2.
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the softest,4 they are (Voigt notation, GPa):

C11 = 189, C22 = 141, C33 = 205, C44 = 54.9,

C55 = 19.7, C66 = 62.6,

C12 = 124, C13 = 45.5, C23 = 115. (34)

Using this data, we find that the minimum eigenvalue of the linear elasticity tensor is
14.6 GPa. Also, from work of Shield [36] we know that this alloy has little ductility and
fracture occurs at stresses of the order of several hundred MPa in specimens that have
been carefully prepared to avoid flaws (there is a strong orientation dependence). For
certain oriented crystals, transformation to a monoclinic phase occurs at similar stresses.
Even in these somewhat extreme situations, the maximum deviation from the energy
wells over most of the body is expected to be less than 100 MPa/15 GPa = 6.6× 10−3.
Hence, in rather extreme situations,

maximum expected deviation from the wells

minimum distance between wells
<

0.0066

0.055
≈ 0.1. (35)

In cases in which these materials are used as actuators, this ratio is expected to be
much lower. For example, in the ferromagnetic shape memory material Ni2MnGa, the
blocking stress (i.e., the stress at which the field-induced strain goes to zero) is about
8MPa and the typical operating range for Ni2MnGa actuators is 1–2 MPa. Motivated by
the asymptotic argument that gave rigid body mechanics, we summarize piecewise rigid
body mechanics schematically as follows:

I. Kinematics ∇y(x, t) ∈ SO(3)U1 ∪ · · · ∪ SO(3)Un ,
II. Dynamics

a. Balance of linear momentum

d

dt

∫
P
ρoẏ dx = F(P) for all smooth P ⊂ �,

b. Balance of rotational momentum

d

dt

∫
P
ρo(y− yo) ∧ ẏ dx = To(P) for all smooth P ⊂ �. (36)

The main reason that these assumptions are schematic is that the specification of forces
F(P) and torques To(P) is left vague. In classical rigid body mechanics the Cauchy
stress σ(x, t) is assumed to be an arbitrary symmetric 3× 3 matrix-valued function, the
“constraint stress,” available as part of the solution. In this case, one contribution to the
forces and moments on P is then, explicitly,

F(P) =
∫
∂y(P,t)

σ n̂ dA+ body forces,

To(P) =
∫
∂y(P,t)

(y− yo) ∧ σ n̂ dA+ body torques. (37)

4 This is true among those whose temperature dependence has been measured, and it is expected to be generally
true.
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A classical formal argument in turn shows that (using the arbitrariness of σ ) the
balances of linear and rotational momentum5 place no restriction on the motion except
when P = �, which gives the classical equations discussed in Section 2. In piecewise
rigid body mechanics we also acknowledge the existence of the arbitrary symmetric
constraint stress σ on, say, open regions where ∇y belongs to a single well. However,
as we shall illustrate below in special cases, this will only have the effect of eliminating
the local balance rotational momentum; the balance of linear momentum will give an
important restriction on the motion that arises at interfaces. These considerations granted,
it will be clear below that the balances of linear and rotational momentum are not
sufficient to determine the motion. The nonuniqueness is associated with the motion of
interfaces across which the deformation gradient jumps and which contribute to energy
dissipation: Briefly, these interfaces are “defects” in the sense of Eshelby [15]. The
typical resolution is to write a kinetic law that relates the velocity of the interface to
the configurational force on it. Thus, schematically, piecewise rigid body mechanics is
completed by prescribing

III. Kinetics: interfacial velocity = f (configurational force). (38)

We note that in martensitic materials that undergo a reversible phase transformation,
e.g., typical shape memory materials, it is well accepted that most of the dissipation of
energy occurs at interfaces (and arises from interfacial motion), consistent with the above
formulation. We now work toward making the kinetic law precise. For a perspective
on kinetic laws that is intended to fit better with the overall structure of continuum
mechanics, see Gurtin [17].

4. Rank-One Connections between Energy Wells

For typical choices of point groups Pm ⊂ Pa , the kinematic assumption ∇y(x, t) ∈
SO(3)U1 ∪ · · · ∪ SO(3)Un permits continuous deformations with gradient supported
on two or more wells, this being the case of interest. We briefly summarize the situation
here. Consider two wells, which for definiteness we take to be SO(3)U1 ∪ SO(3)U2.
The classical Hadamard jump condition for a continuous deformation y whose gradient
suffers a simple jump discontinuity across an interface in � with normal n ∈ R

3 is

(∇y)+ − (∇y)− = a⊗ n, a ∈ R
3. (39)

Here, the superscripts + and − refer to limiting values from opposite sides of the inter-
face (i.e., if the interface S is designated as the level set f = 0 of a smooth function
f : �× (0, T )→ R, |∇ f | > 0, then + or − refers to limiting values from the regions
{ f > or < 0} ∩ �, respectively). Thus, the condition of compatibility for continuous
deformations that assume gradients on the two wells is

R2U2 − R1U1 = â⊗ n, (40)

5 This may not be instantly obvious for the second equation. The key point is the symmetry of σ .
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which is to be solved for R1,2 ∈ SO(3), â,n ∈ R
3. Premultiply (40) by RT

1 and let
R̂ = RT

1 R2, a = RT
1 â; (40) then becomes

R̂U2 − U1 = a⊗ n. (41)

It is known that, given the restriction det U1 = det U2 (which is true by (29)) on the
positive-definite symmetric matrices U1 and U2, a necessary and sufficient condition
that (41) has a solution (R̂ ∈ SO(3), a,n ∈ R

3) is that det(U2
1 − U2

2) = 0 (Ericksen
[13]). In that case there are two solutions, (RI, aI⊗nI) and (RII, aII⊗nII). Formulas for
these solutions are given, for example, in [24], where further interpretative information
can be found. In the common case that there is a 180◦ rotation matrix Q ∈ Pa (cf., (29))
such that U2 = QU1QT , these two solutions can be interpreted as so-called Type I/Type
II twins. In the special case that U1 and U2 are given by (31), the solutions are

aI ⊗ nI = η2
1 − η2

2

η2
1 + η2

2

(η2,−η1, 0)⊗ (1, 1, 0) and

aII ⊗ nII = η2
1 − η2

2

η2
1 + η2

2

(η2, η1, 0)⊗ (1,−1, 0). (42)

(Here, RI and RII follow from (41)). Note that in the general case there are only two
reference normals nI and nII. Thus, it may seem problematic to construct anything
beyond a simple layered structure using these solutions. In fact, if U1 and U2 satisfy
certain additional conditions (Bhattacharya [8], James and Kinderlehrer [21]), then a
four-fold intersection of the two variants is possible, using these two normals. More
generally, recent work of Müller and Šverák [28] [29] shows that there are generically
exceedingly complicated solutions of ∇y(x, t) ∈ SO(3)U1 ∪ · · · ∪ SO(3)Un which are
not obtained in the obvious way by assembling the simple rank-one connections found
above. This again suggests the need for a precise, general statement of the theory.

5. Dissipation in Piecewise Rigid Bodies

In preparation for the formulation of the kinetic laws we consider the simplest possible
situation of a single interface separating regions where ∇y assumes two values R1(t)U1

and R2(t)U2, satisfying the compatibility condition (40). A general expression for such
a deformation can be written in the following way. Let s: (0,∞)→ R be smooth and
define a characteristic function χ : R× (0,∞)→ {0, 1} by

χ(ξ, t) =
{

0 : ξ < s(t),

1 : ξ ≥ s(t).
(43)

Also, let R: (0,∞)→ SO(3), c: (0,∞)→ R
3, and let a,n ∈ R

3 solve (41). Define a
motion

y(x, t) = R(t)

(
U1x+ a

∫ x·n

0
χ(s, t) ds

)
+ c(t). (44)
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By differentiating this expression with respect to x, one sees that it satisfies the hypotheses
and it is also globally invertible. If we omit the assumptions of smoothness in time of
R(t) and s(t), this is the most general expression for a motion with an isolated interface,
whose gradient assumes two values [5]. The referential normal velocity of propagation of
the interface is ṡ(t). Let the Piola-Kirchhoff (constraint) stress T: �× (0,∞)→ R

3×3

be defined in terms of the symmetric Cauchy stress (37) by

T = (det∇y)σ (∇y)−T . (45)

Let us omit body forces (for simplicity) and write the balance of linear momentum for
any open subregion P ⊂ � (cf., (16), (37)):

d

dt

∫
P
ρoẏ dx =

∫
∂y(P,t)

σ n̂ dA =
∫
∂P

Tn̂ dA. (46)

Here, the Piola-Kirchhoff stress T(x, t) is assumed to be smooth separately on the two
regions � ∩ {x · n > s(t)} and � ∩ {x · n < s(t)} with continuous extensions to the
closures of these regions. Let �+t = � ∩ {x · n > s(t)}, �−t = � ∩ {x · n < s(t)}, and
St = �∩ {x · n = s(t)}, and use the notation for the jump and average, [[a]] = a+ − a−

and 〈a〉 = 1
2 (a
+ + a−), based on the limiting values on St from from �+t and �−t .

Localizing the balance of linear momentum using the arbitrariness of P , we get

ρoÿ = divx T on �+t ∪�−t , (47)

and we also get the jump condition,

− ρo[[ẏ]]ṡ = [[t]] on St , (48)

where t = Tn is the Piola-Kirchhoff traction.
The dissipation D is defined to be the rate of change of the total energy, which in this

case is only the kinetic energy, minus the rate of work done at the boundary:

D = d

dt

∫
�

1

2
ρo|ẏ|2 dx−

∫
∂�

ẏ · Tn̂ da. (49)

A straightforward calculation using Reynold’s transport theorem and (47) and (48) yields

D = d

dt

{∫
�+t

ρo

2
|ẏ|2 dx+

∫
�−t

ρo

2
|ẏ|2 dx

}
−
∫
∂�

ẏ · Tn̂ da,

=
∫
�+t

ρoẏ · ÿ dx+
∫
�−t

ρoẏ · ÿ dx−
∫
∂�+t

ẏ · Tn̂ da

+
∫
∂�−t

ẏ · Tn̂ da−
∫
St

[[ẏ · Tn]] da,

= −
{∫

St

ρo

2
[[|ẏ|2]]ṡ + [[ẏ · t]] da

}
, (50)
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which shows that in a piecewise rigid body, all dissipation occurs at the interface. In (50)
we have used that the stress-power vanishes,∫

�

T · ∇ẏ dx = 0, (51)

which follows from our kinematic assumption and the symmetry of the Cauchy stress.
A simplified form of the dissipation results from using the kinematic jump conditions
(which follow directly from (44)),

[[ẏ]] = −ṡR(t)a, [[∇y]] = R(t)a⊗ n, (52)

together with the identities and [[a2]] = 2[[a]]〈a〉 and [[ab]] = [[a]]〈b〉 + [[b]]〈a〉. Use of
these identities, the kinematic jump conditions (52), and the jump condition (48) in the
last of (50) gives

D = ṡ(t)R(t)a ·
〈∫

St

t da

〉
. (53)

The configurational force on the interface is the (normalized) multiplier of ṡ:

R(t)a ·
〈
−
∫
St

t da

〉
. (54)

Here and below, the slashed integral notation−∫St
denotes the area average 1

Area(St )

∫
St

. In
PRBM interfaces are “driven” by the component of the average traction on the amplitude
of the discontinuity. This is the same formula for the configurational force that would
be obtained by specializing the corresponding formula of the deformable case to the
piecewise rigid ansatz.

6. Kinetic Laws for Piecewise Rigid Bodies

Now we can make explicit the form of the kinetic law, which is stated schematically
in (38), for PRBM. Following the ideas of Eshelby and Abeyaratne and Knowles, we
assume the kinetic law takes the form

ṡ = − f

(
R(t)a ·

〈
−
∫
St

t da

〉)
on St , (55)

where f : R→ R satisfies ξ f (ξ) ≥ 0, to respect the nonpositivity of the dissipation D.
Two typical forms of kinetic laws that have been discussed in the literature (Abeyaratne
and Knowles [1] [2], Abeyaratne, Chu, and James [4], Bhattacharya [9]) are

f (ξ) = µξ, classical linear kinetics,

f (ξ) = µ



−
√
ξ 2 − b2, ξ < −c,

0, −c ≤ ξ ≤ c, “pinning” kinetics.√
ξ 2 − b2, ξ > c,

(56)

Here, µ > 0 is the mobility and b, c are positive constants with c2 − b2 = 0.
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✻

✲�

�

� � � � �

χ(s, t)

1

s0=0 s1(t) s2(t) s3(t) sN (t) sN+1(t) = L

Fig. 1. The function χ(s, t) used in the ansatz (44).

7. Formulation of the Theory for a Single Laminate

The motion y(x, t) of a single laminate is still given by the formula (44), but the
characteristic function χ has any number of jumps that propagate at independent ve-
locities. So, we assume there are N + 2 smooth functions si : (0,∞) → [0, L]
satisfying

0 = s0(t) < s1(t) < s2(t) < · · · < sN (t) < sN+1(t) = L . (57)

Here, without loss of generality, � is assumed to satisfy 0 = minx∈�̄(x · n) and
L = maxx∈�̄(x · n), and we have introduced the two stationary “fake” interfaces s0

and sN+1 so as to streamline subsequent formulas. We have also disallowed nucleation
or annihilation of interfaces; this is discussed in Section 8. Now let y: � × (0,∞)→
R

3 be given by (44) with the characteristic function χ : [0, L] × (0,∞) → {0, 1}
defined by

χ(ξ, t) =
{

0 : si (t) ≤ ξ < si+1(t), i even,

1 : si (t) < ξ ≤ si+1(t), i odd,
(58)

and pictured in Figure 1. The unknown functions in the case of the single laminate
are

R(t), c(t), s1(t), . . . , sN (t). (59)

Now we seek equations of motion that, together with initial conditions and the as-
signment of forces and torques, will determine these functions. The goal is to put these
in a convenient form for discussing well-posedness and for simulation. Our strategy is
the following: Just as in rigid body mechanics we associated an unknown function with
a law of mechanics according to the appearance of its highest derivative (R(t): balance
of rotational momentum, yc(t): balance of linear momentum), we here try to formulate
the equations with the following associations:

R(t): Balance of rotational momentum,

c(t): Balance of linear momentum,

s1(t), . . . , sN (t): N kinetic laws. (60)
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Fig. 2. A family of snapshots of shear motions of a cantilever in PRBM, corresponding to a
particular choice of the functions s1(t), . . . , sN (t), t = t1, t2, t3, t4, t5. Drawn using energy wells
obtained from the measured lattice parameters of Ni2MnGa.

As in rigid body mechanics it is convenient here also to eliminate c(t) in favor of the
deformed center of mass. Define

M =
∫
�

ρo dx,

xc = 1

M

∫
�

ρox dx,

γ (s, t) =
∫ s

0
χ(r, t) dr,

γc(t) = 1

M

∫
�

ρoγ (x · n, t) dx,

yc(t) = 1

M

∫
y(�,t)

(
ρo

det U1

)
z dz. (61)

If we eliminate c(t) from (44) using these definitions, we get

y(x, t) = R(t)[U1(x− xc)+ (γ (x · n, t)− γc(t))a]+ yc(t). (62)

Keep in mind that γ and γc are not independent functions because of (61)4.
There appear to be physically interesting cases of PRBM even for the simple laminate.

Figure 2 shows several snapshots of a cantilever whose “bending” (actually shear) is
produced by an antiphase periodic motion of its interfaces. Figure 2 was obtained by
simply plotting the deformed positions of a square array of dots x = x1, x2, . . . according
to the formula (44), using five particular sets of interfacial positions s1(t), . . . , sN (t), t =
t1, t2, t3, t4, t5. It does not represent the solution of a particular dynamical problem,
though something similar is expected in realistic situations. This example is particularly
interesting in the case of ferromagnetic shape memory materials in which the motion can
be induced by an applied field. This cantilever is currently under construction guided
by the results based on the theory given here and elsewhere [23]. We now formulate
systematically the equations of motion.

7.1. Mass, Density, Sectional Properties, and Their Integrals

To evaluate various integrals below, we will need expressions for certain sectional prop-
erties, designated by hats. Let {n,n⊥1 ,n⊥2 } be an orthonormal basis with associated
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coordinates {s, ξ1, ξ2}. Define the cross-section by

A(s) = {(ξ1, ξ2): sn+ ξ1n⊥1 + ξ2n⊥2 ∈ �}, s ∈ (0, L). (63)

The cross-sectional area is denoted

|A(s)| = Area(A(s)). (64)

The mass per unit length (in the direction n) is

ρ̂o(s) =
∫
A(s)

ρo dξ1 dξ2. (65)

Note that ρ̂o(s) > 0, s ∈ (0, L). The sectional center of mass is

x̂c(s) = 1

ρ̂o(s)

∫
A(s)

ρo(ξ1n⊥1 + ξ2n⊥2 ) dξ1 dξ2. (66)

Note that x̂c · n = 0. The total mass of {x ∈ �: x · n < s} is

M̂(s) =
∫ s

0
ρ̂o(s) ds. (67)

When ρo is constant and � has a simple form, these quantities are given by simple
analytical expressions. In order to bring out the essential structure of the equations of
motion and the kinetic energy of the laminate, we introduce some auxiliary quantities.
We shall denote with A the constant skew matrix whose axial vector is a, A = a ∧. Let

s(t) = (s1(t),−s2(t), s3(t), . . . ,−(−1)N sN (t)), (68)

vs(t) = (ṡ1(t),−ṡ2(t), ṡ3(t) . . . ,−(−1)N ṡN (t)), and (69)

α(t) = (|A(s1(t))|, |A(s2(t))|, . . . , |A(sN (t))|) (70)

denote the vectors of interface positions, velocities, and areas, respectively. Let M
be the following N × N symmetric mass-distribution matrix6 whose ijth element is
given by

Mij =



1
M M̂(sj )

(
M − M̂(si )

)
, i > j,

1
M M̂(si )

(
M − M̂(sj )

)
, i ≤ j,

(71)

and let C denote the N × 3 coupling matrix7 whose i th row is the vector

Ci =
∫ si

0
ρ̂o(r)[U1(rn+ x̂c(r)− xc)] dr. (72)

6 The mass-distribution matrix M is one contribution to the mass matrix of the dynamical system, as can be
seen from the equations of motion (112)–(117). M takes into account the fact that, due to interface motion,
the mass of the body is redistributed among the subbodies between the interfaces.
7 C couples interface motion and overall rotation.
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Finally, let ζ, η, and µ be N -dimensional vectors whose i th components are given
respectively by

ζi (t) =
M̂(si (t))

M

N∑
j=0

1

2
(1− (−1) j )

∫ sj+1(t)

sj (t)
r ρ̂o(r) dr

−
i−1∑
j=0

1

2
(1− (−1) j )

∫ sj+1(t)

sj (t)
r ρ̂o(r) dr,

ηi (t) =
M̂(si (t))

M

N∑
j=0

(−1) j ρ̂o(sj (t))ṡ
2
j (t)−

i−1∑
j=0

(−1) j ρ̂o(sj (t))ṡ
2
j (t),

�i (t) = M̂(si (t)), (73)

for i = 1, 2, . . . , N . Note that M, C, ζ, and � depend upon time only through the
positions of the interfaces, while η depends also on their velocities. The script quantities
M, C will appear on the left-hand side of the equations of motion in our formulation,
forming the mass matrix of the system, while the vectors ζ, η, and � will appear
as lower-order terms on the right-hand side. The following proposition gives explicit
formulas for all the quantities that will appear in the equations of motion.

Proposition 7.1. Assume that � and the reference normal n to the layers are such that
measA(s) and ρ̂(s) are continuous for s ∈ (0, L). Suppose (0 =) s0 < s1(·) < · · · <
sN (·) < sN+1(= L) ∈ C2(0, T ). Let p: (0, L)× (0, T )→ {0, . . . , N } satisfy

sp(s,t)(t) < s < sp(s,t)+1(t), (74)

i.e., p(s, t) is the index of the interface just to the left of s at time t. Then,

γ (s, t) =
p(s,t)∑
i=0

(−1)i si (t)+ 1

2
(1− (−1)p(s,t))s, (75)

γ̇ (s, t) =
p(s,t)∑
i=0

(−1)i ṡi , (76)

γ̈ (s, t) =
p(s,t)∑
i=0

(−1)i s̈i , (77)

γc(t) = 1

M

N∑
i=0

{
(−1)i

[
M−M̂(si )

]
si+ 1

2
(1−(−1)i )

∫ si+1(t)

si (t)
sρ̂o(s) ds

}
, (78)

γ̇c(t) = 1

M

N∑
i=0

(−1)i
[

M − M̂(si )
]

ṡi , (79)

γ̈c(t) = 1

M

N∑
i=0

(−1)i
{[

M − M̂(si )
]

s̈i − ρ̂o(si )ṡ
2
i

}
. (80)
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Furthermore, ∫
�∩{x·n<si (t)}

ρo(γ̇ (x · n, t)−γ̇c(t)) dx = (Mvs)i , (81)

(
d

dt

∫ s

0
ρ̂o(γ̇ (r, t)−γ̇c(t)) dr

)∣∣∣∣
s=si−0

= (Mv̇s+η)i , (82)

a·Ẇ
(∫

�∩{x·n<si }
ρoU1(x−xc) dx

)
= (CAω̇)i , (83)

a·W2

(∫
�∩{x·n<si }

ρo[U1(x−xc)+(γ (x·n)−γc)a] dx
)
= (C(Aω∧ω))i

−|Aω|2(Ms−ζ)i , (84)

for i = 1, 2, 3, . . . , N , the subscript i indicating the i th component of the vectors to
which i is attached, and∫

�

ρoγ̇ (x · n, t)((U1(x− xc)) ∧ a) dx = (CA)T vs, (85)

∫
�

ρo(γ̇
2 − γ̇ 2

c ) dx = vs ·Mvs . (86)

Proof. The expressions for γ (s, t) and γc(t) and their time derivatives follow directly
from the definition as the integral of χ, and from the identity

N∑
i=0

bi

i∑
k=0

ak =
N∑

i=0

ai

N∑
k=i

bk (87)

applied with bi =
∫ si+1

si
g(r) dr, g(r) = ρ̂o(r), or g(r) = r ρ̂o(r) and ak = (−1)ksk(t).

For the sectional integrals notice that for any integrable f : (0, L) × (0,∞)→ R
n we

have ∫
�∩{x·n<s}

ρo(x) f (x · n, t) dx =
∫ s

0
ρ̂o(s) f (s, t) ds,

=
(

p(s,t)−1∑
i=0

∫ si+1(t)

si (t)
ρ̂o(s) f (s, t) ds

)

+
∫ s

p(s,t)
ρ̂o(s) f (s, t) ds. (88)

To get (81), (83), (84), and (85), apply this equation with f (s, t) = {γ (s, t) −
γc, γ̇ (s, t)− γ̇c, sn+ x̂c(s)− xc, γ̇ (s, t)(sn+ x̂c(s)− xc)}, respectively, after using the
equations (63)–(67), (79), (80), the sum rule (87), and the definitions of the matrices
A,M, and C. To get (82), begin with the transport theorem in the form,

d

dt

(∫ s

0
ρ̂oγ̇ (r, t) dr

)
=
∫ s

0
ρ̂oγ̈ (r, t) dr −

p(s,t)∑
j=0

ρ̂o(sj )[[γ̇ (r, t)]]

∣∣∣∣∣
r=sj

ṡj . (89)
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Notice that from (76) we have [[γ̇ (r, t)]]|r=sj = (−1) j ṡj and thus, using also the fact that
γ̇c depends only on t,

d

dt

(∫ s

0
ρ̂o(γ̇ (r, t)− γ̇c(t)) dr

)
=
∫ s

0
ρ̂o(γ̈ (r, t)− γ̈c(t)) dr

−
p(s,t)∑
j=0

ρ̂o(sj )(−1) j ṡ2
j . (90)

Evaluate this at s = si −0 and use (77) together with the sum rule (87) and the definition
of vs and η to get (82). To obtain (86), notice that, in view of (81) and (76), we have

vs ·Mvs = −
N∑

i=1

(−1)i ṡi

∫ si

0
ρ̂o

(
p(s,t)∑
j=0

(−1) j ṡj

)
ds+

N∑
i=1

(−1)i M̂(si )ṡi γ̇c. (91)

Express the integral in the first term as the sum of integrals each on each single domain
(sk−1, sk), and for the second term use (79) multiplied by γ̇c to get

vs ·Mvs = −
N∑

i=1

(−1)i ṡi

i∑
k=1

∫ sk

sk−1

ρ̂o

(
p(s,t)∑
j=0

(−1) j ṡj

)
ds

+ M γ̇c

N∑
i=1

(−1)i ṡi − M γ̇ 2
c . (92)

Now use the expression (79) for γ̇c, and observe that we can sum up to the N + 1 term
in (79) as well as in the sums with index i in (92), because ṡN+1 = 0. Then, using the
rule (87), switch the sums in i and k in the first term at the right-hand side of (92), and
apply the definition of γc in the second term:

vs ·Mvs = −
N+1∑
i=1

∫ si

si−1

ρ̂o

p(s,t)∑
j=0

(−1) j ṡj ds

(
N+1∑
k=i

(−1)k ṡk

)

+
N+1∑
k=1

∫ sk

sk−1

ρ̂o

p(s,t)∑
j=0

(−1) j ṡj ds

(
N+1∑
i=1

(−1)i ṡi

)
− M γ̇ 2

c . (93)

After rearranging the terms and using (76), we get (86).

7.2. Balance of Linear Momentum

The introduction of the definitions (61) is designed to make the overall balance of linear
momentum simple:

d

dt

∫
�

ρoẏ dx = F ⇐⇒ M ÿc = F, (94)

where F is the total applied force on y(�, t).
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The local balance of linear momentum determines div T whose only appearance in
the other laws occurs in the kinetic law as the resultant traction on an interface. We now
make this explicit. There are various ways to do this, e.g., by writing the balance of linear
momentum for each interval {x ∈ �: si (t) < x ·n < si+1(t)}, and then combining these
with the jump conditions across each interface. We find it easier to consider regions of the
form {x ∈ �: x · n < si , i ∈ 1, . . . , N }. First we write the balance of linear momentum
for the material region {x ∈ �: x · n < s}:

d

dt

∫
�∩{x·n<s}

ρoẏ dx = F(0, s), (95)

where F(0, s) is the total external force from all sources (traction, surface and body
forces) on the region {y(x, t): x ∈ �, x · n < s}. For example, F(0, s) includes, in
addition to the force due to traction at the cross-section A(s), forces that arise from
moving fluids surrounding the body, and gravitational or electromagnetic forces on this
region. The force arising from the traction t(s): A(s)→ R

3 on A(s), regarded as having
normal n, is assumed to have the form ∫

A(s)
t da. (96)

The remaining contribution to F(0, s), from distributed surface and body forces, is
given by

Fext(0, s). (97)

We have F = Fext(0, L), and, in summary, we write

F(0, s) =
∫
A(s)

t da+ Fext(0, s). (98)

Substitute the expression ẏ(x, t) = RW[U1(x − xc) + (γ − γc)a] + (γ̇ − γ̇c)Ra + ẏc

into (95):

d

dt

{
RW

[
U1

∫
�∩{x·n<s}

ρo(x− xc) dx+ a
∫
�∩{x·n<s}

ρo(γ − γc) dx
]

+ Ra
∫
�∩{x·n<s}

ρo(γ̇−γ̇c) dx+M̂(s)ẏc

}
=
∫
A(s)

t da+Fext(0, s). (99)

That is,

(RW2 + RẆ)

[
U1

∫
�∩{x·n<s}

ρo(x− xc) dx+ a
∫
�∩{x·n<s}

ρo(γ − γc) dx
]

+ 2RWa
(∫

�∩{x·n<s}
ρo(γ̇ − γ̇c) dx

)
+ Ra

(
d

dt

∫
�∩{x·n<s}

ρo(γ̇ − γ̇c) dx
)

+ M̂(s)ÿc =
∫
A(s)

t da+ Fext(0, s). (100)



88 R. D. James and R. Rizzoni

Now notice that, actually, only the quantity Ra ·−∫A(s) t da occurs in the kinetic law. Thus,
we dot (100) by Ra and get the simplified formula for the configurational force:

Ra ·
∫
A(s)

t da = a ·W2

(
U1

∫
�∩{x·n<s}

ρo(x− xc) dx+ a
∫
�∩{x·n<s}

ρo(γ − γc) dx
)

+ a · Ẇ
(

U1

∫
�∩{x·n<s}

ρo(x− xc) dx
)

+ |a|2
(

d

dt

∫
�∩{x·n<s}

ρo(γ̇ − γ̇c) dx
)

+ M̂(s)ÿc · Ra− Fext(0, s) · Ra. (101)

We need (101) evaluated on each side of each interface in order to calculate the average
〈Ra · −∫A(s) t da〉 that appears in the kinetic laws. For this purpose it is desirable to
work with (101) evaluated on just one side of the interface, here chosen arbitrarily to
be s = si − 0, together with the jump condition that comes from the balance of linear
momentum.8 The jump condition is obtained from (100) or else by specialization, then
integration over the cross-section, of (48). Assuming that the forces F and Fext are
continuous functions of (s, t), the jump condition is

− 1

|A(si (t))| (ρ̂o(si )(−1)i ṡ2
i )Ra =

[[
−
∫
A(s)

t da

]]
. (102)

Dotting this with Ra, we get

− 1

|A(si (t))| (ρ̂o(si )(−1)i ṡ2
i )|a|2 =

[[
Ra · −

∫
A(s)

t da

]]
. (103)

7.3. Balance of Rotational Momentum

Substitution of the ansatz (62) into the overall balance of rotational momentum (17)
gives

d

dt

∫
�

ρo (R[U1(x− xc)+ (γ − γc)a]+ (yc − yo))

∧ (Ṙ[U1(x− xc)+ (γ − γc)a]+ (γ̇ − γ̇c)Ra+ ẏc
)

dx = To. (104)

Write Ṙ = RW and use the identity Rb ∧ Rc = R(b ∧ c) and the definitions (61):

d

dt

{
R
∫
�

ρo[(U1(x− xc)+ (γ − γc)a) ∧W(U1(x− xc)+ (γ − γc)a)

+ (γ̇−γ̇c)U1(x−xc)∧a] dx+M(yc−yo)∧ẏc

}
=To. (105)

8 The advantage of this formulation is that the jump is extremely simple, whereas the average is not.
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Note that, from Proposition 7.1, γ̇ is not absolutely continuous and we cannot (without
introducing Dirac masses) differentiate under the integral sign in (105). Following the
lessons of rigid body mechanics, we introduce the axial vector ω corresponding to W,
W = ω ∧. We also define the referential moment of inertia by

I(t) =
∫
�

ρo{|(U1(x− xc)+ (γ − γc)a)|2I− (U1(x− xc)+ (γ − γc)a)

⊗ (U1(x− xc)+ (γ − γc)a)} dx. (106)

Recalling the passage from (22) to (24), we write (105) in the form

d

dt
{RIω} + R

{
ω ∧

∫
�

ρo(γ̇ − γ̇c)((U1(x− xc)) ∧ a) dx
}
,

+ R
d

dt

∫
�

ρo(γ̇ − γ̇c)((U1(x− xc)) ∧ a) dx,

+ M(yc − yo) ∧ ÿc = To, (107)

or, taking into account the definition of xc,

Iω̇ + ω ∧ Iω + İω

+ ω ∧
∫
�

ρoγ̇ ((U1(x− xc)) ∧ a) dx,

+ d

dt

∫
�

ρoγ̇ ((U1(x− xc)) ∧ a) dx,

+ MRT ((yc − yo) ∧ ÿc) = RTTo. (108)

This is the equation for ω, which is supplemented by the relation Ṙ = RW, W = ω ∧.
The two integrals in (108) are explicit functions of s1(t), . . . , sN (t) and their first and
second time derivatives, as can be obtained from (85). The local balance of rotational
momentum implies as usual that the Cauchy stress is symmetric. If the local balance of
rotational momentum is evaluated for a region bounded by an interface, e.g., a region
of the form � ∩ {x · n < si (t)}, the moment of the traction on the interface appears on
the right-hand side. This does not couple to any other equations because the traction and
its moment on an interface can be assigned independently. (This makes the remarks of
Section 3.2 explicit in this case of a single laminate.)

7.4. Kinetic Laws

The general form of the kinetic law is given above in (55). Specialized to a laminate,
this is

(−1)i ṡi (t) = f

(
Ra ·

〈
−
∫
A(si (t))

t da

〉)
, i ∈ {1, . . . , N }. (109)
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8. Summary and Analysis of the Equations of Motion

8.1. Summary

The way the traction occurs in the various laws suggests that we introduce the new scalar
variable τ±i : [0,∞)→ R by

τ±i (t) = R(t)a · −
∫
A(s)

t da|s=si (t)±0, (110)

and the corresponding N -dimensional vectorial quantities τ±. Similarly, for the external
forces on the region y(x, t), x ∈ � ∩ {x · n < si (t)}, we introduce the N -dimensional
external distributed force vector,

Fs = (Ra · Fext(0, s1(t)), Ra · Fext(0, s2(t)), . . . ,Ra · Fext(0, sN (t))). (111)

Note that Fs can be assigned independently of F (cf. the discussion of Section 7.2).
The equations that do not just determine a part of the stress now can be summarized.

We use the definitions given in Section 7 and the results of Proposition 7.1 to recast the
equations of motion into the following vectorial form:

ẏc = vc, (112)

M v̇c = F, (113)

ṡ = vs, (114)

|a|2Mv̇s + CAω̇ = α · τ− − |a|2η + Fs − 1

M
(Ra · F)�

− C(Aω ∧ ω)+ |Aω|2(Ms− ζ), (115)

(CA)T v̇s + Iω̇ = RTTo − RT ((yc − yo) ∧ F)− ω ∧ Iω
− İω − (ĊA)T vs − ω ∧ (CA)T vs, (116)

Ṙ = RW. (117)

The tractions τ− are linked to the tractions τ+ and to the interface velocities through
the kinetic laws and the balance of linear momentum at interfaces

ṡi = − f

(
(−1)i+1 (τ

+
i + τ−i )

2

)
,

τ+i − τ−i =
(−1)i+1

|A(si )| ρ̂o(si )ṡ
2
i |a|2. (118)

Remark 8.1 (Cantilever). The simplest interesting case of these equations of motion is
perhaps the situation appropriate to the cantilever, Figure 2. Put R = I.9 The cantilever is

9 If one chooses R ∈ SO(3), not necessarily the identity, then a is everywhere replaced by Ra and otherwise
the same equations of motion of the cantilever emerge.
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fixed at the root, so we assume that y(0, t) = 0. Use the kinematics (62) and y(0, t) = 0
to get

ẏc = γ̇c(t)a. (119)

Differentiate this with respect to t and use the overall balance of linear momentum (113)
to evaluate the reaction force F0 at the root of the cantilever:

1

M
a · (F0 + FL) = |a|2γ̈c. (120)

This allows us to eliminate the reaction force and gives the following for the forces that
occur on the right-hand side of the balance of linear momentum (115):

Fs − 1

M
(a · F)� = |a|2γ̈c

(
M − M̂(s1), . . . , M − M̂(sN )

)
− (a · FL , . . . , a · FL). (121)

We have chosen R = I for all t . Thus, ω = 0 and the balance of rotational momentum
is satisfied simply by choosing To appropriately. To is then the reaction torque at the root
of the cantilever. We are left with the balance of linear momentum (115) in the form

|a|2Mv̇s = α · τ− − |a|2η + Fs − 1

M
(a · F)�. (122)

For simplicity we choose the case of a cantilever of constant reference density and
uniform referential cross-section, and we also choose linear kinetics, that is,

ρo = const, A(s) = A = const., f (ξ) = µξ, (123)

so that M̂(s) = ρoAs and M = ρoAL . Denote a = |a| and τL = a · FL . Substitute
all this into the balance of linear momentum. Finally, nondimensionalize the resulting

system by defining dimensionless interfacial positions ri (t)
def= (1/L)si (tT), where T is

a typical time. Note that 0 < r1(t) < · · · < rN (t) < 1. A particularly simple form
emerges:

(r2 − r1)[−r̈1] =
(

T

a2Lµρo
+ (ṙ2 − ṙ1)

2

)
(ṙ2 + ṙ1),

(r3 − r2)[−r̈1+r̈2] = −
(

T

a2Lµρo
+ (ṙ3−ṙ2)

2

)
(ṙ3+ṙ2),

(r4 − r3)[−r̈1+r̈2−r̈3] =
(

T

a2Lµρo
+ (ṙ4−ṙ3)

2

)
(ṙ4+ṙ3), (124)

...
...

(1− rN )[−r̈1 + r̈2 − r̈3 + · · · + (−1)N r̈N ] = τL T 2

a2L2Aρo

+ (−1)N ṙN

( −T

a2Lµρo
+ 1

2
ṙN

)
.
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It is seen that the dynamics of the unloaded cantilever is governed by the single di-
mensionless number T /(a2Lµρo), which by inspection can be interpreted as the ratio of
inertial to configurational forces. If constant loads are allowed (τL "= 0), then we also
require the dimensionless load amplitude τL T 2/(a2L2Aρo); if in addition these loads
are periodic in time, then we need moreover the dimensionless frequency fT where f is
the dimensional frequency.

This complete collapse of material and geometric data is easily traced to the form
of the equations of motion. It also extends to nonlinear kinetic relations, as long as
the other conditions ρo = const,A(s) = A = const., are respected. To see this, put
the applied forces to zero and note that each term in the balance of linear momen-
tum is proportional to a2ρoA except for one term that arises from τ−, this being the
contribution to τ− from the kinetic relation (i.e., invert the kinetic relation and solve
(118) for τ−). However, from the form (118) of τ−, one sees that this contribution
is proportional to Af−1, and therefore, in the case of invertible, nonlinear kinetic re-
lations all material and geometric data collapse to the single dimensionless function
(T /a2Lρo) f −1( T

L ṙ).

8.2. Well-posedness up to the Time of the First Interfacial Collision

Introduce the vector of variables � = (yc, vc, s, vs,R,ω). We begin by putting the
system (112)–(117) into the standard form �̇ = f (�; t). To do so, we need to check
whether the matrix

M =




MI 0 0

0 | a |2 M CA

0 (CA)T I


 (125)

is invertible. This is done below.

Proposition 8.1. Assume the hypotheses of Proposition 7.1. Then, M given by (125) is
positive-definite on (0, T ). As t → T , one of the following holds: (i) there is an ε > 0
such that det M > ε > 0, or (ii) there is an increasing sequence ti → T such that
det M(ti ) → 0 and at least one pair of interfaces collides at T, sk+1(ti ) − sk(ti ) → 0
holds for some k ∈ {0, . . . , N }. If (ii) holds and only one pair sk+1, sk of internal
(k "= 0, N) interfaces collides at T, in the sense that lim inf(sj+1(ti ) − sj (ti )) > 0 for
j "= k, then the corresponding limiting null-space of M(ti ) is one-dimensional and
of the form (0, 0, 0; 0, . . . , α,−α, . . . , 0; , 0, 0, 0) where α = ±1√

2
lies in the 3 + k th

place.

Proof. These assertions are anticipated to follow from the positiveness of the kinetic
energy:

KE = 1

2

∫
�

ρo(x)|ẏ(x)|2 dx. (126)
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Substituting the time derivative of (62) into the expression for KE gives, after some
simplification,

KE = 1

2
Iω · ω + 1

2
|a|2

∫
�

ρo(γ̇ − γ̇c)
2 dx

+ 1

2
M |ẏc|2 −Wa ·

∫
�

ρo(γ̇ − γ̇c)U1(x− xc) dx. (127)

Note that from (76), (79) we have∫
�

ρoγ̇ dx = M γ̇c, (128)

and thus ∫
�

ρo(γ̇ − γ̇c)
2 dx =

∫
�

ρoγ̇
2 dx− M γ̇ 2

c . (129)

Using this, (86), and the definition of the mass-distribution matrix, we find that∫
�

ρo(γ̇ − γ̇c)
2 dx =Mvs · vs . (130)

Finally, from the definition of B we have

−Wa ·
∫
�

ρo(γ̇ − γ̇c)U1(x− xc) dx = −ω · (CA)T vs . (131)

Therefore, the kinetic energy takes the form

KE = 1

2

(
vc vs ω

) ·



MI 0 0

0 |a|2M CA

0 (CA)T I






vc

vs

ω


 . (132)

Because KE = 0 if and only if ẏ = 0 almost everywhere in �, to prove the thesis
it is sufficient to show that given any vector (vc, vs,ω) whose components are not
simultaneously all equal to zero, there exists an open set in � on which ẏ "= 0. We see
this by contradiction. Assume the existence of vectors vc, vs,ω not all identically zero
for which ẏ = 0 almost everywhere in �, i.e.,

RW [U1(x− xc)+ (γ − γc)a]+ (γ̇ − γ̇c)Ra+ vc = 0, a.e. x ∈ �. (133)

Integration on � and use of the definitions (61)2,4 of center of mass xc and of γc yield

vc = 0. (134)

After canceling the rotation R, we get the condition

W [U1(x− xc)+ (γ − γc)a]+ (γ̇ − γ̇c)a = 0, a.e. x ∈ �. (135)

Now choose

x = c1n+ ξ1n⊥1 + ξ2n⊥2 , (136)
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with c1 ∈ (sk, sk+1) for some k, 0 ≤ k ≤ N , and with (ξ1, ξ2) ∈ A(c1). Substitute into
(135) and use the arbitrariness of ξ1, ξ2 to get

WU1n⊥1 = 0, (137)

WU1n⊥2 = 0. (138)

Because n⊥1 , n⊥2 are linearly independent vectors and U1 is a pure stretch, this proves
that W and thus ω vanish. Then (135) becomes

γ̇ (x · n) = γ̇c, (139)

or, equivalently,

0 = γ̇c,

−ṡ1 = γ̇c,

−ṡ1 + ṡ2 = γ̇c,

. . .

−ṡ1 + ṡ2 + · · · + (−1)N sN = γ̇c. (140)

This system of N equations admits the unique solution γ̇c = 0, ṡi = 0, i = 1, 2, . . . , N .

Therefore vs = 0, which gives a contradiction, proving that M is positive-definite on
(0, T ).

Thus, as t nears T , det M(t) remains bounded strictly away from zero, or there is an
increasing sequence ti such that det M(ti )→ 0. Let ei = (vi

c, vi
s,ω

i ) ∈ R
3 × R

N × R
3

be a normalized eigenvector corresponding to a vanishing eigenvalue,

M(ti )ei → 0, (141)

so that KE = 1
2 ei ·M(ti )ei → 0. Assume that after extracting a subsequence, ei converges.

Here, KE is still given by the formula (126), with t = ti and (vc, vs,ω) = (vi
c, vi

s,ω
i ).

We get again, using the boundedness of ẏ on this sequence, that ẏ(x, ti ) → 0 for a.e.
x ∈ �, and we follow the steps (133)–(138) to derive that

vi
c → 0, ωi → 0. (142)

So, the approximate null-vector ei tends to the subspace (0, 0, 0; vs; 0, 0, 0). We also get
that for a.e. x ∈ �,

γ i (x · n, ti )− γ i
c (ti )→ 0, (143)

where γ i , γ i
c are calculated using vi

s . Suppose for a moment that the sj (ti ), j ∈ {0, . . . ,
N+1} satisfy lim inf(sj+1(ti )−sj (ti )) > 0, then each region�∩{sj (ti ) < x·n < sj+1(ti )}
has measure that is bounded (independent of i) away from zero and therefore the argument
(139)–(140) also can be repeated. This gives

vi
s → 0, (144)
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which contradicts the normalization |ei | = 1. Thus, for some k ∈ {0, . . . , N } we have,
for a subsequence of ti , that sk+1(ti )− sk(ti )→ 0.

If only one pair sk, sk+1 collides at T, in the sense explained in the Proposition, then
we are unable to impose (143) for sk < x · n < sk+1. More precisely, if we denote
vi

s = (ṡi
1,−ṡi

2, . . . ,−(−1)N ṡi
N ), then (143) leads to a system like (140) but with the k th

equation removed, i.e.,

0− γ̇c → 0,

−ṡi
1 − γ̇c → 0,

−ṡi
1 + ṡi

2 − γ̇c → 0,

· · ·
−ṡi

1 + ṡi
2 + · · · + (−1)k−1ṡi

k−1 − γ̇c → 0,

−ṡi
1 + ṡi

2 + · · · + (−1)k+1ṡi
k+1 − γ̇c → 0,

· · ·
−ṡi

1 + ṡi
2 + · · · + (−1)N si

N − γ̇c → 0. (145)

This yields that ei → (0, 0, 0; 0, . . . , α,−α, . . . , 0; , 0, 0, 0) with α = ±1√
2

in the 3+ k th

place.

Remark 8.2. For the case in which the 1st or N th interface passes out of the body, the
form of the limiting null-vector can be read off of (145).

As we approach the question of well-posedness, the delicate situation det M(ti ) → 0
will require special care. However, even while det M is bounded away from zero, the
solution could blow up. That this does not occur, as a consequence of the boundedness of
the applied force and torque, is proved using an explicit form of the dissipation inequality
(cf. (50)), which is of independent interest.

Proposition 8.2. (Dissipation) Suppose that the force F and torque To are assigned
continuous functions of (�, t) ∈ D = R

3 ×R
3 × (0, L)N ×R

N × SO(3)×R
3 × [t0 −

δ, t0 + δ), the kinetic relation satisfies ξ f (ξ) ≥ 0, and let � ∈ C1 be a local solution
near t0 of (112)–(117). Then,

d

dt
(KE) = d

dt

[
1

2
(vc, vs,ω) ·M(vc, vs,ω)

]

≤ vc · F +
[
Fs − 1

M
(F · Ra)�

]
· vs

+ Rω · [To − (yc − yo) ∧ F] (146)

holds near t0. The right-hand side of (146) is the rate of work of the applied forces and
torques.
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Proof. The symmetry of M yields

d

dt
(KE) = 1

2
Ṁ(vc, vs,ω) · (vc, vs,ω)+M(v̇c, v̇s, ω̇) · (vc, vs,ω). (147)

Expanding the derivative of M in the first term and using the equations of motion in the
second term, one gets, after a few simplifications,

d

dt
(KE) = |a|2

[
1

2
Ṁvs · vs − η · vs

]

+
[
−1

2
İω · ω − C(Aω ∧ ω) · vs + |Aω|2(Ms− ζ) · vs

]

+ vc · F +
[
Fs − 1

M
(F · Ra)�

]
· vs

+ Rω · [To − (yc − yo) ∧ F]. (148)

Making use of the sum rule (87), a straightforward calculation shows that

1

2
Ṁvs · vs = vs · η + 1

2

N∑
i=0

ρ̂o(si )ṡi
3. (149)

Taking the derivative of the inertia tensor I as defined in (106), one finds

İω · ω = 2[|ω|2a− (ω · a)ω] ·
∫
�

ρo(γ̇ − γ̇c)U1(x− xc) dx

+ 2[|ω|2|a|2 − (a · ω)2]
∫ L

0
ρ̂o(γ − γc)(γ̇ − γ̇c) dr. (150)

Working with the definitions given in Section 7.1, we get

|ω|2a− (ω · a)ω = −Aω ∧ ω, (151)

|a|2|ω|2 − (ω · a)2 = |Aω|2, (152)∫
�

ρo(γ̇ − γ̇c)U1(x− xc) dx = CT vs, (153)

∫ L

0
ρ̂oγ (γ̇ − γ̇c) = Ms · vs − ζ · vs, (154)

and these, substituted into (150), give

− 1

2
İω · ω − vs · C(Aω ∧ ω)+ |Aω|2(Ms− ζ) · vs = 0. (155)

Thus,

d

dt
(KE) = |a|2

[
1

2

N∑
i=0

ρ̂o(si )ṡ
3
i + ατ · vs

]

+ vc · F +
[
Fs − 1

M
(F · Ra)�

]
· vs

+ Rω · [To − (yc − yo) ∧ F]. (156)
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To complete the proof, we substitute the balances of linear momentum at interfaces (103)
into the first term,

d

dt
(KE) =

N∑
i=0

1

2
(−1)i+1ṡiAi (τ

+
i + τ−i )

+ vc · F +
[
Fs − 1

M
(F · Ra)�

]
· vs

+ Rω · [To − (yc − yo) ∧ F], (157)

the first term on the right of which is nonpositive by the condition ξ f (ξ) ≥ 0.

To exploit the dissipation inequality (146), we need the following inequality of Gron-
wall type. For this purpose, we recycle the notation above so the intended application is
immediately clear; the notation is local to the lemma.

Lemma 8.1. Let M ∈ C0([0, T ]) be a positive-definite N × N matrix with min-
imum eigenvalue λmin > ε > 0 on [0, T ] and let g ∈ C0([0, T ],R

N ). Suppose
v ∈ C0([0, T ],R

N ) satisfies

1

2
v ·Mv ≤

∫ t

0
g(τ ) · v(τ ) dτ , (158)

for 0 < t < T . Then

|v(t)| ≤ 1

ε

∫ t

0
|g(τ )| dτ . (159)

Proof. We have 1
2 v ·Mv ≤ ∫ t

0 |g(τ )||v(τ )| dτ . Let

w(t) =
∫ t

0
|g(τ )||v(τ )| dτ , (160)

so that
1

2
ε|v|2 ≤ 1

2
v ·Mv ≤ w. (161)

Multiply this by |g|2 and use ẇ = |g||v| to get

1

2
ε|ẇ|2 ≤ |g|2w. (162)

Using that ẇ ≥ 0 and w(0) = 0, take the square root, divide by
√
w, and integrate:

w(t) ≤ 1

2ε

(∫ t

0
|g(τ )| dτ

)2

. (163)

Use (161) again and we get the result.



98 R. D. James and R. Rizzoni

Now we can prove well-posedness up to the time that a pair of interfaces collides.

Theorem 8.1. Suppose ρo = const. > 0 and assume that � and n are such that
|A(s)| is Lipschitz. Assume also that the forces F and Fs and torque To are assigned
bounded functions of (�, t) ∈ D = R

3 ×R
3 × (0, L)N ×R

N × SO(3)×R
3 × [0,∞)

satisfying a Lipschitz condition in � = (yc, vc, s, vs,R,ω), and that the kinetic relation
f (τ ) with τ f (τ ) ≥ 0 is invertible with Lipschitz inverse f −1. Then, there is a unique
solution � ∈ C1(D) of (112)–(117) on an interval [0, t∗) corresponding to the initial
condition �(0) = �0 = (y0

c, v0
c, s0, v0

s ,R0,ω0) ∈ D with s0 = (s0
1 , . . . , s0

N ) satisfying
0 < s0

1 < s0
2 < · · · < s0

N < L. Either t∗ = ∞ or a pair of interfaces collides at t∗ in the
sense of Proposition 8.1.

Proof. We use (118) and the invertibility of the kinetic relation to eliminate τ− from the
right-hand side of the equations of motion (112)–(117); this introduces f −1 on the right-
hand side of these equations. On bounded subsets of D, the right-hand side of the equa-
tions of motion is Lipschitz under these hypotheses, so the standard existence/uniqueness/
extension theorem of O.D.E. (see, e.g., Hartman [18]) gives the existence of a unique
solution up to time t∗ with det M > 0 on (0, t∗). There must be an increasing sequence
ti → t∗ on which det M(ti ) → 0; otherwise, det M(t) > ε > 0 for some ε > 0 on
(0, t∗). However, in the latter case we could invoke Proposition 8.2 and Lemma 8.1.
Since SO(3) and the forces and torques are bounded, and |yc − yo| grows no faster than
c1 + c2t + 1

M max |F |t2 from integration of the equations of motion for the center of
mass, then (158) holds with g a quadratic polynomial. Hence, the solution �(t) would
remain bounded on [0, t∗]. In this case an initial value problem with initial condition at
a time t0 that is sufficiently close to t∗ would have a unique extension (with det M > 0)
to an interval (t0, t1) with t1 > t∗. Hence, only the first alternative is possible, which
proves the theorem.

Remark 8.3. The conditions on the domain � and on ρo can be weakened. More im-
portantly, the invertibility condition on the kinetic relation forbids some kinetic relations
that embody a critical nonzero configurational force for motion of the interface.

We record below the form of equilibrium solutions that follows immediately from the
definitions.

Lemma 8.2. (Equilibrium solutions) Assume the hypotheses of Theorem 8.1, suppose
thatF = Fs = To = 0, and assign that the initial conditions�(0) = (y0

c, 0, s0, 0,R0, 0)
with s0 = (s0

1 , . . . , s0
N ) satisfying 0 < s0

1 < s0
2 < · · · < s0

N < L. Then �(t) = �(0)
is the unique solution to the equations of motion (112)–(117) (in C0) for t ≥ 0. This
solution corresponds to a piecewise rigid motion y(x, t) = y0(x) of the form (44) that
meets the initial conditions

y(x, 0) = y0(x), (164)

ẏ(x, 0) = 0. (165)
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Proof. This follows immediately when it is noticed that the continuity/invertibility of
f and ξ f (ξ) ≥ 0 imply that f (0) = 0.

As is common in mechanical systems, the system of equations (112)–(117) with no
applied forces or torques is dissipative but also has conservation laws.

Proposition 8.3. (Conservation laws) Assume the hypotheses of Theorem 8.1 and F =
Fs = To = 0. Then, on (0, t∗) we have

(i) Conservation of linear momentum:

M v̇c = 0; (166)

(ii) Conservation of rotational momentum:

d

dt
[R((CA)T vs + Iω)] = 0. (167)

Proof. These are easy consequences of the equations of motion.

8.3. Remarks on the Annihilation and Nucleation of Interfaces

In this section we do a preliminary analysis of the annihilation and nucleation of inter-
faces. We discuss mainly annihilation, nucleation being completely analogous. We treat
only the case in which a single pair of interfaces (sk, sk+1) collides at an internal point.
For simplicity, we suppose throughout this section (and Appendix 1) that the following
hypothesis holds.

Hypothesis H. Assume the hypotheses of Theorem 8.1 and consider a resulting solution
�(t) = (yc, vc, s, vs,R,ω), t ∈ [0, t∗) of (112)–(117) with det M(t) > 0 on (0, t∗) and
an increasing sequence ti → t∗ with sk+1(ti )− sk(ti )→ 0 for some k ∈ {1, . . . , N −1}.
Assume that for j "= k, j ∈ {0, . . . , N }, inft∈(0,t∗)(sj+1(t)− sj (t)) > 0, t ∈ [0, t∗). This
implies in particular that there is an interval (a, b) on which 0 < a < sk(t) < sk+1(t) <
b < L , and on this interval we assume that |A(s)| > c > 0.

The last assumption is to ensure that M̂(s) also satisfies a lower Lipschitz condition
|M̂(s2) − M̂(s1) ≥ ρoc|s2 − s1|, s1, s2 ∈ (a, b). Note that this would not typically be
satisfied at a boundary annihilation, so these might call for a different treatment.

A possibility based on what we have shown so far is that sk+1(ti ) − sk(ti ) → 0 on
the particular subsequence ti but that sk+1(t)− sk(t) oscillates near t∗. Thus, in order to
establish that a collision actually occurs, the first issue is to clarify the limiting behavior
of sk+1(t)−sk(t) near t∗. Recall the form of M given by (125). We first observe that M

−1

has a rather special structure. Recall the definition (71) of the mass-distribution matrix
M, which is typically the main submatrix of M. First we note that, while M is a full
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matrix, M−1 has the particular tridiagonal structure,

M−1 =




a1 b2 0 . . . . . . 0

b2
. . .

...

0 ak−1 bk 0
... bk ak bk+1

...

0 bk+1 ak+1 0
...

. . . bN

0 . . . . . . 0 bN aN




, (168)

where

ak = M̂(sk+1)− M̂(sk−1)

(M̂(sk−1)− M̂(sk))(M̂(sk)− M̂(sk+1))
, bk = 1

M̂(sk−1)− M̂(sk)
. (169)

This can be verified by direct calculation; it simplifies greatly the implementation of
these equations for large numbers of interfaces. Hence, as sk+1(ti ) − sk(ti ) → 0, the
2× 2 submatrix of M−1 given by (

ak bk+1

bk+1 ak+1

)
(170)

is singular, but (under our hypotheses) the remaining entries in M−1 are bounded on
(0, t∗).

Our method will be based on the procedure of concealing the singularity inside a
change of variables. Consider the change of variables ws =Mvs in the kinetic energy.
That is, define the positive-definite symmetric matrix M̃ on (0, t∗) by

(vc,ws,ω) · M̃




vc

ws

ω


 = (vc,M−1ws,ω) ·M




vc

M−1ws

ω


 . (171)

We want to apply the dissipation inequality (146), but using M̃ and the new variables
ws . For this, we need some properties of its terms.

Proposition 8.4. Assume HypothesesH. The determinant of the positive-definite matrix
M̃ is bounded strictly away from 0 on (0, t∗). Suppose in addition that the external
distributed forceFs satisfies the componentwise Lipschitz condition, |(Fs)k+1−(Fs)k | <
C |sk+1− sk |. The quantities Fs ·M−1ws and � ·M−1ws that appear on the right-hand
side of (146) satisfy the bounds

|Fs ·M−1ws | ≤ C |ws |,
|� ·M−1ws | ≤ C |ws |. (172)
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Proof. M̃ is positive-definite on (0, t∗) because M is positive-definite and M is invert-
ible on this interval. The proof that det M̃ is bounded away from zero is rather involved
and is therefore presented separately in Appendix 1.

Now consider the quantities |Fs ·M−1ws | and |� ·M−1ws |. By direct calculation
using the form (168) of M−1,

|Fs ·M−1ws | ≤ C1|ws | + |(ws)k ||ak(Fs)k + bk+1(Fs)k+1|
+ |(ws)k+1||bk+1(Fs)k + ak+1(Fs)k+1|,

≤ C1|ws |+|(ws)k | [|ak+bk+1||(Fs)k |+|bk+1||(Fs)k+1−(Fs)k |] ,
+|(ws)k+1| [|bk+1+ak+1||(Fs)k |+|ak+1||(Fs)k+1−(Fs)k |] . (173)

Focus on the two terms containing |ak+1| and |bk+1|. Using the hypothesis on Fs and the
lower Lipschitz condition on M̂(s), it follows that these are bounded. Therefore,

|Fs ·M−1ws | ≤ C2|ws | + C3[|(ws)k |(|ak + bk+1| + 1)

+ |(ws)k+1(||bk+1 + ak+1| + 1)]. (174)

However, while ak, bk+1, ak+1 are singular, the sums ak + bk+1 and bk+1 + ak+1 are
bounded:

ak + bk+1 = 1

M̂(sk)− M̂(sk−1)
, bk+1 + ak+1 = 1

M̂(sk+2)− M̂(sk+1)
. (175)

Combining (174) and (175), we get the first of (172). The second of (172) is proved in
exactly the same way, as � is bounded and satisfies the same kind of Lipschitz condition
as Fs .

Theorem 8.2. The limit sk+1(t)− sk(t)→ 0 as t → t∗ from below. Similarly, the limits
si (t)→ s∗i , and vc → v∗c exist as t → t∗.

Proof. We change variables ws = Mvs in the dissipation inequality (146) and use
Proposition 8.4. This gives

d

dt
(vc,ws,ω) · M̃




vc

ws

ω


 ≤ C |(vc,ws,ω)|, (176)

where C depends on the constant appearing in (172) as well as on the bounds on forces
and torques. By Proposition 8.4 det M̃ is bounded away from zero, and therefore we can
use Lemma 8.1 to conclude that |vc|, |ω|, and |ws | are uniformly bounded on (0, t∗), in
particular,

|Mvs | ≤ Ct∗, on (0, t∗). (177)

This bounds all components of vs on basis vectors that are perpendicular to the limiting
null-space ofM. In particular, it bounds vs ·(0, . . . , 1, 1, . . . , 0), where the first 1 is in the
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k th place. Hence |ṡk+1(t) − ṡk(t)| ≤ C , and therefore, since we have one subsequence
on which sk+1(ti ) − sk(ti ) → 0, that sk+1(t) − sk(t) → 0. (If not, then there would
necessarily be two subsequences of sk+1(t) − sk(t) that would tend to different limits,
implying, by the mean value theorem, that the derivative blows up.) Similarly, |ṡi (t)| ≤ C
for i "= k, k + 1, and therefore si (t)→ s∗i for i "= k, k + 1.

The existence of a limiting value of vc is immediate from its equation of motion and
boundedness of the force.

As stated, these theorems do not provide enough information with which to restart
an initial-value problem. It is not known if sk(t)+ sk+1(t) has a limit at t∗, which would
be essential for posing a new initial-value problem. Also, the status of the limiting value
of ω, which appears to be intimately connected to the same question for sk(t)+ sk+1(t),
is unknown. Furthermore, to restart an initial-value problem, we might expect to have
to know the status of the derivatives ṡi (t) as t → t∗; that this may not be the case is
discussed now.

To understand the conditions one should impose at an annihilation in PRBM, we
considered the analogous problem for elastic bars with a double-well energy, in the
framework of dynamic nonlinear elastic bar theory. These details are completely straight-
forward and are not recounted here. We assumed the wells were piecewise quadratic with
equal elastic moduli E . Then we posed initial data for a Riemann-type problem with
two interfaces (separating constant states of velocity v and strain ε), leading to an anni-
hilation. See the x − t diagram in Figure 3. It is well known that such problems exhibit
nonuniqueness [19], but we chose representative solutions that would satisfy any of
the admissibility criteria that have been proposed (of which we are aware) for phase
boundaries, and our conclusions are independent of which of these criteria are imposed.
To understand what conditions should be imposed in PRBM, we took the natural limit
E → ∞ (cf. Section 2). Passage to this limit does not impose any conditions on the
speeds of the incoming phase boundaries. At annihilation, two acoustic waves emerge
and propagate in opposite directions toward the boundaries (with large velocity), as
illustrated in Figure 3. What happens next depends on the boundary conditions. A sim-
ple case is that in which the right boundary is free of stress and the left is impedance
matched, which is the case illustrated in Figure 3. In that case there is a reflection at the
right boundary, and the reflected acoustic wave travels at high speed to the left bound-
ary. This gives rise to a narrow sector bounded by these acoustic waves labelled by the
strain-velocity pair (ε3, v3) in Figure 3. We found the (at first) unexpected conclusion
that, while velocity and strain remain bounded in the limit of E →∞, the stress in this
sector tends to infinity. Moreover, the impulse at the left boundary arising from the large
stress over the short period of time has a finite limit, that in fact exactly balances the
momentum in the bar before annihilation.

It then becomes clear that, from the perspective of PRBM, whose initial data follow-
ing an annihilation correspond to the times after these acoustic waves of infinite speed
leave the body, there is a sudden disappearance of momentum, and therefore the con-
servation laws for the equations of PRBM apparently should not be used to reset initial
data following an annihilation. Unfortunately, what precisely happens depends on the
boundary conditions and the relative stiffnesses of the bodies adjoining the piecewise
rigid one. For free boundary conditions at both ends, the lost momentum is trapped in
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Fig. 3. An annihilation in bar theory; see text.

the bar as ringing waves, and in that case one might be led to restart the equations in a
different way, consistent with the conservation laws (thanks to the weak continuity of
momentum in this case, as E →∞). This needs further study.

These issues have been confronted by experts in the simpler case of the collision of
ordinary rigid bodies, but we cannot seem to find a consensus in the literature of what is
the correct criterion.

All of these issues are also of concern at a nucleation. Fortunately, in many small-
scale applications, nucleation is rather difficult to achieve without special procedures,
and thus is not such a concern.

9. Generalizations

9.1. Piecewise Rigid Magneto-Mechanics

Piecewise rigid magneto-mechanics (PRMM) is the obvious generalization of PRBM to
include ferromagnetism. A special case of PRBM has been discussed by James [23]. Here
we briefly outline the theory in the case where the magnetism is treated by magnetostatics;
this is the case when electrical conductivity is negligible and negligible changes of applied
fields or loads occur during the time it takes for a light wave to traverse the system.

There are four modifications required in this case. The energy wells for a ferromagnetic
material need to be used; the equations of magnetostatics that determine the magnetic
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field from the magnetization distribution have to be put alongside the other equations;
expressions for magnetic forces and torques have to be added on the right-hand sides
of the balances of linear and rotational momentum; the formula for the configurational
force has to be modified to include magnetic configurational forces. We discuss these
modifications in order.

(i) Energy wells of a ferromagnetic material and the PRMM ansatz. In all ferromagnetic
materials magnetization is accompanied by some amount of deformation. When
this deformation is relatively large, the materials are termed magnetostrictive. The
largest shape change that accompanies magnetization is found in materials that
undergo a phase change; these are ferromagnetic shape memory materials. In the
simplest case all these materials are governed by free-energy functions ϕ(F,m) of
deformation gradient F and magnetization m that satisfy invariance restrictions of
the form ϕ(F,m) = ϕ(RFQ,Rm) for all R ∈ SO(3) and for all Q ∈ P , P being
the symmetry group of the undistorted crystal (for the notation, see Section 3.1;
see James and Kinderlehrer [21] for further background). PRMM is expected to be
appropriate when ϕ grows steeply away from its energy wells. It is worth noting that
the current search for new ferromagnetic shape memory materials is based on steep
growth (e.g., high magnetic anisotropy and high modulus) as a screening criterion
for potential new alloys. Based on this invariance, the energy wells of PRMM are
given by

{SO(3)(U1,m1), . . . ,SO(3)(Un,mn)}, (178)

where SO(3)(U,m) is shorthand for (RU,Rm), R ∈ SO(3) (note that the same
rotation matrix goes in front of U and m), and

{(U1,m1), . . . , (Un,mn)} = {(QU1QT ,Qm1): Q ∈ P}. (179)

In the ferromagnetic shape memory material Ni2MnGa, the energy wells are given
by (31) together with the corresponding magnetizations m1 = ms(1, 0, 0), m2 =
ms(0, 1, 0), m3 = ms(0, 0, 1), respectively, expressed in the same basis as (31).
A typical value of the saturation magnetization ms for Ni2MnGa is 600 emu/cm3

about 10 degrees C below transformation temperature. Now we discuss the gener-
alization of the ansatz (44) to PRMM. As formulated above (following James and
Kinderlehrer [21]), the total free energy is∫

�

ϕ (∇y(x),m(y(x))) dx. (180)

That is, the magnetization is composed with the deformation, reflecting the fact that
m is supported on the deformed configuration y(�). Keeping this in mind, it is easy
to write down the analog of the ansatz (44) for the simple laminate:

y(x, t) = R(t)

(
U1x+ a

∫ x·n

0
χ(s, t) ds

)
+ c(t),

m(y(x, t), t) = R(t)(χ(x · n, t)R̂m2 + (1− χ(x · n, t))m1), (181)

where R̂ ∈ SO(3), a,n are related as in (41). Note that, since y is invertible on
�, (181) defines the magnetization uniquely. Also note that in PRMM under the



Piecewise Rigid Body Mechanics 105

ansatz (181) no new kinematic variables are introduced. By differentiating the
first of (181) with respect to x, one can easily see that this ansatz implies that
(∇y(x, t),m(y(x, t), t)) lies on the two compatible energy wells SO(3)(U1,m1)∪
SO(3)(U2,m2). For example, the extended ansatz (181) corresponds in the case
(R = I) of Figure 2 to the superposition of a magnetization R̂m2 on the “light”
variant and m1 on the “dark” variant; in physical terms, these stay on the easy axes
of the crystal throughout the motion.

(ii) Magnetostatic equations for the self-field. For this subsection, we suppress the de-
pendence on t . Both the magnetic field h and magnetization m enter formulas below
for the force and configurational force. The magnetic field h: R

3 → R
3 is the sum of

an assigned applied field ha (interpreted as the field that would be present if the fer-
romagnetic body were removed) and the field produced by the magnetization, hself.
From Maxwell’s equations in the static case, curl hself = 0 on all of space, so that

hself = −∇ψ on R
3, (182)

and then the Maxwell equations div b = 0 and b = h+ 4πm (cgs units) yield

div(−∇ψ + 4πm) = 0. (183)

As discussed by e.g. James and Kinderlehrer [20], given m ∈ L2(y(�)), this equa-
tion has a unique solution hself ∈ L2(R3), so the magnetic field h is determined by
the magnetization and the applied field.

(iii) Magnetic forces and torques. In PRMM expressions for the applied magnetic forces
and torques,

F, Fs, To (184)

are needed. Recall from Section 8.1 the component of forceFsi is the resultant force
on the region � ∩ {x · n < si (t)}. Recall also that F and To are the overall force
and torque (about the fixed point yo), respectively, on y(�, t). In the formulation
of Brown [10] (which we adopt) the basic formulas for force and torque on all of
y(�, t) are

F =
∫

y(�,t)
m · ∇ha dx, (185)

To =
∫

y(�,t)
(y− yo) ∧ (m · ∇ha)+m ∧ ha dx. (186)

Note that these are easy to calculate because they only depend on the magnetization,
which has been given by the ansatz (181), and the (assigned) applied field. The
formula for the Fs follows the same pattern as (185) except that the field appearing
in the formula is that produced by all “coils and magnetized matter” outside the
region y(x, t), x ∈ � ∩ {x · n < si (t)}; that is, if we let Vi (t) = {y(x, t): x ∈
� ∩ {x · n < si (t)}}, then

Fsi = (traction force)+
∫
Vi

m · ∇hi dy,

where hi = ha − ∇ψi ,

and div(−∇ψi +mχy(�,t)\Vi ) = 0. (187)



106 R. D. James and R. Rizzoni

Here, χy(�,t)\Vi is the characteristic function of the indicated region. This is a
rather nasty expression that requires us to recalculate N fields at each time step.
Fortunately, there is a simplification of this formula that is discussed by Brown
[10], Section 5.4 (see also James [23] and Müller and Schlömerkemper [30]). The
simplified formula requires only the field of the whole body and the magnetization.
It is

Fsi = (traction force)+ 2π
∫
∂Vi

(m · n)2n da

−
∫
Vi

(m · ∇2ψ) dy+
∫
Vi

(m · ∇ha) dy. (188)

Here,ψ is obtained from (183). We note that this formula is to some extent disputed;
calculations of Müller and Schlömerkemper [30] that are based directly on the
atomic forces produced by a lattice of dipoles give a different boundary term than
that in (188).

(iv) Configurational force on a magnetoelastic interface.
Finally, magnetic fields alone (without stress) clearly can drive a magnetoelastic
interface, so the formula for the configurational force needs modification. This has
been done under the present assumptions by James [23], so we simply record the
formula for the configurational force specialized to PRMM:∫

St

[[det∇y
(
h ·m+ 2π(m · n)2

)+ 〈t〉 · ∇yn]] da. (189)

Here, we have considered a single interface and we have used the notation of
Section 5. The kinetic law is, therefore,

ṡi = f

(∫
St

[[det∇y(h ·m+ 2π(m · n)2)+ 〈t〉 · ∇yn]] da

)
. (190)

We do not attempt a study of the well-posedness of PRMM. However, we observe
that, since in PRMM no new kinematic variable are introduced—the unknowns are still
R(t), c(t), s1(t), . . . , sN (t)—and, since the magnetization determines the field uniquely,
then the study of well-posedness of PRMM is expected to be similar to that of PRBM.

9.2. Piecewise Rigid Thermodynamics

Piecewise rigid thermodynamics (PRT) is the natural thermomechanical extension of
PRBM. We permit only deformations with gradient on the energy wells, but we allow
the value of the free energy at each well to be an arbitrary smooth function of absolute
temperature θ > 0, as is appropriate when we consider both austenite and martensite
phases. We also allow the heat conduction problem to be general. Here, we formulate
the theory for a simple laminate.

Since the presence of thermodynamics does not alter the forms of the laws of me-
chanics, we carry over the equations of Sections 7 and 8 unchanged, except that now
we admit a more general thermodynamic configurational force. The two wells will be
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denoted SO(3)U1 and SO(3)U2 to keep the notation consistent with that of Section 7,
even though in the thermodynamic case it is more natural, say, to associate U1 with
austenite and U2 with martensite (We discuss at the end of this section the extension to
the interesting case of austenite-twinned martensite).

Let ϕ1(θ) and ϕ2(θ) represent the values of the free energy at the two wells SO(3)U1

and SO(3)U2, respectively. By the frame-indifference of the free energy, these functions
do not depend on the value of the deformation gradient on the respective wells. We adopt
the following notation for thermodynamic quantities:

ε . . . internal energy per unit mass,

η . . . entropy per unit mass,

ϕ . . . free energy per unit mass,

q . . . referential heat flux, (191)

and we religiously use a Lagrangian description. The basic unknown functions in PRT are
the motion (62), which is determined by the functions yc(t),R(t) ∈ SO(3), s1(t), . . . ,
sN (t), t > 0, and the temperature field θ(x, t), x ∈ �, t > 0. For the purpose of
formulating the equations, we assume that θ ∈ C∞ on sets of the form {x ∈ �: si (t) <
x · n < si+1(t), i = 0, . . . , N }, and θ has traces from the right and left on the interfaces
{x · n = si (t)}. We assume the (anisotropic) Fourier’s law as the constitutive equation
for the referential heat flux:

q = −K∇θ, x ∈ �, t > 0,

where K = χK2 + (1− χ)K1, (192)

and the matrices K1 and K2 are positive-definite thermal conductivity tensors associated
with phases 1 and 2 and χ is the characteristic function introduced in (58).

Remark 9.1. Fourier’s law is more commonly written in the spatial description. If we
let grad denote the spatial gradient, F = ∇y the deformation gradient with polar decom-
position F = χR2(t)U2 + (1− χ)R1(t)U1, q̃ = 1

det F Fq the spatial heat flux, θ̃ (y, t) the
Eulerian temperature field, χ̃ the Eulerian phase marker (χ̃(y(x, t), t) = χ(x·n), x ∈ �),
then by straightforward calculations (192) is equivalent to

q̃ = −(χ̃R2K̃2RT
2 + (1− χ̃)R1K̃1RT

1 )grad θ, (193)

where

K̃α = 1

det Uα

U−T
α KαUα, α = 1, 2. (194)

The measured heat conductivity tensors of the two phases would be identified with the
tensors K̃α .10 The referential heat conductivity tensors Kα are then obtained from (194),
and in practice they differ little from their spatial counterparts.

10 The presence of the rotation matrices Rα in (193) is familiar to workers in continuum mechanics, but
Fourier’s law is not usually written this way. The presence of the rotation matrices accounts for the fact that
the principal axes of the conductivity tensor rotate with the crystal during deformation.
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By use of the thermodynamic relations ϕ = ε−θη, η = −∂ϕ/∂θ , and the assumption on
the free energy, we get the following formulas for the (Helmholtz) free energy, entropy,
and internal energy:

ϕ(θ) = χϕ2(θ)+ (1− χ)ϕ1(θ),

η(θ) = −(χϕ′2(θ)+ (1− χ)ϕ′1(θ)),

ε(θ) = χ(ϕ2(θ)− θϕ′2(θ))+ (1− χ)(ϕ1(θ)− θϕ′1(θ)). (195)

Here, we have suppressed the dependence on (x, t). We also get a formula for the specific
heat at constant deformation gradient (CF = −θ∂2ϕ/∂θ2),

CF = −θ(χϕ′′2 (θ)+ (1− χ)ϕ′′1 (θ)). (196)

There are now two main tasks: to formulate and specialize the energy equation and to
calculate the thermodynamic configurational force. We first consider the energy equation.
Omitting radiation, the general form of the energy equation is

d

dt

∫
P
ρ0

(
ε + 1

2
|ẏ|2

)
dx =

∫
∂P

(ẏ · Tn̂− q · n̂) da, (197)

for all regular P ⊂ �. By standard arguments11 in continuum thermodynamics—the use
of Reynold’s transport theorem, the power theorem, and the thermodynamic relations
between internal energy and entropy—this is equivalent to the following local form:

ρ0θη̇ = −div q on the sets {x ∈ �: si (t) < x · n < si+1(t), i = 0, . . . , N }, (198)

and the jump conditions,

[[ρ0ε]]ṡi = [[q · n]]− [[ẏ]]〈Tn〉, i ∈ {1, . . . , N }. (199)

If we now insert the constitutive equations (192), (195), and (196) into (198), we get

ρ0CF θ̇ = div(K∇θ), (200)

or, written out in full,

− ρ0θ(χϕ
′′
2 (θ)+ (1− χ)ϕ′′1 (θ))θ̇ = div((χK2 + (1− χ)K1)∇θ). (201)

Hence, PRT also achieves a substantial simplification of the heat conduction problem:
On each region between interfaces in the reference configuration, the energy equation
is the classical heat equation. This is supplemented by the jump condition (199) which
expresses that the moving interfaces are sources of energy.

Now we turn to the configurational force. One consequence of the work of Abeyaratne
and Knowles [1] [3] on kinetics of phase boundaries in the thermodynamic setting is

11 The only slight difference from the standard line of argument is that in PRT we do not have the constitutive
relation for the Piola-Kirchhoff stress, T = ρo∂ϕ/∂F; however, the identity T · ∇ẏ = 0 (the vanishing of the
stress power) of PRT allows the same steps to go through.
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an assessment of continuity conditions of temperature across the phase boundary. In
the nonadiabatic case this can be argued on the basis of the well-posedness of the heat
conduction problem (199), (200); that is, if for a moment we regard [[ẏ]]〈Tn〉 as assigned
and pose typical initial and boundary conditions, then this is a heat equation with a
moving energy source, which can be solved via Green’s functions to yield a continuous
temperature field. Thus we assume the temperature is continuous. In the thermodynamic
setting, the formula for the configurational force is obtained from the entropy production,
given by

E = d

dt

∫
�

ρ0η dx+
∫
∂�

q · n̂
θ

da. (202)

The second law of thermodynamics is E ≥ 0. Use of Reynold’s transport theorem and
the constitutive relations for entropy and heat flux gives

E =
N∑

i=0

∫
�∩{si<x·n<si+1}

− 1

θ2
q · ∇θ dx+

∫
�∩{x·n=si (t)}

[[
−ρ0ηṡi + 1

θ
q · n

]]
da. (203)

Using the continuity of the temperature, we substitute for the 1
θ
[[q · n]] using the jump

condition (199) to give

E =
N∑

i=0

∫
�∩{si<x·n<si+1}

− 1

θ2
q · ∇θ dx

+
∫
�∩{x·n=si (t)}

1

θ
[[ρ0ϕ − (∇yn) · 〈Tn〉]]ṡi da. (204)

Dissipation therefore arises from heat condition in bulk and from dissipation of energy at
interfaces. Motivated by this formula (and following previous works), the configurational
force is

[[ρ0ϕ − (∇yn) · 〈Tn〉]]. (205)

The kinetic law is, therefore,

ṡi = f ([[ρ0ϕ − (∇yn) · 〈Tn〉]]), (206)

with ξ f (ξ) ≥ 0. Note that the positive-definiteness of the conductivity tensors already
implies that the first term of (204) is nonnegative, so that the second law of thermody-
namics holds.

While we do not do a complete analysis of the well-posedness of PRT here, we make
some remarks on this issue. The main concern is the quantity [[ẏ]]〈Tn〉 = −ṡi [[(∇yn) ·
〈Tn〉]], which in PRBM was integrated over the interface. Here, the jump condition for
the energy equation seems to require the local value of the average traction at interfaces,
which does not couple to other equations. To discuss this concern, let us assume for
simplicity linear kinetics,

ṡi = µ([[ρ0ϕ − (∇yn) · 〈Tn〉]]). (207)

We first eliminate the term [[ẏ]]〈Tn〉 from the jump condition (199) using the kinetic
law (207). Then, the energy equation and jump condition involve only the temperature



110 R. D. James and R. Rizzoni

field and the unknown velocities of the interfaces. Apparently, they can be solved using
Green’s functions to yield the temperature field as a functional of the unknown interfacial
positions. Now we integrate the kinetic law (207) over each interface. This integrated
kinetic law will couple the heat conduction equation with the balances of linear and
rotational momentum as formulated above. This formulation has the promise of being
well-posed.

We now make some final remarks about the extension of PRT to perhaps its most
interesting application: an array of austenite-martensite interfaces. The kinematics of
the austenite-martensite interface has been studied by Wechsler, Lieberman, and Read
[41], and the connection between their calculations and “energy wells” was given by Ball
and James [5]. Except for a small transition layer, the deformation gradient associated
with this structure is supported on three energy wells, SO(3)Ua , SO(3)U1, and SO(3)U2,
the first associated with austenite and the others with two variants of martensite. The
presence of the austenite places a strong kinematic restriction on the martensite bands
that meet it, with the following consequences: the bands of martensite are very fine and
the volume fraction of one martensite variant relative to the other is fixed. If the austenite-
martensite interfaces are sufficiently far apart, then some bands of martensite will not
impinge on the austenite-martensite interface, and these bands will not be subject to the
strong kinematic restrictions. In practice, depending on the applied loads, these might
tend to detwin, which would lead to a more complicated situation (for example, the kinetic
law for martensite-martensite interfaces would surely be different from that of austenite-
martensite interfaces). Assuming that the austenite-martensite interfaces are sufficiently
close together so that each martensite band meets an austenite-martensite interface,
then it is reasonable to model this situation as a simple laminate. The two deformation
gradients would then be given by Ra(t)Ua and Rm(t)(λR̂U2 + (1 − λ)U1), where λ

is the relative volume fraction of martensite variants and we have the compatibility
conditions,

Rm(λR̂U2 + (1− λ)U1)− RaUa = a⊗ n,

R̂U2 − U1 = c⊗m. (208)

In fact, these equations are exactly the equations of the crystallographic theory of
martensite. For the energy equation, it is of course natural to use the thermal conductivity
Ka in the austenite region; in the twinned martensite region it is natural to use the formula
for the effective conductivity of a laminate Keff. The expression for the latter should be
quite simple because of the twinning relations that follow from the second of (208) and
the structure of the martensite wells (29). (Finding the measured conductivity tensor for
single crystal martensite is likely to present a greater problem.) A simple estimate for
the entropy of austenite and martensite (needed for the energy equation) can be obtained
from the measure latent heat of transformation and the specific heats of the individual
phases. With these assumptions, this problem falls into the framework of PRT given
above.
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Appendix 1

Here we show that the determinant of the positive-definite matrix M̃ defined by (171) is
bounded away from zero on (0, t∗). This was used in Proposition 8.4.

Lemma 9.1. Assume Hypotheses H of Section 8.3. Then det M̃ > ε > 0 on (0, t∗).

Proof. Clearly the determinant of M̃ could only possibly sneak to zero at t∗. If that
were true, there would be an increasing sequence ti → t∗ and a family of unit vectors
ẽi = (ṽi

c, w̃i
s, ω̃

i
) such that M̃(ti )ẽi → 0. After taking another subsequence, we can

assume that ẽi → ē = (v̄c, w̄s, ω̄), |ē| = 1. Let ei = (ṽi
c,M−1(ti )w̃i

s, ω̃
i
) and assume a

further subsequence is taken so that ei /|ei | → e, |e| = 1. By direct calculation,

detM−1 = M
N∏

j=0

1

M̂(sj )− M̂(sj+1)
, (209)

and so, on the present sequence it is bounded from below. Thus, using also the condition
|ẽi | = 1, we have lim inf |ei | > 0. Therefore,

ẽi · M̃(ti )ẽi = ei ·M(ti )ei → 0, (210)

which shows immediately that e = ±(0, 0, 0; . . . , 1√
2
, −1√

2
, . . . , 0; 0, 0, 0) and also that

ṽi
c → 0, ω̃i → 0, (211)

and so |w̃i
s | → 1. Let vi

s =M−1(ti )w̃i
s and denote the middle part of the null vector e,

i.e., the N -dimensional vector between the semicolons, by eN . We can write

vi
s

|vi
s |
= eN + δi pi , |pi | = 1, δi ≥ 0, δi → 0. (212)

Using the form of M̃ (cf. (171) and (125)) and the conditions (210) and |w̃i
s | → 1, we

have the following restrictions on vi
s :

|a|2|vi
s |2
(

vi
s

|vi
s |
·M(ti )

vi
s

|vi
s |
)
+ 2|vi

s |
(
C(ti )

vi
s

|vi
s |
)
(Aωi ) → 0,

Mvi
s → w̄s, (213)

|w̄s | = 1. We will show that these are contradictory. We have from vi
s = M−1(ti )w̃i

s

and vi
s

|vi
s | → eN that |vi

s | → ∞. For sufficiently large i the smallest eigenvalue of M(ti )

corresponds to the largest eigenvalue of M−1(ti ), which is the singular one. A short
calculation based on (168) and (169) gives it as ci (M̂(sk+1(ti )) − M̂(sk(ti ))), where
lim inf ci > 0. Hence, we divide the first of (213) by |vi

s | and pass to the limit i →∞,
using the boundedness of C(ti ); we get

(M̂(sk+1(ti ))− M̂(sk(ti )))|vi
s | → 0. (214)
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Hence, |vi
s |M(ti )eN → 0, and the the second of (213), together with the decomposition

(212), gives

δi |vi
s |M(ti )pi → w̄s, |w̄s | = 1. (215)

Case 1. δi |vi
s | is bounded. In this case, by taking further subsequences, we can assume

that

δi |vi
s | → ν, pi → p, (216)

with p not in the limiting null-space of M and ν "= 0 (cf. (215)). After substitution of
(212), the first of (213) becomes

|a|2|vi
s |2(eN ·M(ti )eN + 2δi eN ·M(ti )pi + (δi )2pi ·M(ti )pi )

+ 2|vi
s |(C(ti )(eN + δi pi ))(Aωi )→ 0. (217)

The term |vi
s |C(ti )eN → 0 by the special form of C and the condition (214). (Here, we

use inf |A(sk(ti )| > 0 to estimate sk+1(ti ) − sk(ti ) in terms of M̂(sk+1(ti )) − M̂(sk(ti ))
as explained just after Hypothesis H.) Therefore, the last term of (217) tends to zero,
because δi |vi

s | is bounded and ωi → 0, which leaves

|vi
s |2(eN ·M(ti )eN + 2δi eN ·M(ti )pi + (δi )2pi ·M(ti )pi )→ 0. (218)

We see, using the condition |vi
s |M(ti )eN → 0, that the middle term vanishes. Thus the

positive first and third terms must separately tend to zero, which in the latter case yields

lim sup
i→∞

ν2p ·M(ti )p = 0. (219)

It follows that p = ±eN , which contradicts the condition (215).

Case 2. δi |vi
s | → ∞. In this case we have by (215) that, for a suitable subsequence and

choice of ±,

pi →±eN . (220)

However, this contradicts the fact, which follows from (212), that pi is approximately
perpendicular to eN ; that is, taking the inner product of the first of (212) by itself,

1 = 1+ 2δi pi · eN + (δi )2, (221)

giving that

δi = 0, i ≥ i0, (222)

for some positive integer i0. This contradicts (215).
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