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We propose an elasticity theory for one- and two-dimensional arrays of globular proteins for which the free
energy is affected by relative position and relative rotation between neighboring molecules. The kinematics of
such assemblies is described, the conditions of compatibility are found, a form of the free energy is given, and
formulas for applied forces and moments are developed. It is shown that fully relaxed states of sheets consist
of helically deformed sheets which themselves are composed of helical chains of molecules in rational direc-
tions. We apply the theory to the fascinating contractile deformation that occurs in the tail sheath of the virus
bacteriophage T4, which aids its invasion of its bacterial host. Using electron density maps of extended and
contracted sheaths, we approximate the domains of each molecule by ellipsoids and then evaluate our formulas
for the position and orientation of each molecule. We show that, with the resulting kinematic description, the
configurations of extended and contracted tail sheaths are generated by a simple formula. We proposed a
constrained version of the theory based on measurements on extended and contracted sheath. Following a
suggestion of Pauling �Discuss. Faraday Soc. 13, 170 �1953��, we develop a simple model of the molecular
interaction. The resulting free energy is found to have a double-well structure. Certain simple deformations are
studied �tension, torsion inflation�; the theory predicts a first-order Poynting effect and some unexpected
relations among moduli. Finally, the force of penetration is given, and a possibly interesting program of
epitaxial growth and patterning of such sheets is suggested.
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I. INTRODUCTION

A remarkably large number of biological structures are
composed of identical protein molecules, or mixtures of a
few different protein molecules, in regular arrays. Examples
are microtubules, bacterial flagella, F-actin filaments, and vi-
ral coats. These are different from typical inorganic crystals
in that the individual molecules are composed of many atoms
and the whole array is typically not a three-dimensional �3D�
crystal but is often a single-molecule-thick regular array on a
sheet, either flat, curved, or polyhedral, or else in a linear
chain. Often the latter adopt helical forms, and, in the ex-
ample below of the bacteriophage T4 tail sheath, the cylin-
drical sheath is composed of two families of helical chains of
proteins. Besides the reduced dimensionality and natural cur-
vature, the protein-protein interactions involve one or more
bonding sites with groups of bonded atoms distributed over
the bonding site. Because of this, the interactions can be
complex �from a first principles’ viewpoint� and proteins ex-
ert both forces and moments on each other. However, a sim-
plifying feature of the interactions is that individual protein
molecules in such arrays predominantly interact only with
nearest neighbors.

With the rapid development of optical tweezers and
atomic force microscopes �1,2�, it has become possible to

subject a protein structure to a force or moment and to mea-
sure its elastic response. These experiments seem to be often
interpreted in terms of classical macroscopic theories of elas-
ticity. For example, Kirchhoff’s rod theory is often used to
interpret experiments on chains such as DNA �3–5�. As dis-
cussed by these authors, Kirchhoff’s rod theory is expected
to be valid when the length of the chain is much larger than
its diameter and helical pitch, and it has been used success-
fully in such cases. But Kirchhoff’s rod theory is built on
certain assumptions relating to the macroscopic theory of
nonlinear elasticity. Thus, for example, in its simplest aniso-
tropic form, three suitable bending-torsion experiments suf-
fice to determine the moduli, meaning that the mechanical
behavior in all subsequent experiments is then determined. In
addition, with only a few molecules �138 in the case of the
T4 tail sheath� or with localized large curvatures, a molecular
elasticity theory may be needed.

For these reasons we develop here an elasticity theory that
is suitable for these protein arrays. The proteins themselves
have irregular yet well-defined shapes and they interact via
localized bonding sites. We steer a course midway between
detailed first principles calculations on the given protein se-
quence �which, at present, would leave us stuck on the pro-
tein folding problem� and macroscopic nonlinear elasticity.
First, each molecule is given a position and orientation. We
explain how position and orientation are related to detailed
structure, in a manner that is consistent with the results of
first principles calculations. Our definition is different from
the usual one, but seems to have some advantages. It also has
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the property that the position and orientation are given by a
translation and rigid rotation of a reference molecule that
best approximates, in a least squares sense, the deformed
molecule. As for interactions, we focus on pairwise forces
and moments, because bonding between globular proteins is
often localized at the region of contact between two proteins.
Because we have an orientation variable as well as a posi-
tional one, our theory also has points of contact with the
theory of liquid crystals, but in the end the theory is quite
different.

We propose a form of the free energy based on these ideas
�Sec. III�. Imposing the condition of frame indifference, we
define certain “strain variables” upon which the free energy
depends. Conditions of compatibility concern the extent to
which these strain variables can be assigned independently:
for sheets, we find that necessary and sufficient conditions
for compatibility �of a simply connected sheet, defined pre-
cisely below� are that a certain pair of sums of four terms
vanishes. These relate to the process of checking compatibil-
ity around elementary squares consisting of four molecules.
We find these conditions to be very useful.

For both chains and sheets, helical configurations arise as
the natural ordered structures. In particular, under general
conditions they are the free energy minimizers in the absence
of boundary conditions. These results can be considered as
analytical expressions of the ideas of Crane �8�. Ultimately
the reason is the same reason that these configurations are
natural in nonlinear elasticity �Ericksen �9��. To oversimplify,
in a helical configuration any two parts of the chain, of equal
monomer length, are related by a Euclidean transformation.
Therefore, the equilibrium of a short section implies, via
rotation and translation, that the whole helix is in equilib-
rium. In the present context they play a deeper role: fully
relaxed states of a sheet governed by our free energy consist
of helically deformed sheets which themselves are composed
of helical chains of molecules �Sec. VIII�.

Using this theory, we study of deformations of the tail
sheath of bacteriophage T4 �Fig. 1�. Bacteriophages are vi-
ruses that attack bacteria. The T4 virus is composed of a
capsid containing the viral DNA �Fig. 1�a�� and a tail shown
extending down from the capsid. The tail consists of a pair of
concentric cylinders �Fig. 1�b�� each about 1000 Å long. The

inner tail tube with a diameter of about 90 Å is surrounded
by the tail sheath with an outer diameter of about 240 Å. The
sheath is composed of six parallel helices, made from chains
of a single type of protein. Although the tail sheath is a single
molecular layer protein sheet, it should not be considered �as
is assumed by nonlinear plate theory� thin relative to its
radius of curvature, this ratio being �thickness� / �mean
radius of curvature��1.

Prior to invasion of the host, the sheath proteins are ar-
ranged as steeply pitched helices, and the tail adopts so-
called extended structure. During the virus’ attack on a bac-
terium, the tail sheath changes shape dramatically; the
protein helices compress, causing the sheath to shorten and
fatten into a more compact contracted structure. This drives
the relatively rigid inner tail tube through the cell wall, mak-
ing a passage for the viral DNA to pass into the host �Fig.
1�c��. During this process the sheath contracts irreversibly to
about 1 /3 of its original length accompanied by a 50% in-
crease in outer diameter. The transformation has many fea-
tures in common with martensitic phase transformations, as
has been noted by Olson and Hartman �7�. For a general
review of T4 tail structure and function see Rossmann et al.
�10�.

Once the viral DNA is inside the host, it reprograms the
host cell to produce all ingredients needed to form new vi-
ruses. The viral protein molecules produced by this process
self-assemble into virus progeny within the host, eventually
causing it to burst, releasing the viruses to infect other hosts.

We apply the theory of the protein sheet to the tail sheath
of bacteriophage T4. Using measured electron density maps
of extended and contracted sheath �11,12�, we identify three
domains in each molecule and approximate these by ellip-
soids. We then define the structures of the two phases. We
develop a simple formula that produces these structures �Eq.
�40��, and applies to any any model of the molecule, how-
ever complex. The simplicity of this formula arises from the
fact that, even though the molecule itself may be complex,
the relationship between different molecules is very simple.
Based on the experimentally observed mode of deformation,
we adopt a constrained theory for the sheath. The constraints
are exactly satisfied by both extended and contracted sheath.
The resulting theory has surprising implications with regard
to the response of the sheath to different loadings, including
a strong first order Poynting effect, unexpected relations be-
tween moduli, certain combinations of applied axial force
and moment that do no work on the sheath, and a certain
relation between the force and moment needed to transform
contracted to extended sheath. Among these results, there are
numerous possible points of comparison with future small-
scale quantitative experiments.

A very early model of helical contraction proposed by
Pauling �13� provides a basis for simplifying our free energy.
Pauling envisioned that helices forming a cylinder could be
compressed to the point where adjacent turns of the helix
would form bonds. This leads to a simple model of interac-
tions with one family of bonds guiding assembly and another
causing contraction. As higher resolution images of the T4
tail sheath become available �11�, this remains likely the
principal mechanism for sheath contraction. Guided by Paul-
ing’s mechanism, we build a simplified free energy for the
T4 tail sheath.

FIG. 1. �Color online� �a� Structure of bacteriophage T4, based
on electron microscope structure analysis to a resolution of about
2–3 nm, from �6�. Reproduced with permission of Fred Eiserling.
�b� A cross section showing concentric tail tube and sheath annuli.
�c� Schematic of contraction process �7�.
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The deformation of the T4 tail sheath is a particularly
interesting case for the theory for several reasons: �1� very
large changes of shape in an organized protein structure take
place as a means of producing force, �2� the shape change
has been identified as of martensitic type, which suggests a
multiwell elasticity theory, and �3� there is an interest in
understanding how this phase transformation relates to non-
biological martensitic transformations, and in particular how
the force and energy of contraction compare in the biological
and nonbiological cases. The latter could suggest strategies
for manmade analogs of the T4 tail sheath. Finally, �4� a
quantitative evaluation of the energy stored has interesting
biological significance. That is, in bacteriophage T4, as in all
viruses, there is no mechanism for the production of energy.
Thus, all the energy that is released upon contraction of the
tail sheath must be stored during the assembly phase of the
virus, from apparently high free energy molecules created
during translation of the viral genome, aided by the energy
consuming translation mechanism of the bacterial host. For
the purpose of storage of this energy, the process of epitaxial
stabilization, familiar from the growth of semiconductor
compounds on single crystal substrates, apparently plays an
important role. Motivated by these ideas we suggest such a
program of epitaxy �Sec. X�.

Mathematical notation. Boldfaced uppercase letters are
3�3 matrices and boldfaced lowercase letters are vectors in
R3. Components are relative to a fixed orthonormal basis
throughout. Lowercase greek letters denote components of
vectors while lowercase latin letters are indices for mol-
ecules, e.g., the �i , j�th molecule of a sheet. Z2 denotes all
pairs of integers �i , j�. The summation convention is used;
A ·B is the inner product between matrices, A ·B=A��B��,
and �A�=�ATA. The superscript T denotes transpose, trA
=A�� is the trace of A, I is the identity matrix, �a � b� is the
matrix with components a�b�, SkewA= �1/2��A−AT�, and
3�3 rotation matrices are denoted by SO�3�= �R :RTR
=I ,detR= +1	.

II. KINEMATIC DESCRIPTION OF INDIVIDUAL
PROTEIN MOLECULES, CHAINS, AND SHEETS

We are interested in chains and sheets consisting of pro-
tein molecules. For simplicity we shall consider both struc-
tures to consist of identical molecules.1

A molecule will be specified by a pair �y ,R� consisting of
a position vector y�R3 and a rotation matrix R�SO�3�,
termed, respectively, position and orientation. Protein chains
and sheets are constructed by building up one- and two-
dimensional arrays of these molecules. For chains we choose
a set of integers �1, . . . ,N	 corresponding to N molecules and
assign mappings

y:�1, . . . ,N	 → R3, R:�1, . . . ,N	 → SO�3� . �1�

For sheets we denote molecules by pairs of integers �i , j�
�Z2. We consider a set D= �1, . . . ,N	� �1, . . . ,M	 and map-
pings

y:D → R3, R:D → SO�3� . �2�

For the configuration of a single molecule we use the obvi-
ous notation �yi ,Ri� for chains and �yi,j ,Ri,j� for sheets.
More generally, D could have the form ��Z2 where � is a
domain in the plane.

The usual way to define orientation of a molecule, or a
collection of molecules, is to take moments of the �time av-
eraged� mass distribution �see, e.g., de Gennes �14�, Chap.
2�, typically the second or fourth moment. Below, we suggest
a different definition of orientation that seems to have advan-
tages with regard to the connection with molecular dynamics
simulation.

Each molecule consists of � atoms of C, H, and various
other elements in a folded configuration. For each atom we
assign a corresponding atomic mass mi , i=1, . . . ,�. Near
physiological temperatures, the atoms in a protein molecule
undergo rather large vibrations, but it is still sensible to talk
about the time averaged position on macroscopic time scales
and we shall assign these average positions as y1 , . . . ,y�.
Time averaged momentum has dynamical significance, so we
use it to define the position of a molecule. We will take its
position to be its mass averaged position,

y =



i=1

�

miyi



i=1

�

mi

. �3�

From the same information we can also obtain a measure of
the orientation of a molecule. That is, we consider a mol-
ecule in standard position defined by fixed atomic positions
x1 , . . . ,x�. This standard position could for example be the
collection of positions in a crystallized form of the molecule,
deduced from x-ray crystallography, or from theoretical stud-
ies of the configuration of single molecules in solution. From
these reference positions we define the mass averaged refer-
ence position as above,

x =



i=1

�

mixi



i=1

�

mi

. �4�

A natural concept of orientation is obtained through the av-
erage deformation gradient of the molecule, defined in the
following way:

F =



i=1

�

mi�yi − y� � �xi − x�

r2

i=1

�

mi

. �5�

Here, r can be taken as a typical radius of the reference
molecule, e.g.,

1The extension to regular arrays of several different proteins is
expected to be similar.
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r =�
 mi�xi − x�2


 mi

. �6�

�The position and orientation of a molecule will turn out to
be independent of r.� The expression �5� for F is dimension-
less and translation invariant. Typically, it will be true that
det F�0, which we assume. If the yi represent a rigid defor-
mation of the reference molecule, i.e., yi=Qxi+c, i
= �1, . . . ,�	, Q�SO�3�, then it follows from Eq. �5� that

F = QV , �7�

where

V =



i=1

�

mi�xi − x� � �xi − x�

r2

i=1

�

mi

. �8�

The latter is interpretable as a normalized reference moment
of inertia. In general we will use the rotation in the polar
decomposition of F as a measure of orientation. That is, we
will write

F = RU where R � SO�3� and U = UT is positive definite,

�9�

and define R in this decomposition as the orientation. For
molecules that deform as well as rotate and translate, R is
still a natural measure of orientation.

These definitions of position and orientation, the latter
defined by a polar decomposition of the apparently compli-
cated formula for F, have several attractive features. First,
we observe that both F and y are linear functions of the
positions y1 , . . . ,y�. We have framed the definitions in this
way so that their second time derivatives are immediately
related to �time averaged� forces via the equations of mo-
lecular dynamics. Second, there is a useful variational char-
acterization of R and y. That is, R�xi−x�+y is the rigid
deformation that best approximates the mass distribution of
the molecule in the least squares sense. More precisely, if we
consider the rotation matrix Q and vector c that minimize2

min
c,Q�SO�3�

� �y�z� − ��Q�z − x� + c���2dm�z� , �10�

where dm is the mass measure of the molecule, i.e., m
=
mi�xi

, and y�xi�=yi, then it follows from the simple qua-
dratic minimization problem �10� that Q=R and c=y as de-
fined by Eqs. �3�, �5�, and �9�. The proof of this fact is
straightforward. First, by differentiating Eq. �10� with respect
to c we conclude immediately that c=y. Then we replace c
=y in Eq. �10� and simplify. The minimization over Q
�SO�3� then becomes

min
Q�SO�3�

�− tr�QTF�� = − max
Q�SO�3�

tr�QTF�

= − max
Q�SO�3�

tr�QTRU� = − max
Q̄�SO�3�

tr�Q̄U�

= − max
Q̄�SO�3�



�

	�e� · Q̄e�, �11�

where �e1 ,e2 ,e3	 are orthonormal eigenvectors of U with
corresponding positive eigenvalues �	1 ,	2 ,	3	. It is immedi-
ately seen that the latter maximization problem is uniquely

solved by Q̄=I, implying that Q=R.
The orientation R can be obtained from the formula R

=FU−1=F��FTF�−1, the square root being the unique
positive-definite square root. For the purpose of a con-
strained molecular dynamic simulation �with given R� it is
useful to have a linear constraint. A necessary3 condition that
R is related to F by Eq. �9� is that Skew�RFT�=0, that is,

Skew
R�

i=1

�

mi�xi − x� � �yi − y��� = 0, �12�

which is a linear constraint on the yi.
In summary, our basic kinematics of a molecule is speci-

fied by a pair �y ,R� defined by Eqs. �3�, �5�, �8�, and �9�. We
wish to emphasize again that this choice of kinematics does
not entail assumptions of rigidity of molecules. These formu-
las do allow one to determine our kinematic variables from
unrestricted first principles calculations. We note that there
are more complicated theories possible with this general type
of kinematics. A further possible generalization would be
that the free energy is affected by position and and full de-
formation gradient of molecules defined by �5�.

III. FREE ENERGY

Although all atoms have infinite range, each protein mol-
ecule interacts primarily with its close neighbors and we
shall develop the theory on this basis. Because bonding sites
are often localized and interlocking, molecules are expected
to exert both forces and moments on neighboring molecules.

We base the theory on a formula for the free energy. We
make two simplifying assumptions which easily could be
generalized: �1� the molecules are identical �thus we can use
the reference configuration introduced in Sec. II for all mol-
ecules�, and �2� we consider only nearest neighbor interac-
tions. For chains, the “nearest neighbor” of i� �2, . . . ,N
−1	 refers to the two molecules i−1, i+1 for interior mol-
ecules while it refers to the molecule 2 for i=1 and N−1 for
i=N. For sheets there are various possibilities. One can have
triangular lattices with each molecule bonded to six nearest
neighbors or rectangular lattices with each molecule having

2We write this as an integral rather than a sum to indicate that this
characterization of R and y applies to any mass distribution.

3This condition is nearly sufficient for the determination of R, the

only freedom being that if R satisfies Eq. �12� then so does RR̂

where R̂ is a 180° rotation about one of the eigenvectors of U. In
practice, if the configuration is changing slowly, this nonuniqueness
would not cause a problem.
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four nearest neighbors or more complicated situations. In the
case of four nearest neighbors the nearest neighbors of �i , j�
consist of all molecules of the form �i+1, j� , �i−1, j� , �i , j
+1� , �i , j−1� that lie in D. If not all four of these are in D we
call �i , j� a boundary molecule; otherwise, we call it an inte-
rior molecule. Here we write the free energy only in the case
of four nearest neighbors, the generalizations being auto-
matic.

Since such protein arrays are of interest in solution, the
assumptions are somewhat different than would be appropri-
ate for atoms in a polymeric chain or a crystal. In particular
the “free energy” will be taken as the free energy of the
protein assembly and a fixed volume V of the surrounding
solution. This is appropriate to the case that V is surrounded
by a large bath B having fixed temperature and fixed chemi-
cal potentials of species in solution. All free energies below
will depend on the temperature and chemical potentials, but
since these will be fixed throughout this paper, we will leave
these parameters out of the notation. As is well known the
presence of the solution profoundly affects the free energy of
the protein through osmotic effects, but it also affects the
form of the free energy. In particular, boundary molecules
may have a free energy that is different from interior mol-
ecules, because one or more of their bonding sites is un-
bonded and exposed directly to the solution.

In this simplest situation we will assume that, for chains,
there is a molecular interaction free energy which depends
on the position and orientation of a pair of molecules

�a ,R ,b ,Q� defined for a ,b�R3 and R ,Q�SO�3�. In or-
der to accommodate the possibility of boundary effects, we
distinguish the free energy contribution from the interaction
of the first and second molecules, 
1�a ,R ,b ,Q� and the next
to last and last ones, 
N�a ,R ,b ,Q�. The total free energy is
then

��y1,R1, . . . ,yN,RN� = 

i=2

N−2


�yi,Ri,yi+1,Ri+1�

+ 
1�y1,R1,y2,R2�

+ 
N�yN−1,RN−1,yN,RN� . �13�

The main physical assumption embodied here is that the con-
tribution to the free energy from a pair of molecules is unaf-
fected by the positions and orientations of all other mol-
ecules in the chain, in keeping with the idea that the main
free energy changes are due to changes in conformation at
the bonding site between a pair of molecules.

For sheets the assumptions are analogous. In this case
there are 15 different kinds of boundary molecules, depend-
ing on which of the four bonds is missing. To simplify the
notation we let B be the set of boundary molecules and write
the total free energy as

��y1,1,R1,1, . . . ,yN,M,RN,M�

= 

�i,j��Z2�D\B


1�yi,j,Ri,j,yi+1,j,Ri+1,j�

+ 
2�yi,j,Ri,j,yi,j+1,Ri,j+1� + 

�i,j��B


i,j
B , �14�

where 
i,j
B is a free energy for the boundary molecules. Each


i,j
B is one of the 15 functions describing the free energy of

interaction of boundary molecules with dependence on the
position and orientation of neighbors that are present. In
writing this free energy, we have effectively assumed that all
bonding sites of between molecules i , j and i , j+1 are the
same, independent of i and j, and the same for sites of the
form i , j and i+1, j. Also, in many interesting cases not all of
the 15 kinds of boundary molecules are represented. For ex-
ample, in an isolated T4 tail sheath as usually pictured, there
are only two kinds of boundary molecules.

The condition of frame indifference restricts the form of
the molecular free energies. We note first that, according to
the definitions �3� and �9�, the quantities y1 and R1 are trans-
formed into Ry1+c and RR1 under a superimposed rigid
body motion Ryi+c of all the atoms. Thus, in the case of
chains, the condition of frame indifference is �for interior
molecules�


�y1,R1,y2,R2� = 
�Ry1 + c,RR1,Ry2 + c,RR2� , �15�

which must hold independently for R ,R1 ,R2�SO�3�, and
c ,y1 ,y2�R3. Making the special choice R=R1

T and c
=−R1

Ty1, we see that


�y1,R1,y2,R2� = 
„0,I,R1
T�y2 − y1�,R1

TR2… = ��t,Q� ,

�16�

where Q=R1
TR2 is a relative orientation that is unaffected by

rigid body rotations and t=R1
T�y2−y1� is a relative transla-

tion which is also unaffected by superimposed rigid motions.
Note that Q is not simply the rotation which maps the orien-
tation of molecule 2 into that of molecule 1 �or vice versa�,
and similarly, t is not a simple translation of 2 into 1. Rather,
these quantities behave like strains, and describe the six de-
grees of freedom associated with the straining of bond sites
caused by changes of orientation and relative position of 1
and 2.

For sheets the restrictions of frame indifference are simi-
lar: the functions 
1 and 
2 in �14� both satisfy �16�. We let
�1,2 be the corresponding reduced functions defined by �16�
subscripted by 1,2.

IV. COMPATIBILITY

Compatibility concerns the extent to which one can pre-
scribe the quantities describing strain, or, more generally, the
functions on which the free energy depends after the condi-
tion of frame indifference has been imposed. In our case this
concerns the extent to which we can assign the relative trans-
lations and relative orientations.

In the case of chains we therefore assign
�t1 ,Q1 , . . . , tN−1 ,QN−1� and ask whether there are positions
and orientations �y1 ,R1 , . . . ,yN ,RN� consistent with these in
the sense that ti=Ri

T�yi+1−yi� and Qi=Ri
TRi+1, i=1, . . . ,N

−1. It is immediately seen that these conditions are solvable,
and all solutions are related to each other by exact rigid
motions of the entire molecule. Hence, the problem of com-
patibility for chains is analogous to the case of 1D rod theo-
ries in continuum mechanics: there are no conditions of com-
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patibility and the freedom is precisely overall rigid
deformations.

For sheets there are nontrivial restrictions of compatibil-
ity, as expected based on continuum shell theories. We begin
by considering the case of four bonding directions. For the
analysis below a path is a succession of nearest neighbors in
D and a loop is a closed path. We assume here that D is
discretely simply connected in the sense that every point is
connected to every other point by a path and any non-self-
intersecting closed loop in D�Z2 is the boundary of the
union of �closed� unit squares contained in D. We assign
relative translations and relative orientations

�ti,j,Qi,j�, �i, j� � Dr, and �t̂i,j,Q̂i,j�, �i, j� � Du,

�17�

where Dr,u are the subsets �i , j��D such that �i+1, j� ��i , j
+1�� are also in D �r denotes “right” and u denotes “up”�.
We ask whether there are positions and orientations
yi,j ,Ri,j , �i , j��D, that satisfy

ti,j = Ri,j
T �yi+1,j − yi,j� ,

Qi,j = Ri,j
T Ri+1,j, �i, j� � Dr,

t̂i,j = Ri,j
T �yi,j+1 − yi,j� ,

Q̂i,j = Ri,j
T Ri,j+1, �i, j� � Du. �18�

Immediately we see that there are some restrictions. For ex-
ample, if Ri,j has been determined, then by successive appli-
cation of �18�2,4 there are overdetermined equations for, say,
Ri+1,j+1, these being

Ri+1,j+1 = Ri,j+1Qi,j+1 = Ri,jQ̂i,jQi,j+1,

Ri+1,j+1 = Ri+1,jQ̂i+1,j = Ri,jQi,jQ̂i+1,j . �19�

Equating these, we get

Q̂i,jQi,j+1 = Qi,jQ̂i+1,j , �20�

or

Q̂i,jQi,j+1Q̂i+1,j
T Qi,j

T = I . �21�

This has the following interpretation: as we go, say, clock-
wise around a unit square in the lattice Z2, the product of the
Q’s �taken with transpose if the path goes to the left or
down� is the identity. Two neighboring squares, both tra-
versed clockwise, give such identities of the form

Q̂1Q2Q̂3
TQ1

T=I and Q̂3Q4Q̂5
TQ3

T=I which immediately gives

I=Q1
TQ̂1Q2Q̂3

TQ̂3Q4Q̂5
TQ3

T=Q1
TQ̂1Q2Q4Q̂5

TQ3
T, that is,

Q̂1Q2Q4Q̂5
TQ3

TQ1
T=I; this is a similar compatibility condition

for the rectangle consisting of the union of the two squares.

By induction and using the discrete simple connectedness4 of
D, this extends to any non-self-intersecting closed loop in
D�Z2.

So far, the argument concerns the solution of the last two
equations of �18�. For the translations, by again traversing a
unit square in the clockwise sense, we have from �18�1,3 that
Ri,jt̂i,j +Ri,j+1ti,j+1−Ri+1,jt̂i+1,j −Ri,jti,j =0, which, after pre-
multiplication by Ri,j

T gives

t̂i,j + Q̂i,jti,j+1 − Qi,jt̂i+1,j − ti,j = 0 . �22�

As above, equations of this form for neighboring squares can
be combined to an equation of compatibility for a rectangle
and then, by iteration, to a non-self-intersecting closed loop.

By this time it is clear that the pattern of argument is
essentially the same as that for differentials �i.e., this kind of
argument does not really use that the differentials are small,
if only nearest neighbors interactions are considered�. That
is, necessary and sufficient conditions for �17� to be compat-
ible are that the compatibility conditions for unit squares in
D, i.e., all equations of the form

Q̂i,jQi,j+1Q̂i+1,j
T Qi,j

T = I ,

t̂i,j + Q̂i,jti,j+1 − Qi,jt̂i+1,j − ti,j = 0 �23�

are satisfied. The necessity of these conditions has been
proved above. The sufficiency follows by giving arbitrarily
y0,0�R3 ,R0,0�SO�3�, assuming without loss of generality
that �0,0� is in D. Then, for any other �k ,m��DB, we con-
sider a path from �0,0� to �k ,m�. Successive application of
Eq. �18� determines first Rk,m and then yk,m, and every such
R ,y along this path. By a process of exhaustion, i.e., con-
struct a path which does not cross itself or any other path to
a point whose values R ,y have not been determined from a
previously determined one, we then determine all values
Ri,j ,yi,j. These satisfy all of the equations �18�. That is, by
construction, a point �i , j� and neighbor �i+1, j� ��i , j+1��
are each connected to �0,0� by a path used in the construc-
tion. These paths may coincide over some initial length, but,
once they depart from each other, they never intersect. Thus,
by possibly shortening the loop, we can without loss of gen-
erality assume the paths form a non-self-intersecting loop
with a single link removed. Satisfaction of �18� then holds as
a consequence of the compatibility condition for such loops.

There is clearly also uniqueness of the construction of
Ri,j ,yi,j up to the choice of R0,0 ,y0,0, which, by the frame
indifference of the quantities Q , t is equivalent to uniqueness
up to overall rigid deformation.

Suppose now we add additional bonding directions. Since
the equations �23� are both necessary and sufficient for the
existence of the positions and orientations, and these posi-
tions and orientations are uniquely determined up to overall
translation and rotation �which does not affect the �t ,Q�’s�,

4By the discrete simple connectedness of D, a non-self-
intersecting loop in D�Z2 encloses a union of squares that can be
completely exhausted by adding successive squares that share an
edge.
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then all values of �t ,Q� corresponding to other bonding di-

rections are uniquely determined by �ti,j ,Qi,j� , �t̂i,j ,Q̂i,j�. One
can write formulas for these. For example, if �as in the T4
sheath� we have the additional bonding directions �i , j�− �i
−1, j+1�, then

t̄i,j =
def

Ri,j
T �yi−1,j+1 − yi,j� = Qi−1,j

T �t̂i−1,j − ti−1,j� ,

Q̄i,j =
def

Ri,j
T Ri−1,j+1 = Qi−1,j

T Q̂i−1,j . �24�

In summary, with additional bonding directions, necessary
and sufficient conditions for compatibility are �23�, together
with the formulas of the type �24� that uniquely determine
the values of �t ,Q� for these additional directions in terms of

�ti,j ,Qi,j� , �t̂i,j ,Q̂i,j�.

V. HELICAL CONFIGURATIONS

As shown in Fig. 4 below, the tail sheath of bacteriophage
T4 is a sheet consisting of the union of two families of he-
lices. Helical structures arise often in biology and they also
have special position within the context of the present theory,
as we explain in this and the following sections.

From a purely geometric viewpoint Crane in 1950 �8�
argued that if two proteins have complementary bonding
sites and molecules bond at a specific angle, then chains of
these molecules are likely to from helices. In nonlinear elas-
ticity of rods and plates, helical configurations also arise in a
natural way �Ericksen �9�, Chouaieb and Maddocks �4�, and
Moakher and Maddocks �5��. In all of these arguments the
frame-indifference of the free energy plays a central role,
allowing the variables describing strain to be either constant
�in rod theory� or else to depend on fewer reference coordi-
nates for these special configurations.

We begin with chains and recall from �16� that the mo-
lecular free energy depends on relative translation and orien-
tation �t ,Q�. Motivated by the examples just cited we first
try to figure out what are all configurations
�y1 ,R1 , . . . ,yN ,RN� having constant values of �t ,Q�. In the
following section we explain the energetic significance of
this choice, beyond the obvious fact that such configurations
have the property that the molecular free energy is indepen-
dent of the molecule. This problem is immediately solved by
the considerations of compatibility of the preceding section;
we have to solve

Ri
T�yi+1 − yi� = t, Ri

TRi+1 = Q, i = 1, . . . ,N − 1,

�25�

and the general solution is

Ri+1 = R1Qi, yi+1 = y1 + R1

j=0

i−1

Q jt, i = 1, . . . ,N − 1,

�26�

where y1�R3 ,R1�SO�3� are arbitrary, and they are also
the values of position and orientation corresponding to mol-
ecule 1. It is clear from �26� that the choice y1�R3 ,R1

�SO�3� also corresponds to an arbitrary superimposed rigid
deformation of the whole array.

The positions of the molecules described by the equations
�26� lie on a helix. To see this put R1=I and note that Q
=I corresponds to the degenerate case of a molecules spaced
equally along a line all with the same orientation. So we
assume henceforth that Q�I. Then Q has an axial vector,
that is, a vector e�R3 whose direction is uniquely deter-
mined such that Qe=e. By suitable choice of the magnitude
of e, we can decompose t= t� + t�, t� ·e=0, t� �e; then the
second of �26� becomes

yi+1 = y1 + it� + 

j=0

i−1

Q jt�. �27�

The last term in �27� can be further simplified. To do so, note
that Q−I is invertible on the plane perpendicular to e and
define r by �Q−I�r= t� ,r ·e=0, so that Qr=r+ t�. Now, it-
erate the latter to get the identity,

Qir = r + 

j=0

i−1

Q jt�. �28�

Choosing the arbitrary translation y1=r �to put the origin on
the axis of the helix� and eliminating the sum in �27� using
�28� we have,

yi+1 = it� + Qir , �29�

which, accounting for the conditions r ·e=0 and Qe=e, is
the equation of a helix. The orientations Ri of these helical
configurations also vary in a regular way along the helix in a
manner given by �26� and illustrated, for example, in Fig. 5.

The basic geometric information, like formulas for the
pitch and radius of the helix in terms of the given informa-
tion �t ,Q�, can be read off from the formulas given in the
preceding paragraph. In particular, if �
1 is the smallest
number such that Q�=I, then the pitch is � � t��. The radius is
��Q−I�−1t��, the inverse taken on the plane perpendicular to
e. This inverse is given by �Q−I�−1= �−1/ tr�Q−I���Q−I�T.

Below, we will observe that the relaxed configurations of
extended or contracted T4 tail can be viewed as a collection
of six helices, each with 24 molecules. To evaluate the posi-
tions and orientations of all these molecules from experimen-
tal data, it will be useful to understand how the orientations
of the molecules on a helix can be varied independently from
the shape of the helix. This is not immediately obvious from
the formulas �26�, but is easy to work out. First it is clear
geometrically �and it can be shown from the formulas above�
that if the shape of the helix is given, i.e., all of the yi, then
assignment of the orientation of one of the molecules on the
helix determines the orientations of all the others. Thus there
is expected to be one free rotation matrix R to define this
orientation. Given a helical configuration defined by
�y1 ,R1 ,Q , t�, then all other helical configurations with the
same positions are given by

�y1,R1R,RTQR,RTt�, R � SO�3� . �30�

To use this formula, one can think of beginning with a helix
of the desired shape and then choosing R�SO�3� so that
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R1R is the desired orientation of molecule 1 and all the
others then follow.

For sheets there are similar kinds of helical configura-
tions, having the shape of a ribbon bent and twisted into a
helix. These are discussed below in Secs. VI and VIII.

VI. BACTERIOPHAGE T4 TAIL SHEATH

In this section we specialize the formulas given above to
the T4 tail sheath. The first task is to describe the sheath in
its extended and contracted configurations and identify the
positions and orientations using experimental measurements.

The T4 tail sheath can be viewed as a protein sheet as
defined above. We can think of a cylinder oriented vertically.
The lowest annulus of the cylinder is a circle of six mol-
ecules. Each of these six molecules generates a right handed
helical chain consisting of 23 molecules.5 Hence, we will
identify the molecules accordingly, �yi,j ,Ri,j�, i=1, . . . ,6, j
=1, . . . ,23.

We work in the usual orthonormal basis �e1 ,e2 ,e3� and
without loss of generality we will choose the overall rotation
and translation so that the axes of all the helices coincide
with e3 and the first annulus lies in the e1 ,e2 plane. The first
annulus is a circle �i.e., a degenerate helical chain�. Accord-
ing the results in Sec. V, this case corresponds to the case
where t= t0 is perpendicular to the axis of Q and a little
calculation shows that without loss of generality �by suitably
rotating the six molecules about the e3 axis� we can assume

t0 = �− �,0,0�, Q� = �cos � − sin � 0

sin � cos � 0

0 0 1
� , �31�

��0, and the fact that the six molecules are equally spaced
on the helix gives Q�

6=I⇒�=� /3. Without loss of general-
ity we write y1=��1/2 ,�3/2 ,0�. The radius of the circle of
positions is �.

Emanating from each of these six molecules is a helical
chain whose first molecule has now a given position and
orientation. According to results of Sec. V, we need to
specify �t ,Q� for each of these chains. In fact all of these
chains have the same �t ,Q� because suitable rigid rotations
and translations bring them into coincidence with each other:
the whole configuration of the tail sheath has sixfold sym-
metry. The axis of Q is again e3 so Q has the form �31�2,
Q=Q�. Thus, besides the radius � of the cylinder, we need to
determine the four parameters

� and t = ��1,�2,	� . �32�

For this purpose we first show that �1 ,�2 are determined by �
and �. Referring to Sec. V and using that the initial point is
y1=��1/2 ,�3/2 ,0�, we have from the equations t= t�

+ t� , �Q−I�r= t� ,r=y1 that �Q−I�y1= t�, from which �1 ,�2

are given by

�1 =
�

2
��cos � − 1� − �3 sin �� ,

�2 =
�

2
�sin � + �3�cos � − 1�� �33�

in terms of � and �. It remains to determine � ,	, and �. The
values of these depend on whether we consider an extended
or contracted sheath.

A. Extended tail sheath

Extended sheath has an interesting geometric property
that we term the 8/3 rule. The rule is that the eighth mol-
ecule along one of these helices, beginning at a molecule on
the first annulus, lies directly over the third molecule away
counterclockwise along the annulus �Fig. 2�. �The justifica-
tion of this rule from measured data of Leiman et al. �11� is

5Leiman et al. demonstrate �11� that the tail sheath consists of 23
annuli, rather than 24 as described in preceding papers. According
to this work the missing annulus can now be ascribed to the base-
plate, based on its detailed protein structure.

FIG. 2. �Color online� Illustration of the 8/3 rule of an extended
sheath. Top: the first eight molecules �i=1, j=1, . . . ,8� on the main
helix, viewed down the axis of the cylinder. Bottom: the first three
molecules �i=1,2 ,3 , j=1� on the first annulus, again viewed down
the axis. The slight touching of domains of neighboring molecules
on the bottom picture is an artifact of the ellipsoidal approximation;
in reality these do not touch.
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given at the end of this section.� Specifically, in our notation,

y1,8 · e1 = y3,1 · e1, y1,8 · e2 = y3,1 · e2. �34�

This statement and the helical structure of the tail imply
full periodicity, y�i,j+7� ·e1,2=y�i+2,j� ·e1,2 whenever these are
defined. With regard to the present theory, all the good prop-
erties of helical configurations discussed above �and below�
would hold without this “accidental” periodicity. This sug-
gests that its presence is perhaps related to something other
than the function of the tail, possibly its self-assembly via
annulus-by-annulus epitaxial growth. In this regard, if one
omits the last annulus, then the rest of the tail is exactly 1
period. In other words, without omissions, the 22nd annulus
lies directly over the first annulus. It will be seen below that
this 8 /3 rule also applies to the orientation, R�1,8�=R�3,1�.
This is of course the smallest period exhibited by the tail
sheath. Possibly these facts are related to the process by
which the tail tube directs the growth of the tail sheath,
which is assembled in the extended form �below, the con-
tracted form will not have this or a shorter period�.

The two equations �34� give apparently two restrictions
on the remaining parameters �� ,	 ,��. Written out using Eq.
�26�, these two conditions are

− 

j=0

6

Q�
j t + t0 + Q�/3t0 � e3. �35�

In fact this condition only involves � and is equivalent to the
pair of equations

2 + cos 7� − �3 sin 7� = 0, �3 cos 7� + sin 7� = 0.

�36�

These equations have simultaneous roots at �=2� /21
+2�n /7 where n is an integer. The root of interest �i.e.,
corresponding to a fraction of a turn in the counterclockwise
sense� is �=2� /21. From the form of t it can now be seen
that 21	 is the pitch of the helices.

It remains to prescribe the orientations of all the mol-
ecules. As explained in the few lines preceding Eq. �30� this
is assignable independently of the positions. Since we have
put R1=I, we may give this by giving the orientation of
molecule �1,1�, from which all the orientations of all the
molecules are determined. In summary, the following infor-
mation is needed from experiment for extended and con-
tracted tail sheaths: �1� the orientation of molecule �1,1�

=R1,1; �2� the radius of the cylinder of centers of masses =�;
�3� the pitch of the helices =21	.

We obtained these from electron density maps of Leiman
et al. �12� �we are grateful to Petr Leiman for the prepubli-
cation data on the extended sheath, without which the
present theory would be incomplete�. See the Appendix for
how these data were used to represent the molecules. Briefly,
these data do not give atom positions, but give an excellent
picture of relatively rigid collections of atoms called do-
mains. Both extended and contracted sheaths consist of three
such domains. We assumed charge neutrality and computed
centers of mass of domains, then used the formulas �3�, �5�,
and �9� to compute the position and orientation. Three issues
should be noted. �1� With three domains F is singular with
rank equal to 2; nevertheless, R is uniquely determined by
Eq. �9�. �2� These data were rotated about the axis of the
helix and translated into the position of molecule �1,1�. This
gives �=73.75 Å, 	=40.6 Å. We chose the extended sheath
to be the reference configuration so that R1,1=I. For a con-
tracted sheath R1,1 is given by Eq. �39� below. �3� Note from
Fig. 3 that masses of domains are not conserved. This is a
consequence of the flexibility of certain bonds, which causes
some mass to be lost by the averaging procedure inherent in
any 3D reconstruction. To give definite results we ignored
this problem and used the measured masses of each domain.

B. Contracted tail sheath

For the contracted tail sheath the evaluation is completely
analogous to the above except that the 8/3 rule is replaced
by a 12/1 rule,

y1,12 · e1 = y1,1 · e1, y1,12 · e2 = y1,1 · e2. �37�

As above this leads to a pair of equations for �,

1 − cos�11�� + �3 sin�11�� = 0,

�3 − �3 cos�11�� − sin�11�� = 0, �38�

having a simultaneous first positive root at �=2� /11. As
above, to complete the description, we need the orientation
of the first molecule R1,1, the radius of the cylinder �, and
the pitch of the helices, which in this case is 11	. Using the
electron density maps of Leiman et al. �11� in the same man-
ner as above, we get for the contracted sheath �=116.1 Å,
	=16.4 Å, and

FIG. 3. �Color online� Domain coordinates
used to determine orientation R1,1. The circle de-
notes the centerline of the cylindrical sheath and
each molecule is modeled by three domains. �The
three domains to the right represents a molecule
of extended sheath.� Total mass and center of
mass of each domain are shown to the right.
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R1,1 = � 0.426 0.4388 − 0.791

− 0.4378 0.8653 0.244

0.7916 0.242 0.561
� �39�

In summary, the configuration of extended or contracted
tail sheath is given by the following equations:

Ri,j = Q�/3
i−1Q�

j−1R1,1,

yi,j = y1 + 

k=0

i−2

Q�/3
k t0 + Q�/3

i−1

k=0

j−2

Q�
kt ,

i = 1, . . . ,6, j = 1, . . . ,23, �40�

where �=2� /21 for extended and �=2� /11 for contracted
tail sheaths. Here, Q� , t0 are defined by Eq. �31�, y1
=��1/2 ,�3/2 ,0�, t0= �−� ,0 ,0�, t=	e3+ �Q�−I�y1, and we
use the convention Q�

0 =I �also, sums of the form 
k=0
m where

m�0 are simply put equal to zero�. Pictures of extended and
contracted tail sheath obtained from formulas �40� with the
data given above are shown in Fig. 4. The method of visu-
alization is to approximate the domains of the molecules of
extended and contracted sheaths by ellipsoids, centered at the
centers of mass of the domains, as described in detail in the

Appendix. As can be seen there, this is quite an accurate
representation of the molecule. Then we applied the formulas
�40� to this collection.6

There is a substantial screw action that occurs when the
sheath fully contracts. This can be seen from Fig. 5 which
shows the corresponding main right handed helices in ex-
tended and contracted sheath. If the baseplate is held fixed
during contraction, the neck experiences almost a full turn,
the angle change being about 343°.

We should add that the data of Leiman et al. �11� also
provide a direct measure of the validity of the 8/3 and 12/1
rules, which we have used above to evaluate �=2� /21
=17.14° and �=2� /11=32.73°, respectively. The direct
measurement of Leiman et al. gives the very nearby values
�=17.2° ,32.9°.

VII. A SIMPLE CONSTRAINED THEORY
FOR BACTERIOPHAGE T4 TAIL SHEATH

A. Constraints

Our general expression for the free energy �14� of a pro-
tein sheet can be quite complicated, and in our case is made
more complicated by the presence of additional bonding di-

6Note that the formulas �40� can be applied with accuracy to any
model of the molecule, including the all-atom distribution. How-
ever, it is worth noting that the striking simplicity of �40� follows
the precise definitions of position and orientation we have chosen;
other kinematic descriptions may not give such simple formulas.

FIG. 4. �Color online� Pictures of extended and contracted tail
sheaths based on the formula �40�, using the method of visualiza-
tion described in Sec. VI B.

FIG. 5. �Color online� The main helix of the T4 tail sheath in
extended and contracted forms, illustrating the screw action.
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rections, as we explain below. In this section we use the
known configurations of the sheath to make simplifying as-
sumptions that allow us to arrive at a manageable form of the
energy.

First we note that each molecule in the sheath undergoes a
substantial motion. Nevertheless, there are some simplifying
features of this motion. These features are remarkably close
to the ideas of Pauling �13�, who, prior to any knowledge of
the T4 tail sheath, theorized that arrays of the helices of
Crane could contract by having adjacent turns of the helix
form bonds. Later, in his study of the T4 tail sheath, Moody
�15� observed that bonds on the right handed helix remained
to some extent invariant during contraction. He noticed that,
on the main helix, while there is a substantial relative rota-
tion of molecules, the distance between neighbors does not
change too much. This concerns7 neighboring molecules of
the form �i , j� , �i , j+1�, shown, e.g., for i=1 in Fig. 5. Ac-
cording to our Eq. �40� we have for both extended and con-
tracted sheaths that this distance is �t�= �Ri,j

T �yi,j+1−yi,j��; it is
of course independent of both i and j and is given by

�t�2 = 	2 + 2�2�1 − cos �� . �41�

When this is evaluated for extended and contracted sheaths
using the data above we get, respectively, �t�=46.2,67.4 Å.
While these are fairly close, Moody noticed that if, instead of
using the separate radii of extended and contracted sheaths,
one uses in both cases an effective radius of �=�eff

=77.6 Å, then �	2+2�eff
2 �1−cos ��=46.7 Å for both con-

tracted and extended sheaths. The reason for the smaller-
than-average effective radius presumably relates to the rela-
tive importance of the bonding of inner domains, which
appear to be in contact in electron micrograph cross sections
of the sheath at a radius near �eff.

We remark that if we approximate cos � by 1− �1/2��2 in
the expression 	2+2�eff

2 �1−cos ��, and also adjust the value
of �eff slightly to �eff=76.33 Å, then we have the following
simple quadratic condition:

	2 + �2�eff
2 = �2170 Å2 for extended sheath

2170 Å2 for contracted sheath.
� �42�

In view of its physical interpretation, we assume �42� repre-
sents a special stiffness in the T4 tail sheath and we adopt it
as a constraint for all values of 	 and �. Below we generalize
it to distorted configurations.

The constraint �42� has an interesting consequence. To
describe this, we first recall that according to macroscopic
nonlinear elasticity, a uniformly twisted cylinder subject to
zero axial force and free sides changes its diameter and also
its length. The latter is referred to as the Poynting effect. It is
generically a second order effect: the elongation goes as the
square of the angle of twist of the cylinder; the elongation
can be either positive or negative and it is typically positive
�lengthening� for elastomeric materials. For uniform states of
the T4 tail sheath, that is, states given by the formula �40�
subject to the constraint �42�, we have a very strong first

order Poynting effect. That is because, by �40�, the end angle
measured from the extended configuration is 22� while the
height is 22	.

Thus the theory predicts a height vs twist relation as
shown in Fig. 6. This is essentially a plot of the constraint
�42�. Below in Sec. VII D, we show that a simplified explicit
free energy has these uniform states as local minimizing free
energy configurations subject to small axial torque and force
near the extended or contracted states. We note that if the
approximation cos ��1− �1/2��2 is not made, then, on the
scale of Fig. 6, the resulting graph is indistinguishable from
Fig. 6. Note the dramatic Poynting effect, particularly at con-
tracted sheath. It would be interesting to look at this relation-
ship experimentally.

There is another simplifying feature of the deformation of
the T4 tail sheath that concerns the orientation. For molecule
�1,1� the rotation that maps extended to contracted sheath is
given in �39�, and its axis is given by

�0.001,0.875,0.485� . �43�

The angle of rotation is close to 64.8°. Remarkably, the axis
of rotation �43� is within about 1° of �0,�3/2 ,1 /2�. A pos-
sible reason for this rotation and its implications become
clear when we superimpose the rotation axis �black line� on
pictures of a molecule �1,1� of an extended and contracted
tail sheath �Fig. 7�. From these pictures, if one thinks of the
molecules as having the shape of a kind of twisted banana,
then evidently the axis of rotation passes through its axis.
Thus, the rotation of molecules of tail sheath seems largely
constrained by steric hindrance. But there is another feature
of this rotation that is suggested by the two pictures on the
right of Fig. 7. In these two pictures we are looking directly
down the axis of rotation. One can see that the rotation of
�1,1� of about 60° is causing it to align itself approximately
with the main helix. As above, this is consistent with the idea
that there are strong bonds linking molecules on this helix
that not only constrain lengths but also relative rotations. In
fact, even though the molecules depicted at the right of Fig.
7 do not touch, there are strong bonds that link the innermost
domains.

We now develop this idea quantitatively. To account for
the evidence for steric hindrance, we assume that the orien-

7The relation between Moody’s notation for bonds and ours is
AB= �i , j��i , j+1�, AB�= �i , j��i−1, j+1�, AC�= �i , j��i−1, j+2�.

FIG. 6. Height of the tail sheath vs end angle �measured from
extended sheath� according to the constraint, showing a strong first
order Poynting effect. Dots correspond to extended and contracted
sheaths.
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tation R1,1 has the fixed axis which we take to be
�0,�3/2 ,1 /2�, but we allow the angle of rotation to be free
for the moment, i.e.,

R1,1��� =�
cos �

1

2
sin � −

�3

2
sin �

−
1

2
sin �

3

4
+

1

4
cos �

�3

4
−

�3

4
cos �

�3

2
sin �

�3

4
−

�3

4
cos �

1

4
+

3

4
cos �

� .

�44�

Guided by the pictures on the right of Fig. 7 and the moti-
vation above, we compute R1,1

T ����y1,2−y1,1� for extended
and contracted sheaths using Eq. �44� and the corresponding
measured values of �=0,64.8°, respectively. The two vectors
obtained are fairly close to each other as is expected based
on Fig. 7. However, this computation reveals that the projec-
tion of these two vectors on the 1 axis is exceptionally close.
That is, e1 ·R1,1

T ����y1,2−y1,1� has nearly the same value of
−21.2 Å for extended and contracted tail sheaths. We again
hypothesize that this represents a special stiffness in this sys-
tem, and we adopt it as a constraint, e1 ·R1,1

T ����y1,2−y1,1�
=−21.2 Å. Written out using Eqs. �44� and �40�, this con-
straint is

2� cos ��1 + �3 sin � − cos �� + sin ��� sin � + ��3 cos �

− �3�2	 + ��� = 84.8 Å. �45�

It is natural to use this constraint to solve for �, effectively

making the orientation of each molecule slave to the vari-
ables that describe the spatial positions of the sheath. This is
always possible for a wide range of reasonable values of
� ,� ,	 satisfying the earlier constraint �42�. Some care has to
be exercised with uniqueness, since generically �45� has a
pair of solutions �; however, only one of these lies in a
modestly expanded interval containing �0,64.8°�.

For uniform states, i.e., configurations obtainable using
the formula �40�, the constraints �42� and �45� reduce the
energy to a function of the kinematic variables � and �,
effectively, radius and twist. It would be natural now to write
the energy as a double-well energy in � ,�, with wells appro-
priate to contracted and extended sheaths. However, it is ad-
vantageous to consider also distorted states, so that the pro-
cess of transformation can be described.

B. Nonuniform states

To describe nonuniform states, we first notice that our
basic formula �40� is still useful. In fact, this formula can be
used to describe an arbitrarily distorted sheath, by simply
allowing � ,� ,	 ,R1,1 to depend on �i , j�. To see this, we no-
tice that if the molecule �i , j� occupies a certain position and
has a certain orientation, then one can always find a helical
cylinder with molecule �i , j� in the given position and with
the given orientation. Effectively, the formula �40� with vari-
ables � ,� ,	 defines certain helical coordinate system based
on the structure of the T4 sheath. We note that this generali-
zation changes somewhat the geometric interpretations given
above of the variables � ,� ,	 ,R1,1.

In a setting of this generality, one could make a reason-
able extrapolation of what should be the constraints, based
on the stiffnesses of the main helix discussed above, but the
resulting 276 degrees of freedom would still be rather large;
once the energy of the T4 sheath becomes known quantita-
tively, it will then be worthwhile doing something like this,
since general configurations and forces could be then com-
puted using standard nonlinear optimization techniques. For
the present, we make a 1D ansatz that positions and orienta-
tions are the same on each annulus, that is,

�yi,j,Ri,j� is given by Eq. �40� with � = � j, � = � j, 	 = 	 j ,

R1,1 = R j, i = 1, . . . ,6, j = 1, . . . ,23. �46�

Our first goal is to reformulate the constraints in terms of
these variables. We begin with the first constraint �42�. If we
calculate �t�= �Ri,j

T �yi,j+1−yi,j�� using �46� we see that it de-
pends in a somewhat complicated way on j, but we can also
see from the expressions that there is a natural change of
variables that restores the simplicity of the expressions for
uniform states. That change of variables is

�̄ j = j�� j+1 − � j� + � j, 	̄ j = j�	 j+1 − 	 j� + 	 j, j = 1, . . . ,22.

�47�

The inverse mapping is simple averaging:

� j =
1

j − 1
��̄1 + ¯ + �̄ j−1�, 	 j =

1

j − 1
�	̄1 + ¯ + 	̄ j−1� ,

FIG. 7. �Color online� Left pair: the first annulus �i=1, . . . ,6 , j
=1� of extended and contracted sheaths viewed down the axis of the
cylinder, with the axis of the rotation of molecule 1 shown passing
through its center of mass. Right pair: the first three molecules on
the main helix �i=1, j=1,2 ,3� of extended and contracted sheaths
viewed parallel to the axis of rotation �shown as the black dot�.
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j = 2, . . . ,23. �48�

Note that for uniform states, �̄ j =� j =� and 	̄ j =	 j =	. When
the expression �t�2= �Ri,j

T �yi,j+1−yi,j��2 is evaluated for 1D
states in these new variables, it becomes

� j
2 − 2� j� j+1 cos �̄ j + � j+1

2 + 	̄ j
2, �49�

and the connection with �41� is immediately clear. In fact, it
is expected based on the definition of �̄ j that the approxima-
tion cos �̄ j �1− �1/2�� j

2 is still reasonable and then �49� be-

comes �� j+1−� j�2+� j+1� j�̄ j
2+ 	̄ j

2. Comparing with �42�, it is
natural to again replace all the � j by the effective radius �eff.
We therefore adopt in the nonuniform case the constraint

	̄ j
2 + �̄ j

2�eff
2 = 2170 Å2, �50�

where �eff=76.33 Å.
Now we generalize the constraints �44� and �45� on the

orientation. First, we recall that our way of writing the for-
mula �40� automatically adjusts the orientation of each mol-
ecule on the sheath in a consistent way �preserving the heli-
ces� in response to a change of R1,1. Since we assumed
above that R1,1 has the same axis for extended and con-
tracted sheath, then we assume this remains true for nonuni-
form states and R1,1 continues to have the form �44� with �
replaced by � j.

Once again, the change of variables �47� proves to be
extremely useful, for if we now calculate the quantity
e1 ·Ri,j

T �yi,j+1−yi,j�=e1 ·R j
T�yi,j+1−yi,j�, we get

1

4
�− 2 cos � j�� j + � j+1

�3 sin �̄ j − � j+1 cos �̄ j�

− sin � j�� j+1 sin �̄ j + � j+1
�3 cos �̄ j − �3�2	̄ j + � j��	 ,

�51�

with the obvious relation to �45�. We therefore adopt the
following constraint on orientation in the nonuniform case:

2 cos � j�� j + � j+1
�3 sin �̄ j − � j+1 cos �̄ j� + sin � j�� j+1 sin �̄ j

+ � j+1
�3 cos �̄ j − �3�2	̄ j + � j�� = 84.8 Å. �52�

We again view this as a way to determine � j, j=1, . . . ,22,
making the orientation slave to the other variables.

In summary, there is a natural expression of the con-
straints within the context of the 1D ansatz, this being
�50�–�52�; no internal contradictions arise, and there is free-
dom to make a variety of distorted states that interpolate
between contracted and extended sheaths. The unconstrained
kinematic variables can be taken to be local twist and radius,
which for distorted states turn out to be �̄1 , . . . , �̄23 and
�1 , . . . ,�23. If these variables are subject to a simple interpo-
lation between extended and contracted sheath, by defining

�̄ j = ��j��2�/21� + �1 − ��j���2�/11� ,

� j = ��j�73.75 Å + �1 − ��j�� 116.1 Å, �53�

where, for example, ��j� is a simple “tanh” transition layer,
��s�= 1

2 �tanh��s− j0� /w�+1	, then one can exhibit a contract-

ing sheath as is shown in Fig. 8. These pictures are produced
in this way, using the constraints �50� and �52� to determine
the 	 j and � j and then placing all in the formula �40�, as
directed by �46�. All three of these pictures have the same
interfacial width w=1.5 and interfacial positions j0
=4 ,12,20, respectively. These are not necessarily equilib-
rium states, as the computation of these would depend on a
quantitative knowledge of the energy function, which we do
not yet know.

These pictures are interesting from the point of view of
nucleation. One of the important issues �raised in �16�, where
related references can be found� is that the T4 tail sheath is at
a scale that would seem to suppress the martensitic phase
transformation. Briefly, the argument is the following. In or-
der to have a phase transformation with a distortion one ex-
pects an interface to pass through the body having a transi-
tion layer between phases. But because of the scaling
between bulk and interfacial energy, the interfacial energy
should dominate at sufficiently small scales, and, therefore,
in a sufficiently small body, one would necessarily pay more
free energy for the transition layer than the lowering of free
energy due to the presence of the new phase. In the present
case “interfacial” and “bulk” energies are better thought of as
line and surface energies, but the argument is similar. Thus,
nucleation is expected to be an important issue for phase
transitions at small scales, and this is particularly true in the
present case in view of the enormous transformation strain of
the T4 tail sheath. It is known from the work of Moody that
transformation begins at the baseplate. The distortion of the
first annulus upon nucleation can be seen in Fig. 8. An alter-
native view is seen in Fig. 9 which shows a view from be-
low; in this figure the lowest annulus is nearly fully trans-
formed �j0=4� on the left while the corresponding
untransformed sheath is shown on the right.

Finally, a brief remark about constraints and frame indif-
ference. It is well known that internal constraints in mechani-
cal systems should be frame indifferent, and this may not be
obvious in the present case. In �40� there is some freedom of
how one assigns a change of frame, attributing this either to
changes of � ,� ,	 ,R1,1 or, for example, to changes of Q� �at
constant ��, Q�/3 , t0 , t ,y1 ,R1,1. The latter is preferred, and

FIG. 8. �Color online� Deformations of tail sheaths satisfying
the constraints and exhibiting transformation. See text.
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also preserves the 1D ansatz. The precise form of a change of
frame y→Ry+c, R�SO�3� is then Q�→RQ�RT, Q�/3

→RQ�/3RT, t0→Rt0,t→Rt, y1→Ry1+c, R1,1→RR1,1.
With this understanding, � ,� ,	 are objective scalars and the
constraints are frame indifferent.

C. Free energy

Having reduced the complexity of the energy by formu-
lating constraints for a 1D ansatz, we are now in the position
to suggest a relatively simple form of the energy function for
nonuniform states of the form �46�. We take the independent
variables to be �̄1 , . . . , �̄23 and �1 , . . . ,�23. In the extended T4
tail sheath the main helix is the only direction of strong
bonding; however, in the contracted sheath there are three
bonding directions, as identified by Moody �15� and Leiman
et al. �12�. These are the bonds �i , j�− �i , j+1�, �i , j�− �i
−1, j+1�, �i , j�− �i−1, j+2�. For this bonding the free energy
is a minor generalization of �14�:

��y1,1,R1,1, . . . ,y6,23,R6,23�

= 

i��1,. . .,6	,j��1,. . .,23	


1�yi,j,Ri,j,yi,j+1,Ri,j+1�

+ 
2�yi,j,Ri,j,yi−1,j+1,Ri−1,j+1�

+ 
3�yi,j,Ri,j,yi−1,j+2,Ri−1,j+2� . �54�

Here we have omitted separate consideration of boundary
molecules; to account for molecules beyond the boundaries,
we do a suitable periodic extension. Recall that the 
1 ,
2 ,
3
depend on certain objective quantities, the t’s and Q’s �cf.
Eq. �18��.

We assume the 1D ansatz �46� and the constraints
�50�–�52�. If we write out all of the frame-indifferent expres-
sions appearing in the arguments of 
1 in the sum �54�, we
have

Ri,j
T Ri,j+1 = f�� j,� j+1,�̄ j�, Ri,j

T �yi,j+1 − yi,j� = g�� j,� j+1,�̄ j� ,

�55�

where f and g are somewhat complicated algebraic vector-
valued functions. We recall that this bond �along the main
helix� guides the assembly of the extended state and is pre-

served throughout contraction. Since this bond is relaxed in
the extended state and undergoes relatively small deforma-
tions, one simple way to model it is as a harmonic function
centered at the extended state:


1�yi,j,Ri,j,yi,j+1,Ri,j+1� =
1

12�� j − �e

	̄ j − 	e

�
k1 k

k k2

�
·�� j − �e

	̄ j − 	e

� + k3�� j+1 − � j�2

�56�

where k and ki�0 are constants, and �e and �e are the values
measured for the extended sheath. The term containing k3 is
suggested by the presence of � j ,� j+1 and the expectation that
this energy is minimized by the uniform state: this term is
somewhat like the terms of the energy of a liquid crystal.

The bond �i , j� , �i−1, j+1� spans between adjacent main
helices. This bond is largely nonexistent in the extended
sheath and its formation drives the contraction. However, the
energy 
2 for this bond depends on the same set of variables
� j ,� j+1 , �̄ j as for �i , j� , �i , j+1�. The radius and pitch of adja-
cent turns of the main helix provide a measure of the second
bond’s state. If the adjacent turns are close to the contracted
state then the bond is formed. For configurations where the
helices are far apart the bond is essentially broken. And for
configurations where the helices become very close there is a
strong repulsion. Consistent with this we propose the poten-
tial


2�yi,j,Ri,j,yi−1,j+1,Ri−1,j+1� =
1

12
�1 − k4�� j − �̃c�2

− k5�� j+1 − � j�2�L�	̄ j� ,

�57�

where

L�	� = �− a�c − 	�2�c − 3	̃c + 2	� , 	 � c

0, 	 � c ,
� �58�

is similar in shape to a Lennard-Jones potential, except that it
has a cutoff at c, where L and its first derivative vanish �it is
continuously differentiable�. This part of the energy depends

on the parameters �̃c , 	̃c ,c ,k4 ,k5 ,a, which have the follow-
ing interpretations. For 	�c the energy contribution to 
2

vanishes �i.e., the bond is broken�. The values �̃c , 	̃c are the
minimizing values of � ,	 for 
2; in practice, we adjust these
so that the measured values �c ,	c are absolute minimizers of
the total energy. The value a is the bond dissociation energy;
k4 controls the stiffness of this bond with respect to changes
of radius, and k5 favors uniformity. The term containing k5
multiples L so that the tendency toward uniformity is not in
force when the bond is broken. The third bond �i , j� , �i
−1, j+2� is similar to the second, in that it forms upon con-
traction. It spans two helices, so the third bond energy de-
pends on the pitch and radius of the second nearest helix, and
it involves the larger set of variables � j ,� j+1 ,� j+2 , �̄ j , �̄ j+1.

FIG. 9. �Color online� Nucleation of the phase transformation in
the T4 sheath as viewed from below. Left: extended sheath. Right:
view of sheath with the first annulus fully transformed, as in the
leftmost picture of Fig. 8.
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We take it to have a simple form similar to that of the second
bond,


3�yi,j,Ri,j,yi−1,j+1,Ri−1,j+1�

=
1

12
�1 − k4�� j − �̃c�2 − k5�� j+1 − � j�2 − k6�� j+2 − � j�2

− k7�	̄ j+1 − 	̄ j�2�L�	̄ j� ,

where L is as in �58�. In principle, all of the parameters

�̃c , 	̃c ,c ,k4 ,k5 ,a are likely to differ for bonds 2 and 3, but we
do not alter the notation to reflect that.

So, in summary, for the constrained sheet subject to the
1D ansatz, we write the total free energy

��y1,1,R1,1, . . . ,y6,23,R6,23�

= 

j��1,. . .,23	


�� j,� j+1,� j+2,	̄ j,	̄ j+1� �59�

where the energy per annulus 
=6�
1+
2+
3� and k��0,
�=1, . . . ,7, a�0, k1k2−k2�0, 	c�c�	e. Note that, be-
cause of the presence of the cutoff, the values �e ,	e are
always relative minimizers of the energy if �as we assume�
the stiffness matrix in �56� is positive definite.

This energy favors uniform configurations for a suitably
restricted domain and for ranges of the parameters expected
to be physically interesting. Consider the domain �	 j ,� j�
where L�0 and the prefactor of L is positive. Then a lower
bound for the energy on this domain is obtained by putting
k3=k5=k6=0 and this bound is achieved by a uniform con-
figuration that minimizes each term �the individual terms of
the sum are minimized at the same uniform state�. We use
the notation

���,	� = 
��,�,�,	,	� �60�

for the energy per annulus of uniform states.
A simple explicit energy that uses all of the measured data

that we have available, but otherwise makes somewhat arbi-
trary choices of constants, and has a relative minimizer at the
extended state and an absolute minimizer at the contracted
state, is obtained by putting k1=0.333 zcal Å−2, k2
=3.0 zcal Å−2, k=0, k4=10−4 Å−2, a=0.3719 zcal Å−3, c

=30 Å, 	̃c=13.3901 Å, �̃c=161.398 Å, and then by evaluat-
ing at a uniform state �1 zcal=10−24 kcal�. This gives the
double-well energy pictured in Fig. 10. Here the choice of a
reflects the calorimetric measurement of Arisaka, Engel, and
Klump �17� that gives ���e ,	e�−���c ,	c�=60 zcal/annulus,
based on arguments described at the end of this subsection.

The tendency toward uniform states plays an important
role during self-assembly of tail sheath. During assembly, the
baseplate forces the first annulus to have the extended radius
�1=�e. As subsequent annuli are added they do so as to
match the radius of the annulus below. The second and third
bonding directions remain incomplete, since the formation of
these bonds would require the annuli to adopt the contracted
radius. Proper assembly is accomplished by design; the pen-
alty for mismatching a neighboring annulus outweighs the
energy the could be liberated by forming the additional
bonds. Our energy given above has the flexibility to model

this behavior through two features: �1� the state ��e ,	e� is a
minimizer of energy with respect to all uniform small pertur-
bations of �� ,	�, and �2� the terms involving k3 ,k5 ,k6 ,k7 can
be tuned so that the addition of a new layer onto the growing
extended sheet would be penalized from being added with
�� ,	� near the contracted values, even though these have
lower uniform energy. The complete analysis of self-
assembly would require a molecule-by-molecule growth
mechanism, involving boundary energies, but the present en-
ergetic considerations are expected to play a role.

For the rest of the paper we use a more general energy
than the special form given above, but one that retains some
of its essential features. That is we assume an energy per

annulus of the form 
�� j ,� j+1 ,� j+2 , 	̄ j , 	̄ j+1� �cf. Eq. �59��
having the properties


��c,�c,�c,	c,	c� � 
��1,�2,�3,	1,	2�

for all ��1,�2,�3,	1,	2�

not equal to ��c,�c,�c,	c,	c� ,


��e,�e,�e,	e,	e� � 
��1,�2,�3,	1,	2�

for all ��1,�2,�3,	1,	2� near,

but unequal to, ��e,�e,�e,	e,	e� ,


��c,�c,�c,	c,	c� � 
��e,�e,�e,	e,	e� . �61�

For this more general energy we retain the notation ��� ,	�
=
�� ,� ,� ,	 ,	�, so it follows from the above that

���c,�c� � ���,�� for all ��,�� � ��c,�c� ,

���e,�e� � ���,�� for all ��,�� � ��e,�e� but near ��e,�e� .

�62�

We make one other assumption on the height difference
between the energy wells. In �17� Arisaka et al. did calorim-
etry on T4 tail sheaths with contraction triggered by two
methods: raising the temperature to 72 °C and by increasing
the concentration of urea. The former gave −44 kcal/mol �of
gp18 molecules� whereas the latter gave −25 kcal/mol �of
gp18 molecules�. We use the former number here as it was
considered the more accurate by these authors. From the de-
tails of the measurement, raising the temperature did not give

FIG. 10. �Color online� Special energy for tail sheath.
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reversible contraction, but rather irreversible contraction, and
temperatures higher than 72 °C caused denaturation of the
whole sheath. Thus, one can infer that the free energy of
contracted sheath is still lower than of extended sheath at
72 °C, though not as low as at 25 °C. Without any addi-
tional information and considering that at least spontaneous
contraction occurred at 72 °C, we estimate the height differ-
ence between the wells by the following procedure. We re-
store the temperature dependence of � and Taylor expand in
the temperature, omitting the error terms,

���,	,�2� = ���,	,�1� +
����,	,�1�

��
��2 − �1� . �63�

We put �1=25 °C and �2=72 °C, evaluate �63� at ��e ,	e�
and ��c ,	c�, and subtract, estimating ���e ,	e ,�2�
����c ,	c ,�2�. Now, as is common in the interpretation of
calorimetric measurements of phase transformations, we in-
terpret the temperature times entropy difference as the latent
heat:

�2� ����c,	c,�1�
��

−
����e,	e,�1�

��
� = 440 zcal/annulus.

�64�

Here we have ignored the temperature dependence of the
entropy evaluated at either well separately. Combining Eqs.
�63� and �64� we get that the entropy difference of the two
phases is 1.27 zcal/K annulus and that

���e,	e� − ���c,	c� = 60 zcal/annulus. �65�

D. Some simple uniform deformations and some relations
between moduli

For the purpose of defining various moduli, it is conve-
nient to introduce the free energy per unit reference length
�the reference being the contracted state� by defining

�c��,�� =
1

	c
���,	� . �66�

Second derivatives of �c�� ,	� with respect to the pair �� ,	�
have interpretations as various moduli. For example, if we
consider small deformations about, say, the contracted
sheath, then we write

�c��,	� = �c
0 +

1

2
�A�� − �c�2 + 2B�� − �c��	 − 	c�

+ C�	 − 	c�2� + ¯ , �67�

where �c
0 is the free energy per unit length of undistorted

contracted sheath. We assume this form is positive definite.
We now interpret these moduli A ,B ,C. Working within

the 1D ansatz, suppose we hold the annulus j=1 fixed and
apply an axial force f= fe3 to annulus j=23, treated as a dead
load. Then the total energy of sheath and loading device is

��y1,1,R1,1, . . . ,y6,23,R6,23� − y1,23 · f

= ��y1,1,R1,1, . . . ,y6,23,R6,23� − 22f	23. �68�

�Recall the relation between 	 j and 	̄ j, Eq. �48�.� Using the

assumptions �61� and the argument just preceding �60�, we

see that the minimizing state ��1 , . . . ,�23	, �	̄1 , . . . , 	̄23	 is
uniform,

�1 = ¯ = �23 = �, 	̄1 = ¯ = 	̄23 = 	 , �69�

and �� ,	� minimizes

�c��,	� − f
	

	c
. �70�

Minimizing this expression over �� ,	� for small values of f ,
we get

	 − 	c =
A

	c�AC − B2�
f + ¯ ,

� − �c =
− B

	c�AC − B2�
f + ¯ ,

� − �c =
− A

�ef f
2 �c�AC − B2�

f + ¯ . �71�

The tensile modulus �i.e., the proportionality factor between
f and �22	−22	c� /22	c� is therefore

�tensile modulus� =
	c

2�AC − B2�
A

. �72�

Hence, due to the positive-definiteness of the quadratic form
�67�, tensile force produces extension, and also twist, with an
end angle that decreases with increasing force. We expect
B�0 in which case the Poisson effect is the usual one:
lengthening produces a decrease in the radius. We can
define a “Poisson’s ratio” via the usual formula
�−�radial strain� / �axial strain��:

�Poisson’s ratio� =
	c

�c

B

A
. �73�

For simple torsion defined by the loading device energy
−22M�, where Me3 is the applied moment, energy minimi-
zation of �c−M�� /	c�, analogously to the above, leads to
uniformity and to the equations

� − �c =
A	c

�c
2�ef f

4 �AC − B2�
M + ¯ ,

� − �c =
B

�ef f
2 �c�AC − B2�

M + ¯ ,

	 − 	c =
− A

�ef f
2 �c�AC − B2�

M + ¯ . �74�

From here, we identify

�torsional modulus� =
�moment�

�twist�/�length�
=

�c
2�ef f

4 �AC − B2�
A

.

�75�

W. FALK AND R. D. JAMES PHYSICAL REVIEW E 73, 011917 �2006�

011917-16



Thus we predict that the torsional modulus is proportional
to the tensile modulus, the proportionality factor depending
only on the geometry of the contracted sheath. In contrast, in
macroscopic elasticity the torsional and tensile moduli are
governed by different elastic constants �i.e., the shear and
Young’s moduli, respectively�. This unusual behavior arises
from our unusual constraints.

Finally, we briefly consider the resistance of protein struc-
tures to internal pressure. This may be relevant to the inter-
actions between the sheath and tail tube, so in fact it is more
related to the extended sheath �it is also of course highly
relevant to the packaging of DNA in capsids �18��. For inter-
nal pressure p, the associated loading device energy is
23	��2p. It is trivial to work out the associated moduli so
we do not record that here.

What is more interesting is to work out the reaction
forces. When a body is constrained, there should be reaction
forces, that is, certain kinds of forces that do not produce
deformation. In the present setting but in the fully nonlinear
case, we consider a sheath subject to a tensile force f , a
twisting moment M and an internal pressure p altogether,
with an associated loading device energy −22f	−22M�
+22	��2p. Taking the first variation of the energy with re-
spect to �� ,�� we see that the resulting two equations do not
uniquely determine the three unknowns �f ,M , p�. In fact it
turns out that changes of p generically lead to deformation
and the constraint force only involves f and M. The result
can be stated in the following way. Suppose that the sheath is
in equilibrium at a state ��̃ , �̃� corresponding to generalized
forces �f ,M , p�. Then, ��̃ , �̃� is in equilibrium if �f ,M� are
changed to �f + f1 ,M +M1�, where

M1 = −
d	

d�
f1 =

�ef f
2 �̃

	̃
f1. �76�

Alternatively, this condition can be thought of in terms of
work: changes of force and moment consistent with Eq. �76�
do no work on the sheath.

We note that all the equilibrium states given here exhibit
the strong Poynting effect discussed in Sec. VII A.

VIII. RELAXED STATES

It is interesting to contrast our theory of the protein sheet
with nonlinear continuum theories of plates and shells. As a
related example, the mechanical behavior of carbon nano-
tubes have been shown to conform to such continuum theo-
ries in many aspects, especially regarding elasticity and
buckling �19�. The results given above arising from the con-
straints, especially the first order Poynting effect and the re-
lations between elastic moduli, suggest differently, but these
results are closely connected with the presence of the con-
straints. As we show here, the predictions of the uncon-
strained theory are also essentially different from continuum
theories. This is not fundamentally a “nanoscale” phenom-
enon, but is related to the particular structure of protein
sheet: compact globular proteins with local bonding and a
sensitivity to orientation.

To review, nonlinear continuum theories of thin plates and
shells come in various varieties, depending on the strength of

the applied forces �for a rigorous treatment and an overview
of the regimes, see �20��. For the largest applied forces there
is membrane theory, defined in the following way. Let ��G�
be the three-dimensional nonlinear elastic energy of the ma-
terial expressed as a function of the deformation gradient G.
We suppose as usual that � is frame indifferent, ��QG�
=��G� for all Q�SO�3�, and that � is minimized on SO�3�.
Let �e1 ,e2 ,e3� be an orthonormal basis with e3 normal to the
plate in its reference configuration, and write G=Gij in this
basis. To describe membrane theory we express the deforma-
tion gradient as its three column vectors, G= �y1�y2�y3�. If
y�x1 ,x2�, �x1 ,x2��S, is the deformation of the plate then, in
the absence of a loading device, the energy is

�
S

��y,1�y,2�b�dx1dx2. �77�

This is minimized over the independent fields
(y�x1 ,x2� ,b�x1 ,x2�) �b describes deformations relative to the
“middle surface”�. Suppose that we have no boundary con-
ditions imposed. Then, the energy in �77� is minimized by
�y ,b� satisfying

y,1 = R�x1,x2�e1, y,2 = R�x1,x2�e2,

b = R�x1,x2�e3, R�x1,x2� � SO�3� . �78�

The third of these equations simply determines b, while the
first two restrict the deformation. In fact, the first two of
these equations define so-called isometric mappings. Isomet-
ric mappings are essentially the mappings that one can illus-
trate by taking a flat sheet of paper and deforming it, includ-
ing the possibility of making folds and rather complex
“crumpling.” At the next level of approximation, for weaker
forces, we have nonlinear bending theory. This is defined by
the same kinematics as just described, but with the energy

1

24
�

S


„��y�T � b…dx1dx2, �79�

where 
�G�=mincq�G��+c��3��, ��� is the Kronecker delta,
and q is the quadratic form

q�H� =
�2��I�

�F���H��

H��H��. �80�

In this case the energy �80� is minimized over isometric map-
pings only, i.e., over the solutions of �78�. Thus, in summary,
isometric mappings are the basic relaxed states of plate theo-
ries: they are the zero-energy deformations of membrane
theory and the finite-energy deformations of bending theory.
Shell theories are variants of the above in which the given
reference state is generally curved. In that case the finite
energy deformations are isometric mappings of the curved
reference state.

What are the relaxed states of the present theory? To cal-
culate the analog of the above, we should minimize the en-
ergy of the sheet
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��y1,1,R1,1, . . . ,yN,M,RN,M�

= 

�i,j��Z2�D


1�yi,j,Ri,j,yi+1,j,Ri+1,j�

+ 
2�yi,j,Ri,j,yi,j+1,Ri,j+1� , �81�

without loading device energies or boundary conditions, over
all positions and orientations. Here we have assumed two
bonding directions and we have ignored boundary mol-
ecules. To simplify, this can be written �modulo possibly a
few missing or additional boundary molecules�

� = 

�i,j��Z2�D


̃1�ti,j,Qi,j� + 
̃2�t̂i,j,Q̂i,j� , �82�

but now it must be borne in mind that the independent vari-

ables �ti,j ,Qi,j , t̂i,j ,Q̂i,j� are subject to the compatibility con-
ditions �23�. These conditions, repeated here,

Q̂i,jQi,j+1Q̂i+1,j
T Qi,j

T = I ,

t̂i,j + Q̂i,jti,j+1 − Qi,jt̂i+1,j − ti,j = 0 , �83�

couple molecules �i , j� with �i+1, j� and �i , j+1�. Clearly, we
cannot �as we did above� minimize �82� by minimizing the

“integrand” 
̃1�ti,j ,Qi,j�+ 
̃2�t̂i,j ,Q̂i,j�, for this would typi-
cally give a minimizer, say, of the form

ti,j = t ,

Qi,j = Q ,

t̂i,j = t̂ ,

Q̂i,j = Q̂ ,

where


̃1�t,Q� � 
̃1�a,R� for all �a,R� ,


̃2�t̂,Q̂� � 
̃2�â,R̂� for all �â,R̂� , �84�

and it is seen that such a minimizer would generically fail the
compatibility conditions, which in this case become

Q̂QQ̂TQT = I ,

t̂ + Q̂t − Qt̂ − t = 0 . �85�

One can consider more complex rearrangements of the sum
�82�, with different “integrands,” but the analogous problem
arises again. For example, the apparently most promising
rearrangement is the sum8

� = 

�i,j��Z2�D

i+j=even


̃1�ti,j,Qi,j� + 
̃2�t̂i,j,Q̂i,j� + 
̃1�ti,j+1,Qi,j+1�

+ 
̃2�t̂i+1,j,Q̂i+1,j� . �86�

Here the summand contains exactly the independent vari-
ables appearing in the constraints, and therefore we could
minimize it with respect to all values of the independent
variables subject to the constraints. But one then sees that the
solution actually satisfies only the compatibility conditions
on every other cell and generically does not give a mini-
mizer.

In discrete theory the impossibility of minimizing the en-
ergy for each bond individually is termed frustration. In con-
tinuum theory the concept is similar �21�: it is the inability of
minimizers of the energy density to satisfy conditions of
compatibility inherent in the kinematics.9 We can say that
our sheet is also frustrated, in the sense that minimization of
the energy density for each bond does not generically give a
compatible deformation. Here, the word “generically” means
that, even if these compatibility conditions happen to be �ac-
cidentally� satisfied for a minimizer, then they are not satis-

fied if 
̃1 or 
̃2 are smoothly perturbed consistent with all of
their assumed symmetries. As indicated above, even if we
allow small collections of multiple bonds and minimize the
energy of these, subject to constraints of compatibility, we
also obtain a configuration that is not compatible in the large.

In biology, unlike materials science, there is the phenom-
enon of evolution of materials to achieve fitness. Thus for a
protein sheet, there might be reasons, for example, to achieve
a particularly low energy state, for a protein sheet to be non-

generic. Thus it is of interest to assume that t ,Q and t̂ ,Q̂
minimize, respectively, 
̃1 , 
̃2 and also satisfy �85� and then
to see what kinds of sheets emerge. We call such states fully
relaxed states: each bond is relaxed and the configuration is
compatible.

To calculate all fully relaxed states, we merely have to
characterize all solutions of �85� and then calculate the im-
plied positions and orientations. This is a straightforward al-
gebraic exercise and we just give the results. First, a useful
characterization of the solutions of �85� is the following.
Each solution falls into one of the categories below.

�1� Q and Q̂ are coaxial, Qe=Q̂e=e , �e�=1, and

�a� If Q�I and Q̂�I, then t= t1+�e and t̂= t̂1+ �̂e
for some � , �̂ with t1 ·e= t̂1 ·e=0, and t̂1= �I−Q�−1�I−Q̂�t1,
the inverse taken on the plane perpendicular to e.

�b� If Q�I and Q̂=I, then t is arbitrary but t̂=�e
for some �.

�c� If Q=I and Q̂�I, then t̂ is arbitrary but t=�e
for some �.

�d� If Q=I and Q̂=I, then t̂ and t are arbitrary.

8We ignore possible problems with this rearrangement near the
boundary.

9A simple example of frustration in continuum theory is illustrated
by the energy �D��z−Ax�2dx, where A is a nonsymmetric matrix.
In this case there is a unique smooth minimizer but it is not ob-
tained by minimizing the integrand.
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�2� Q=−I+2e � e and Q̂=−I+2ê � ê, �e�= �ê�=1,e · ê=0,
and

�a� t̂=�1e+��e� ê�, t=�2ê+��e� ê� for some
�1 ,�2 ,�.

Now, using these results we go back and compute the
uniquely determined �up to overall rigid body motion� posi-
tions and orientations. For simplicity we assume an N�M
sheet. We find, in all cases,

Ri+1,j+1 = R1,1QiQ̂ j ,

yi+1,j+1 = y1,1 + R1,1�

k=0

j−1

Q̂kt̂ + Q̂ j

k=0

i−1

Qkt� ,

i = 1, . . . ,N, j = 1, . . . ,M . �87�

But this is exactly of the form of �40� for the T4 tail sheath.
Recall that in the formula for the tail sheath the R1,1 was

moved through the QiQ̂ j using the remark given at the end of
Sec. V.

It is intriguing to ponder whether these fully relaxed states
are actually realized by the tail sheath �or other protein
sheets� and, if so, the implications of this with regard to
stability and evolutionary development. Of course, with the

various choices of t ,Q , t̂ ,Q̂ as enumerated above, the sheet
will not look exactly like a tail sheath. We explored this
numerically by choosing various cases and found that the
general appearance is, however, much like a tail sheath; in
fact, it can be proved from the formula �87� that the bonding
direction �i , j�− �i−1, j+1� is also a helix10 �with translation
Q�t̂+ t�. Figure 11 shows a generic picture of a fully relaxed
state, with the molecule represented by a simple ellipsoid.

To complete this story, we make brief remarks about the
remaining cases of the enumeration above. In item 1, if ei-

ther Q=I or Q̂=I then the appearance is still more or less
like Fig. 11, but one family of helices degenerates to straight
lines of molecules that are parallel to the axis of the cylinder.

If both Q=I and Q̂=I, then the cylinder degenerates to a
planar sheet, with crystalline symmetry, and parallel orienta-
tions of molecules. Finally, item 2 is a bit surprising; it de-
scribes a collection of four molecules, not generally at the
corners of a regular tetrahedron, but such that each pair of
the molecules is twinned, that is, individuals of the pair are
related by a 180° rotation.

In summary, our theory of a protein sheet is generically
frustrated. Energy minimizers are generally naturally curved,
as in shell theories, but this curvature is determined by the
energy. Isometric mappings seem to play no role here. In our

theory if one considers energy densities 
̃1 , 
̃2 that are mini-

mized at compatible pairs �t ,Q� , �t̂ ,Q̂� �i.e., fully relaxed
states� then the energy minimizers look much like the tail
sheath of bacteriophage T4 and are given by simple formu-
las.

IX. EXPERIMENTS SUGGESTED BY THE THEORY

We have noted above several places above where there
are possible experimental tests of our predictions. These in-
clude the extension-twist relation �Fig. 6�, the linearized be-
havior near contracted or extended sheath �72�–�75�, and the
reaction forces that preserve deformation �76�. We now dis-
cuss two other types of predictions that relate directly to
biological and interesting nonbiological behavior.

A. The force of penetration

One of the most important predictions of our model is the
force of penetration. Consider applying an axial force f to

10Apparently, the formula produces helical configurations in all
rational directions of Z2.

FIG. 11. �Color online� A generic fully relaxed state.
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contracted sheath, so as to stress-induce the transformation to
extended sheath. Alternatively, one can imagine applying
sufficient tension to extended sheath to just prevent contrac-
tion, i.e., the stall force. We neglect the interactions with the
tail tube, assuming it to be weakly bonded to the sheath even
when it is in the extended state, as is thought to be true
�22,12�. For small values of f the behavior is given by the
analysis of �68�–�72�, and we expect the initial slope of the
force-elongation curve �f vs �	−	c� /	c� given by the modu-
lus 	c

2�AC−B2� /A. There is expected to be significant non-
linearity of the response, because the constraints themselves
are nonlinear. The details of the response near transition may
depend on details of the loading device—whether hard or
soft, for example—but one expects some kind of load drop
on nucleation. The transformation is expected to take place
via movement of an interface, as pictured qualitatively in
Fig. 8 and at approximately constant free energy, because a
bias of free energy toward either phase would, by energy
minimization, tend to drive out the interface, one way or the
other. This suggests the criterion

��yc,Rc� − 22f	23
c = ��ye,Re� − 22f	23

e , �88�

where the uniform states �yc,e ,Rc,e�= �y1,1
c,e ,R1,1

c,e , . . . ,
y6,23

c,e ,R6,23
c,e � are assumed to be in equilibrium. Let super-

scripted variables �	e,c ,�e,c ,�e,c� be associated with these
uniform equilibrium states. Using the special form of the
energy �62�–�66�, we get

�c��c,	c� − f�	c/	c� = �c��e,	e� − f�	e/	c� , �89�

where

��c��c,e,	c,e�
��

= 0,
��c��c,e,	c,e�

�	
=

f

	c
. �90�

Solving these together, we get

f = f trans =
��c��e,	e� − �c��c,	c��	c

�	e − 	c�

=
��c��e,	e� − �c��c,	c��

�	e/	c − 1�

+ O�max
c,e

Ac,e

Ac,eCc,e − Bc,e
2 f2� . �91�

The error term depends also on geometric factors and can be
written explicitly, but we note that it is of the form
�f2/�tensile modulus��. Thus, if f��tensile modulus� then this
term is negligible as compared to f , and the force at trans-
formation is a simple ratio of the height difference between
the energy well minima at extended and contracted sheath
and the difference between the lengths of the sheath. These
kinds of results are well known in the study of phase trans-
formations.

Of course, the virus uses the reverse transformation, from
extended to contracted sheath, during penetration. The maxi-
mum force available for penetration is expected to be also
f trans.

We can evaluate the force of contraction based on the
height difference between the wells, accounting for the res-

ervations given at the end of Sec. VII C. Combining Eqs.
�91� and �65�, we get,

f trans = 103 pN. �92�

By comparison, the stall force measured by laser tweezers
during DNA packaging in �29 was 57 pN �1�. We would
tend to think that the number 103 is a lower estimate for the
actual force, because �� is underestimated at 72 °C as ex-
plained in Sec. VII C. If we divide this force by the cross-
sectional area of the sheath to get a stress, we get about
0.5 MPa. This is quite low as a �maximum� transformation
stress in a macroscopic crystalline martensitic material.
However, the transformation strain in the T4 sheath is enor-
mous, so, if we calculate the energy density of contraction
based on these numbers, we get numbers that are comparable
to those measured in the best shape memory materials, which
themselves exhibit the highest energy densities in any known
actuator system �23�.

The transformation can also be induced by applying a
pure axial moment. This leads to the analog of �88�–�91�,
except using the loading device energy −22M�, and gives
the moment at transformation of

M = Mtrans =
��c��e,	e� − �c��c,	c��	c

��e − �c�

=
��c��e,	e� − �c��c,	c��	c

�e − �c

+ O�max
c,e

Ac,e

Ac,eCc,e − Bc,e
2 M2� . �93�

Neglecting the higher order terms in �91� and �93� we have
the simple approximate relationship between the forces and
moment needed to cause transformation in the sheath:

f trans �
�e − �c

	e − 	c
Mtrans = −

1

89 Å
Mtrans. �94�

B. Biomolecular epitaxy, patterning and devices

In this section we explore some more speculative ideas.
T4 tail sheath is a kind of biomolecular actuator, and one
could imagine that it could function as part of a manmade
machine �24� that could interact in an intimate way with
biological organisms. Tubes of polysheath several microme-
ters long have been synthesized �25,26�; polysheath is simi-
lar to, but not exactly the same as, contracted sheath. Tubes
of extended sheath have not been synthesized separate from
the baseplate and tail tube, and this is understandable in view
of their higher free energy and also the possible role of the
baseplate in stabilizing the extended sheath via epitaxy.

One basic interesting line of thought is to consider the
possibility of changing the heights of the energy wells. As is
true in a great many biological systems, hydrophobicity
plays a critical role, and this can be appreciated in the present
case by looking at Fig. 4. There, it is clear by inspection that
extended sheath exposes substantially more surface area to
the surrounding solution than contracted sheath, and this
qualitatively explains its higher free energy. But it also indi-
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cates that the relative free energies of the extended and con-
tracted sheaths are amenable to adjustment via manipulation
of the solution chemistry. Systematic studies �26� of the ef-
fect of solution chemistry on the breakup of parts of the virus
�capsid, neck, tail sheath, tail tube, baseplate, tail fibers�
demonstrate sensitivity to solution chemistry. Apparently, so-
lutions that cause a contracted tail sheath to extend have not
yet been found. However, if by this means one could ex-
change the heights of the wells, then tail sheath would be
like a shape memory material. In a highly schematic way,
one could alter the solution so that extended sheath is stable.
Then one could add an axial tensile force to the sheath.
Again manipulating the solution, one could return it to
phage-physiological conditions and, if the force was not too
large �i.e., below the value f trans of �91�� then the sheath
would transform to the contracted form, while doing work on
the force. This would be a machine that converts chemical
free energy of the solution to mechanical energy. The very
small cross section of the sheath would allow it to target a
small region of a cell. One could consider the possibility of
vast arrays of these tubes. In this regard, we note that ordered
planar arrays of whole viruses have been deposited on sur-
faces �not using epitaxy� by Lee et al. �27�.

In the following discussion we allow rather drastic
changes of the sheath, but we enforce the constraints �42�
and �45�, these being in our view fundamental to its behav-
ior. The T4 sheath is in the shape of a cylinder, but it is
interesting to think about the possibility of slitting along a
generator and unrolling it. We first note that it is possible to
do this without violating the constraints. Second, the ex-
tended tail sheath exhibits an epitaxial relation to the base-
plate, and this likely plays a role in self-assembly of the
sheath during formation and subsequent stabilization. Thus
we suggest the possibility of growing films of tail sheath
epitaxially. In general, epitaxial growth is aided by a sub-
strate with the same lattice parameters as the sheath, that is

also chemically compatible with the sheath. The most likely
possibility is to grow the lower free energy contracted form
�see the left of Fig. 13 below, which shows the epitaxial
surface�. It is interesting to note that epitaxial growth of pro-
tein sheets could possibly take advantage of the shapes of
molecules and the presence of functional groups, in addition
to the matching of lattice parameters and use of surface
chemistry, the latter principles familiar from the epitaxial
growth of semiconductors.

While it does not violate the constraints, unrolling is a
pretty drastic distortion, so one can expect some deviation of
the lattice vectors from the values t0

c,e , tc,e of Sec. VI. Nev-
ertheless, in the analysis below, we do use those values, to-
gether with the orientations R1,1

c,e . Without loss of generality
�using frame indifference� we first rotate these vectors into
the 1,2 plane �we do not relabel the resulting vectors� and we
apply the same rotations to the orientations. We plot the sheet
as it0+ jt where i and j are integers.

The transformation matrix G that maps t0
c , tc into t0

e , te is
the matrix

�0.053 − 1.088

0.999 1.543
� . �95�

By direct calculation GTG has eigenvalues 2.06, 0.567. As is
known from the theory of martensitic transformations in
sheets,11 the fact that these values straddle 1 �i.e., 2.06�1
�0.567� means that there are exactly two interfaces on the
sheet where extended and contracted sheet meet compatibly.
These are pictured in Fig. 13. We have rotated the sheets
suitably so that the interfaces are horizontal. The original
orientation can be inferred from the dark lines of atoms,
which correspond to what was the main helix �cf. Fig. 5�
before unrolling. A cross section of the interface on the right
is seen in Fig. 12.

Note that on the left of Fig. 13 the dark line of atoms is
approximately in the direction of the interface. This reflects
the constraint, which embodies the idea that the two phases
are approximately equally stretched along this line. The rea-
son that this line does not exactly coincide with the interface
is related to the use of the effective radius, rather than the
actual radius, in Eq. �42�. As mentioned above, the values of

11See, e.g., �29� which shows how to calculate these lines and the
corresponding deformations. The presence of these two interfaces
was first noticed by Olson and Hartman �7�.

FIG. 12. �Color online� Edge-on view, slightly below horizontal,
of the interface between contracted �left� and extended �right�
sheath.

FIG. 13. �Color online� The two compatible interfaces that sepa-
rate extended �above� from contracted �below� sheath. In each case
the dark line of atoms was the main helix before unrolling the
sheath.

FIG. 14. Shear-inducing the transformation from contracted to
extended sheath. Drawn with the lattice parameters of extended and
contracted sheaths but with molecules represented by dots. The
molecules are released from the substrate except for the two dark
strips at the top and bottom of the sheet.
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lattice parameters are likely to change a bit with “unrolling,”
leading to interfaces that differ somewhat from those shown
in Fig. 13.

From Fig. 13 one can imagine the possibility of stress-
inducing the transformation by shear as shown in Fig. 14.
This would provide a direct measure of the relative heights
of the energy wells and therefore of the contraction force.
Ideally, one could begin with an epitaxially grown sheet, as
discussed above, and release the film from the substrate on
the medium gray region of Fig. 14; some of the techniques
developed in the microactuator community �28� �such as
backside etching� for patterning and releasing single crystal
films could be relevant. Then by applying shear and slight
extension as shown in Fig. 14 the phase transformation could
be made to occur. Technically, the corners between phases

may introduce stress concentrations in such an experiment,
but this can be overcome by using a suitable indentor that
induces an appropriate out-of-plane deformation. Once
again, it would be fascinating to bring chemistry into such an
experiment by altering the solution around the sheet.
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APPENDIX: APPROXIMATION OF ELECTRON DENSITY
MAPS

Many arguments of this paper relied on the approximate
shape and orientation of the molecules. In order to have a
reasonable but fairly simple representation of the molecules
of the tail sheath, we approximated the electron density maps
of Leiman et al. ��11�; we are grateful to Petr Leiman for
providing prepublication data from high resolution cryoelec-
tron micrographs of the extended sheath�. Information about
how the positions and orientations were extracted from the
representations is given at the end of Sec. VI A.

The maps themselves showed clearly the presence of do-
mains. These have the general appearance of nestled ellip-
soids, so we approximated them by overlapping ellipsoids.
We did this by partitioning the data by domain �the colored
regions of Fig. 15�. Then we computed the total electronic

charge and center of mass of each domain. Using charge
neutrality we made mass density proportional to electronic
density. This can have errors arising mainly from the pres-
ence of H atoms, but in fact the total charge of a domain �or
molecule� in the contracted vs the extended state differed by
more than this error, so the quality of the data did not justify
a more detailed analysis.

With the center of mass of the domain now fixed, we
adjusted the principal axes of the ellipsoids to match ap-
proximately the sectional data. Sections of the selected ellip-
soids are shown in Fig. 15 superimposed on the data. In this
figure the concentric circles define the axis of the tail sheath
and the Z values indicate the slices of the electron density
map which were averaged. Here Z is an axial variable mea-
sured from a fixed �but arbitrary� reference. Domains for
both extended and contracted sheath are shown. The ellipses
are sections of the ellipsoid �for the enclosed domain� at the
corresponding average value of Z �i.e., for Z=0–10 the slice
through the ellipsoid was taken at Z=5�.
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