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Abstract

An objective atomic structure is a collection of atoms represented by mass points or ions for which

every atom sees precisely the same atomic environment, up to rotation (or, more generally,

orthogonal transformations) and translation. An objective molecular structure is a collection of

molecules in which corresponding atoms in each molecule see precisely the same environment up to

orthogonal transformation and translation. Many of the most actively studied structures in science

satisfy these conditions, including an arbitrary ordered periodic crystal lattice, the tails and also the

capsids of certain viruses, carbon nanotubes, many of the common proteins and C60. A single crystal

rod that has been bent and twisted into helical form also satisfies the conditions in a certain sense.

The quantum mechanical significance of objective structures is described and some general methods

for generating such structures are developed. Using these methods, some unexpected objective

structures are revealed. Methods for simplified atomic level calculations of the energy, equilibrium

and dynamics of these structures are given.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

We will use the following terminology. An objective atomic structure is a collection of N

mass points or ions in which the atomic environments of any two points can be precisely
related to each other by an orthogonal transformation and translation. An objective

molecular structure is a collection of N molecules, each of which consists of M atoms such
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that the full atomic environments of the ith atom of any two molecules are precisely related
to each other by an orthogonal transformation and translation. The terminology comes
from the origin of these definitions from the invariance of the energy or free energy under
objectivity transformations in fundamental theories of physics. This paper is a study of
these structures.

The ideas in this paper were motivated by several lines of thought. Falk and James
(2006) gave a simple formula (16) for the configuration of molecules of bacteriophage T4
tail sheath. This formula produces a structure that has precisely the property of being an
objective molecular structure. Each molecule in the structure is a complicated folded
protein consisting of a large number of atoms, yet the relationships between molecules are
incredibly simple. It is these simple relationships that are embodied in the formula (16). It
was then seen that this observation relates to the famous papers of Crick and Watson
(1956) and Caspar and Klug (1962) and less well-known work of Crane (1950) (cf. Cahill,
2005). Caspar and Klug introduced the term equivalence to denote structures in which each
subunit ‘‘is situated in the same environment’’. This is similar to the notion here of an
objective structure. Caspar and Klug then observed that this definition is too strict to apply
to viral capsids, and they introduced the less restrictive concept of quasi-equivalence. They
give several examples of quasi-equivalence: (1) the case of a long helical virus that is
slightly bent, perturbing the exact concept of identical environments, and (2) the case of an
icosahedral structure in which the faces of the icosahedron are further subdivided by
equilateral triangles. In fact, (2) is an objective molecular structure according to our
definition while (1) is not. Thus the concepts introduced here do not precisely coincide with
those of Caspar and Klug, but there is sufficient overlap of the intuitive concepts that one
can say that we have put one interpretation of the ideas of Caspar and Klug and
Crane–Crick–Watson into precise analytical form. The calculations of this paper do not
appear to shed light on the remarkable sequences of triangulation numbers associated with
viral structure predicted by Caspar and Klug.

We show that there is very significant simplification of first principles calculations of the
energy and also of the equilibrium equations of objective structures. First, for the
calculation of the energy of an objective structure, there is a direct analog of what is
commonly done in crystal lattices, that is, the calculation of the electronic density by using
periodic boundary conditions on the unit cell of the lattice. For objective structures the
unit cell is replaced by a certain fundamental domain and periodic boundary conditions
are replaced by objective boundary conditions. This gives the energy as a function of the
structural parameters, that is, the parameters that can be varied while keeping the structure
as an objective structure. Once this energy is determined as a function of the structural
parameters, there is a second very significant simplification of the equations of equilibrium
arising from the basic objectivity of quantum mechanics (Section 5). That is, for objective
atomic structures and for some kinds of objective molecular structures, structural
equilibrium implies equilibrium of all the atoms.

These simplifications of the equilibrium equations are unexpectedly related to work of
Ericksen (1977) on the large bending and torsion of beams based on nonlinear elasticity.
Using the basic invariance group of nonlinear elasticity (objectivity), he constructs
equilibrium solutions in nonlinear elasticity corresponding to a bent and twisted beam.
The invariance allows him to reduce the 3-D Euler–Lagrange operator to a reduced
operator on the cross-section. This reduction has deep connections to invariant solutions
of partial differential equations and Noether’s theorem. There are related results in
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Kirchhoff’s rod theory with similar origins (Chouaieb and Maddocks, 2004). In a certain
sense that we describe in Section 3.4, a bent and twisted beam at atomic level is an
objective molecular structure, and the equilibrium equations can be similarly reduced to
conditions on one layer of atoms that compose the beam, the analog, at atomic scale, of
the determination of the warping function. We develop this example in the atomic level
context, and we discuss the possible validity of an atomic level version of St. Venant’s
principle.
Much of what is known from experiment about the molecular structure of matter comes

from X-ray crystallography on crystallized structures. However, as we explain in Section 6
many objective structures are not periodic, and also nonhelical. If such structures are
forced via crystallization to adopt a 3-D periodic structure, then they may well be distorted
away from the relations associated with the definition of objective structures. Some of
these relations are quite unexpected (Section 7). However, there are basic physical reasons
why a molecular system of a few different kinds of atoms or molecules should adopt a
objective atomic or molecular structure. In fact, we argue in Sections 5 and 6 that from a
basic physics viewpoint it is not periodicity that makes crystalline substances so common
in Nature but, rather, it is the concept embedded in the definition of an objective structure.
Thus, it seems possible that various nonperiodic objective molecular structures might have
been overlooked, or their special relationships not recognized, because the structure was
determined experimentally by X-ray crystallography.
The Cauchy–Born rule, a rule that relates atomic to macroscopic deformation, has

assumed a central importance in multiscale methods for crystalline materials in recent years
(Tadmor et al., 1996; Friesecke and Theil, 2002; Weinan and Ming, 2006). In Section 9, we
suggest a version of the Cauchy–Born rule for deformations of some objective structures.
Following ideas of Caspar and Klug (1962), objective structures are ideal candidates for

self-assembly, which, intuitively, explains their prevalence as the building blocks of viruses.
In particular, if the surface relaxation of a partially grown objective structure is not
significant, then a molecule that is about to be added to the structure further completes the
environment of each of the molecules already present, as well as its own. It seems that this
idea could be developed in general for such structures in a statistical mechanical
framework. Guided by some theory of this type, a program of synthesis of specific
objective structures of the type we show in Section 7 could be designed.
In Section 6.1, we give methods that are capable in principle of constructing all objective

atomic and molecular structures. First it is noted that the concept of ‘‘regular systems of
points’’ in pure geometry corresponds to an objective atomic structure.1 The classification
of these is equivalent to the classification of all discrete groups of isometries in 3D
(see, e.g., Nikulin and Shafarevich, 1987; Vainshtein, 1994). These contain the usual 230
space groups, but, more interestingly, the noncrystallographic groups collected in Volume
E of the International Tables of Crystallography (Hahn, 2003). These constructions
are very useful for some general arguments concerning the equilibrium of such
structures, as we explain, but not so useful for actual calculations of the properties of
such structures, especially for objective molecular structures. We therefore develop some
formulas (Section 6.2) that generalize the formula for T4 tail sheath and that are useful for
1However, the concept of ‘‘multiregular systems of points’’ (Dolbilin et al., 1998) does not correspond to an

objective molecular structure. For this reason, and to emphasize the physical origins of this work, we have

adopted a different terminology.
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calculations of properties. These simple formulas are seen to generate an amazing variety
of these structures. The relationships involved in some of these structures are quite subtle,
often combining reflection or 180� symmetry with other symmetries. Some are essentially
helical and others not. Some (both helical and nonhelical) are widely observed in organic
and inorganic materials.

We conclude the paper with suggestions for further research on objective structures: the
possibility of collective properties like ferromagnetism or ferroelectricity in them, an
approach to defects and failure, phase transformations in objective structures, the
classification of phonons, ways of interrogating them that are adapted to their particular
group structure, molecular dynamics (MD) on objective structures, and analogs of the
Cauchy–Born rule for them.

Notation: Throughout this paper subscripts denote numbering of atoms or molecules,
not components of vectors or matrices. Bold lower case letters are vectors in three
dimensions, while bold upper case letters are 3� 3 matrices. Matrix multiplication of A
and B is denoted as AB while Ai denotes A multiplied by itself i times, if i is a positive
integer, or A�1 multiplied by itself jij times if i is a negative integer.

2. Basic definitions

An objective atomic structure is one for which each atom sees the same atomic
environment, up to translation and orthogonal transformation. In the simplest case, if the
atoms are represented by positions S ¼ fx1; . . . ;xNg, with N finite or infinite, then this
collection is an objective atomic structure if there exists a corresponding set of orthogonal
matrices fR1; . . . ;RNg such that S is expressible in the form:

S ¼ fxi þ Riðxj � x1Þ : j ¼ 1; . . . ;Ng (1)

for every fixed choice of i 2 f1; . . . ;Ng.
By way of explanation, the ðxj � x1Þ represent the displacements of atoms relative to the

position of atom 1. The condition (1) says that we can recover the entire atomic structure
by adding to any atom i a suitable orthogonal transformation of these displacements. The
key point is that the set on the left-hand side of (1) is independent of i. Here and
throughout, we assume a sensible numbering system: xi ¼ xj¼)i ¼ j. Notice that, at the
level of this definition, there is no assumed group structure of the transformations.
However, as we describe in Section 6 a group structure emerges if we augment the set of
transformations in a suitable way.

An objective molecular structure consists of a set of N identical molecules, each of which
contains a finite number M of atoms. Thus, the structure is represented by position vectors,

xi;j ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M. (2)

Throughout this paper it will be allowed that N takes the value1 but M will be finite. An
objective molecular structure S ¼ fxi;j : i ¼ 1; . . . ;N; j ¼ 1; . . . ;Mg by definition has the
property that there exists NM orthogonal matrices fR1;1; . . . ;RN;Mg such that

S ¼ fxi;k þ Ri;kðxn;m � x1;kÞ : n ¼ 1; . . . ;N; m ¼ 1; . . . ;Mg ðno sum over kÞ (3)

for every choice of i 2 f1; . . . ;Ng; k 2 f1; . . . ;Mg. For an objective molecular structure,
modulo a rigid transformation, the entire structure looks the same from the perspective of
atom k of each molecule. Examples are given below.
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A useful way to write the definition of an objective molecular structure is to note that
since xi;k þ Ri;kðxn;m � x1;kÞ gives back the entire structure, there must be a permutation
ðp; qÞ ¼ Pðn;mÞ; n ¼ 1; . . . ;N; m ¼ 1; . . . ;M such that

xi;k þ Ri;kðxn;m � x1;kÞ ¼ xPðn;mÞ. (4)

In fact, there is such a permutation for each choice of i; k.
If we assign a species to each atom xi;j of an objective molecular structure, then we

would want the definition to preserve the species, but the definition as written above does
not necessarily do that. A general way to do that is to assign a mapping nðjÞ; j 2 f1; . . . ;Mg
that gives the atomic number of atom j of any molecule (It is assumed that the numbering
of atoms in a molecule is consistent with the species: atom j in molecule k is the same
species as atom j of molecule m.). We say that an objective molecular structure preserves

species if in (4)

ðp; qÞ ¼ Pðn;mÞ ¼) nðqÞ ¼ nðmÞ. (5)

In principle, it could be true that if ðj; ‘Þ ¼ Pðn;mÞ and ðj0; ‘0Þ ¼ Pðn;m0Þ, that we might
have j0aj. This would have the interpretation that, by rotating the environment of one
atom to another, two other atoms from a certain molecule would become members of
different molecules. In fact, we have no examples of this possibility, and all our examples
satisfy the following stronger condition. We say that an objective molecular structure
preserves molecules if in basic definition, we have

xi;k þ Ri;kðxn;m � x1;kÞ ¼ xP1ðnÞ;P2ðmÞ, (6)

where P1 is a permutation of f1; . . . ;Ng and P2 is a permutation of f1; . . . ;Mg with
nðP2ðmÞÞ ¼ nðmÞ, and of course both of these permutations depend on the choice of i; k

(when we need to emphasize this dependence we will write Pði;kÞ1 and Pði;kÞ2 ). Clearly, an

objective molecular structure that preserves molecules will also preserve species. Basic
physics (Section 5) favors objective molecular structures that preserve species. Even though
we have no examples of objective molecular structures that do not preserve molecules, it is
important to maintain maximum generality consistent with basic physics, as there could be
new and unexpected structures in the more general classification.
These definitions can be specialized to objective atomic structures. We should also

emphasize that, in the definition of an objective molecular structure, a ‘‘molecule’’ could
represent several actual molecules, or it could simply represent a certain convenient
collection of atoms that would not ordinarily be considered a molecule, as in Example 3.4
below.
These definitions have been framed to apply to atoms (e.g., ions) but they can be

modified in the usual way to apply to a density, such as an electronic density. If
rðxÞ; x 2 R3, represents such a density, then we say that it is the density of an objective
atomic structure if

rðxÞ ¼ rðxi þ Riðx� x1ÞÞ (7)

for each i 2 f1; . . . ;Ng and all x 2 R3. When rðxÞ ¼
P

i dðx� xiÞ is the sum of Dirac
masses at x1; . . . xN then (7) implies (1). A density of an objective molecular structure
satisfies the invariance condition:

rðxÞ ¼ rðxi;k þ Ri;kðx� x1;kÞÞ (8)
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for all i 2 f1; . . . ;Ng; k 2 f1; . . . ;Mg and all x 2 R3. When the density is of the form
rðxÞ ¼

P
i

P
j mjdðx� xi;jÞ, with mj40 then (8) implies (3). (For the latter argument to hold

it is not required that (8) be satisfied for all such choices of the mj.) We return to (8) in
Section 8 in the context of simplified atomic level calculations.

3. Examples

In this section we show that several interesting structures are objective structures.

3.1. Ordered crystal

A Bravais lattice is a set of the form:

L ¼ fn1e1 þ n2e2 þ n3e3 : ðn1; n2; n3Þ 2 Z3g, (9)

where e1; e2; e3 are linearly independent vectors and Z3 denotes the set of triples of integers.
In this case N ¼ 1 and it is convenient to use the indexing set Z3 rather than 1; 2; . . . ; as is
always possible. Clearly, this is an objective structure because triples of integers form a
group under componentwise addition. That is, if x 2L then x ¼ miei and

L ¼ fniei : ðniÞ 2 Z3g ¼ fðmi þ niÞei : ðniÞ 2 Z3g ¼ fxþ niei : ðniÞ 2 Z3g. (10)

This is of the form (1) with all the orthogonal matrices put equal to the identity matrix.
Let fp1; . . . ; pMg be given vectors. A multilattice (i.e., an arbitrary periodic lattice2) is a

set of M interpenetrating Bravais lattices of the form:

LM ¼ fniei þ pk : ðn
iÞ 2 Z3; k 2 f1; . . . ;Mgg. (11)

This is not in general an objective atomic structure but it is an objective molecular
structure. Here, N ¼ 1 and we again use the indexing set Z3. Let x 2LM so that x is
expressible in the form x ¼ xm;‘ ¼ miei þ p‘ for some ‘ 2 f1; . . . ;Mg and some triple of
integers ðmiÞ 2 Z3. Then,

LM ¼ fniei þ pk : ðn
iÞ 2 Z3; k 2 f1; . . . ;Mgg

¼ fðmi þ niÞei þ pk : ðn
iÞ 2 Z3; k 2 f1; . . . ;Mgg

¼ fxm;‘ þ niei þ pk � p‘ : ðn
iÞ 2 Z3; k 2 f1; . . . ;Mgg. ð12Þ

Since p‘ ¼ 0ei þ p‘ ¼ x0;‘ we see that this is of the form (3) with Rn;k ¼ I.

3.2. Bacteriophage T4 tail sheath

This is a nonperiodic complex structure consisting of identical globular protein molecules
arranged on a kind of cylindrical lattice, Fig. 1. There are two forms—extended and contracted
sheath—and the phase transition between them plays an important role in the invasion of the
bacterial host. Both structures are objective molecular structures. The structures given here are
deduced from electron density maps of the molecules and other structural information, (Falk
and James, 2006; Leiman et al., 2004; Kostyuchenko et al., 2006).

To describe this structure consider a reference molecule consisting of M atoms with
positions fp1; . . . ; pMg relative to its center of mass. The actual values of these vectors are,
2This is sometimes called ‘‘a lattice with a basis’’.
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perhaps rather surprisingly, not important for the present discussion, but they can be
obtained from Leiman et al. (2004) and Kostyuchenko et al. (2006). There are 138
molecules in tail sheath (N ¼ 138) and it is again convenient to take the indexing set
f1; . . . ; 138g to be of the form fði; jÞ : i ¼ 0; . . . ; 5; j ¼ 0; . . . ; 22g. We work in an
orthonormal basis ðe1; e2; e3Þ with e3 vertical in Fig. 1 and introduce two vectors t, t̂ and
two rotation matrices Q, Q̂ which for tail sheath have the forms:

t̂ ¼ �re1; t ¼ le3 þ ðQ� IÞy1; Q ¼ Qg; Q̂ ¼ Qp=3 (13)

with r; l; g being parameters that define the geometry of the sheath and

y1 ¼ r
1

2
e1 þ

ffiffiffi
3
p

2
e2

� �
; Qy ¼

cos y � sin y 0

sin y cos y 0

0 0 1

0
B@

1
CA. (14)



ARTICLE IN PRESS
R.D. James / J. Mech. Phys. Solids 54 (2006) 2354–2390 2361
We note the following identities that follow from (13):

t̂þ Q̂t�Qt̂� t ¼ 0; Q̂Q ¼ QQ̂. (15)

It is important for the sequel to remark that these identities hold for all values of r; l; g, not
just the experimentally measured ones for T4 tail sheath. The structure of the sheath is then
given by the simple formula fyi;j þ Ri;jpk: i 2 f0; . . . ; 5g; j 2 f0; . . . ; 22g; k 2 f1; . . . ;Mgg,3

where

yi;j ¼ y1 þ
Xi�1
‘¼0

Q̂‘ t̂þ Q̂i
Xj�1
‘¼0

Q‘t,

Ri;j ¼ Q̂iQjR. ð16Þ

Here, we use the convention that Q0 ¼ I, the convention for sums to negative upper limits
is given in (89), and R is a certain rotation matrix (the orientation of molecule (0,0)). The
resulting sheath is one molecule thick. The pictures in Fig. 1 were generated by applying
the formula (16) to a three-domain model of the molecule. This model, for which the
molecule is represented by three interpenetrating ellipsoids, was fit to the domains of the
molecule using measured electron density maps (Falk and James, 2006).

To qualify as an objective molecular structure it is clear that the sheath has to be
extended to infinity. This is done by keeping all formulas above the same but replacing the
interval f0; . . . ; 22g by the set of all integers (and using the special summation convention
(89)). Assuming this has been done, we write a general atomic position in the sheath (atom
k in molecule ði; jÞ) as

xði;jÞ;k ¼ yi;j þ Ri;jpk

¼ y1 þ
Xi�1
‘¼0

Q̂‘ t̂þ Q̂i
Xj�1
‘¼0

Q‘tþ Q̂iQjRpk. ð17Þ

The sheath is an objective molecular structure if for every i; j; k; ði; jÞ 2 Z2;
k 2 f1; . . . ;Mg, there is an orthogonal matrix Rði;jÞ;k such that

xði;jÞ;k þ Rði;jÞ;kðxðp;qÞ;m � xð0;0Þ;kÞ (18)

completely restores the structure. We show that this is true with the choice Rði;jÞ;k ¼ Q̂iQj .
With this choice

xði;jÞ;k þ Rði;jÞ;kðxðp;qÞ;m � xð0;0Þ;kÞ ¼ y1 þ
Xi�1
‘¼0

Q̂‘ t̂þ Q̂i
Xj�1
‘¼0

Q‘tþ Q̂iQj
Xp�1
‘¼0

Q̂‘ t̂

þ Q̂iQjQ̂p
Xq�1
‘¼0

Q‘tþ Q̂iQjQ̂pQqRpm. ð19Þ
3Each molecule Gp18 of tail sheath contains 658 amino acids, so M is of the order of several thousand.
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Noting from (15) that Q and Q̂ commute, we continue

¼ y1 þ
Xi�1
‘¼0

Q̂‘ t̂þ Q̂i
Xj�1
‘¼0

Q‘tþQj
Xp�1
‘¼0

Q̂iþ‘ t̂þ Q̂iþp
Xq�1
‘¼0

Qjþ‘tþ Q̂iþpQjþqRpm

¼ y1 þ
Xi�1
‘¼0

Q̂‘ t̂þ Q̂i
Xj�1
‘¼0

Q‘tþQj
Xiþp�1

‘¼i

Q̂‘ t̂þ Q̂iþp
Xjþq�1

‘¼j

Q‘tþ Q̂iþpQjþqRpm

¼ y1 þ
Xiþp�1

‘¼0

Q̂‘ t̂þ Q̂iþp
Xjþq�1

‘¼0

Q‘tþ Q̂iþpQjþqRpm

þ ðQj � IÞ
Xiþp�1

‘¼i

Q̂‘ t̂þ ðQ̂i � Q̂iþpÞ
Xj�1
‘¼0

Q‘t

" #
. ð20Þ

We will show that the term in square brackets vanishes, from which it is clear by comparison
of the next to last line of (20) with (17) that, by choosing p; q; r arbitrarily, we reproduce the
entire structure. The term in brackets is, using again the commutability of Q; Q̂,

ðQj � IÞ
Xiþp�1

‘¼i

Q̂‘ t̂þ ðQ̂i � Q̂iþpÞ
Xj�1
‘¼0

Q‘t

¼ Q̂i
Xp�1
‘¼0

Q̂‘ðQj � IÞt̂þ
Xj�1
‘¼0

Q‘ðI� Q̂pÞt

 !

¼ Q̂i
Xj�1
‘0¼0

Xp�1
‘¼0

Q̂‘ðQ‘0þ1 �Q‘0 Þt̂þ
Xp�1
‘0¼0

Xj�1
‘¼0

Q‘ðQ̂‘0 � Q̂‘0þ1Þt

 !

¼ Q̂i
Xj�1
‘0¼0

Xp�1
‘¼0

Q̂‘Q‘0 ðQ� IÞt̂þ
Xp�1
‘0¼0

Xj�1
‘¼0

Q‘Q̂‘0 ðI� Q̂Þt

 !
¼ 0 ð21Þ

by virtue of the first of (15). This shows that the tail sheath is an objective molecular structure.
In this argument only the formulas (15) and (16) have been used, not the specific forms

of t; t̂;Q; Q̂ for T4 tail sheath. In fact this argument with various choices of t; t̂;Q; Q̂ applies
to very wide variety of protein sheets including (suitably extended) capsids of the viruses
Pf1 and TMV, bacteriophage M13 and actin filaments. It has been shown in Falk and
James (2006) that the Eqs. (15) and (16) arise as compatible energy minimizers (called there
‘‘fully relaxed states’’) of quite a general free energy function that accounts for position
and orientation of molecules.
There are also many nonprotein structures of this type, the carbon nanotube being the

most familiar example. The various single-walled carbon nanotubes are objective
molecular structures in which each molecule consists of two carbon atoms.
3.3. C60

The structure of C60 is an objective atomic structure, as can be seen by inspection. What
is not quite so obvious is that a suitable placement of an arbitrary complicated molecule on
each site of this structure gives an objective molecular structure.
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To see this we begin with a representation of the icosahedral rotation group
fQ1; . . . ;Q60g. These matrices rotate a specific icosahedron into itself (a differently
oriented icosahedron is mapped to itself by the conjugate group fRTQ1R; . . . ;R

TQ60Rg, R
being a suitable rotation matrix). The structure of C60 is obtained by choosing a single
position vector y1, not left invariant by any of the rotations fQ1; . . . ;Q60g, and computing
fQ1y1; . . . ;Q60y1g ¼ fy1; . . . ; y60g. To make all the bond lengths equal, one should choose a
specific y1, this being of the form ð1

3
Þaþ ð2

3
Þb, where a and b are neighboring vertices of the

underlying icosahedron. However, the statements below do not depend on this choice, and
are valid for the general case where the pentagonal bond lengths are different from the
hexagonal ones.

To see that this is an objective atomic structure, choose the orthogonal transformations
Ri in the definition (1) as simply the group elements above, Ri ¼ Qi; i ¼ 1; . . . ; 60. Then
yi þ Riðyj � y1Þ ¼ Qiy1 þQiðQjy1 � y1Þ ¼ QiQjy1. Since fQ1; . . . ;Q60g is a group, then for
any fixed i we have that fQiQj : j 2 f1; . . . ; 60gg ¼ fQ1; . . . ;Q60g and the definition is
verified.

Less obviously, it is an objective molecular structure if the molecule placed on each site
is oriented suitably. The molecule can have arbitrary structure; in this regard let
fp1; . . . ; pMg be an arbitrary collection of atoms denoted by position vectors. The full
structure is given by

xi;j ¼ Qiðy1 þ pjÞ; i ¼ 1; . . . ; 60; j ¼ 1; . . . ;M. (22)

We need to find orthogonal R1;1; . . . ;R60;M such that (3) holds, and we choose simply
Ri;k ¼ Qi. Then

xi;k þ Ri;kðxn;m � x1;kÞ ¼ Qiðy1 þ pkÞ þQi ðQn � IÞy1 þQnpm � pk

� �
¼ QiQnðy1 þ pmÞ; n ¼ 1; . . . ; 60; m ¼ 1; . . . ;M, ð23Þ

which restores the full structure. A picture of a structure of this type is shown in Fig. 2,
right, drawn with a rather unsymmetrical set of pk’s that form an ellipsoidal molecule.
Fig. 2. Left: structure of C60 with pentagons colored to show the five-fold axes, right: an objective molecular

structure based on C60.
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Because of that choice, the full structure looks somewhat unsymmetrical, but it does have
icosahedral symmetry.
There are also a great many examples of this type, also based on different finite

orthogonal groups. Two quite different octahedral examples are the DNA octahedron
(Shih et al., 2004) and the capsid of Streptococcus lactis (Ksaneva, 1976). For an
interesting perspective on the deformation and mobility of such structures, see Kovács
et al. (2004).

3.4. Finite bending and torsion of a bar

This example illustrates that sometimes an unusual choice of molecule reveals an
objective molecular structure. It also indicates that the term ‘‘molecule’’ should be
interpreted broadly. The example is appropriate for large bending and torsional
deformations of a bar. There are no assumptions of harmonicity or smallness of strains,
or of continuum limits: neighboring molecules could be related by a very large rotation.
Below, in Section 8, we suggest how the bending–torsional response of a bar of atomic
dimensions can be efficiently calculated from first principles using these ideas.
We consider a molecule consisting of a planar sheet of atoms as pictured in Fig. 3A.

Although only 25 atoms are pictured there, the number would be more like the 2
3
power of

Avogadro’s number in a macroscopic bar, or it could be just two atoms. The atoms within
the molecule will be indexed by pairs of integers ði; jÞ � O, where O is a domain in the 2-D
plane. The number of points in ði; jÞ � O is M2. Each atom occupies the position
pði;jÞ; ði; jÞ 2 Z2 \ O, illustrated in Fig. 3A.
Keeping in mind that we index the atoms in an individual molecule by ði; jÞ 2 Z2 \ O, we

will index the molecules by k ¼ �N; . . . ; 0; . . . ;N, and actually, below, we take N ¼ 1.
Fig. 3. (A) The molecule; (B) pure torsion; (C) pure bending; and (D) combined torsion–bending–tension. The

objective molecular structures (B)–(D) were produced by (24) under various conditions: see text.
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The structure is defined by

xk;ði;jÞ ¼ Qk
gpði;jÞ þ kle3, (24)

where l; g are real numbers (the former with the dimensions of length) and Qg is defined by
(14) relative to the orthonormal basis fe1; e2; e3g, i.e., Qg has axis e3. To see that (24) defines
an objective molecular structure, we make the choice Rk;ði;jÞ ¼ Qk

g . Then,

xk;ði;jÞ þ Rk;ði;jÞðxm;ðr;sÞ � x0;ði;jÞÞ ¼ Qk
gpði;jÞ þ kle3 þQk

g ðQ
m
g pðr;sÞ þmle3 � pði;jÞÞ

¼ kle3 þQk
g ðQ

m
g pðr;sÞ þmle3Þ

¼ Qkþm
g pðr;sÞ þ ðk þmÞle3, ð25Þ

which recovers (24).
Depending on the choice of pði;jÞ and the parameters g; l, this structure can represent

either bending or torsion or both, as these terms are usually used. In Fig. 3A, we show an
arbitrarily distorted sheet of 25 atoms (or, they could be molecules) produced by certain
choices of pi;j ; i ¼ 1; . . . ; 5; j ¼ 1; . . . ; 5. In Fig. 3B, we take e3 to be vertical and l40, in
which case we generate a torsional deformation. In Fig. 3C, we take e3 to be directed into
the page, we add a suitable constant vector to pi;j, and we take l ¼ 0 to get a bending
deformation. Fig. 3D shows the generic case of combined bending and torsion. These
results overlook possible interpenetration of molecules, which does not affect their status
as objective structures but may not be reasonable from a physical viewpoint. For example,
in the case of Fig. 3C one may want to assume that 2p=g ¼ K is a positive integer so the
circle closes, and then this represents an objective molecular structure with a finite number
K of molecules.

The structures given here are objective no matter what are the choices of pði;jÞ and the
parameters l and g. For an equilibrium structure one expects these to be determined by
applied forces and moments. This is discussed in Section 8. We also note that, as is easily
seen, the formula (24) for bending/torsion is a special case of that for T4 tail sheath (16).

Although this example illustrates the value of being open minded about the choice of
molecule, one should carry this idea too far. For example, any structure with two-fold
symmetry is an objective molecular structure having two molecules, but the present
viewpoint would hardly be useful in that case.

4. Relation between atomic and molecular objective structures

Here, we explore the relation between atomic and molecular objective structures.
Consider an objective molecular structure S ¼ fxi;j : i ¼ 1; . . . ;N ; j ¼ 1; . . . ;Mg. At first
it might seem that if we freeze j ¼ j0, write xi ¼ xi;j0 , Ri ¼ Ri;j0 and define
S0 ¼ fxi : i ¼ 1; . . . ;Ng, that S0 is an objective atomic structure. This is true in some
cases, such as multilattices, but it is not true in general. A simple counterexample can be
constructed from all permutations of the components of ð�1; 0;�eÞ. This gives six
molecules, each with four atoms, where, e.g., molecule 1 consists of the four points
ð1;�e; 0Þ, ð1; 0;�eÞ. This is an objective molecular structure, fxi;j: i ¼ 1; . . . ; 6; j ¼ 1; . . . ; 4g
but typically4 fxi;j : i ¼ 1; . . . ; 6; j ¼ j0g is not an objective atomic structure.
4There is in fact a very special way to number the atoms of the structure so that fxi;j : i ¼ 1; . . . ; 6; j ¼ j0g is an

objective atomic structure. See Section 6.1.
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But there is a relation between atomic and molecular objective structures that
can be guessed from the examples above. Consider again an objective molecular
structure

S ¼ fxn;m : n ¼ 1; . . . ;N; m ¼ 1; . . . ;Mg

¼ fxi;k þ Ri;kðxn;m � x1;kÞ : n ¼ 1; . . . ;N; m ¼ 1; . . . ;Mg. ð26Þ

We say that the molecule is generic if it has a trivial isometry group: that is, if

Rx1;‘ þ c ¼ x1;Pð‘Þ (27)

holds for some R 2 O(3), c 2 R3 and a permutation P, then necessarily

R ¼ I; c ¼ 0 and Pð‘Þ ¼ ‘; ‘ ¼ 1; . . . ;M. (28)

This definition is written for molecule 1; it is easily seen that molecule 1 is generic if and
only if molecule i (i.e., replace 1 by i in (27)) is generic. A further equivalent condition that
eliminates the translation is the following: the molecule is generic if and only if

Rðx1;‘ � x1;mÞ ¼ x1;Pð‘Þ � x1;PðmÞ (29)

holding for R 2 O(3) and a permutation P implies that R ¼ I and Pð‘Þ ¼ ‘.
Suppose the structure S preserves molecules (see (6)) and the molecule is generic. First

we observe that

Pði;‘Þ1 ð1Þ ¼ i; Pði;‘Þ2 ð‘Þ ¼ ‘. (30)

This follows by putting n ¼ 1 and m ¼ k ¼ ‘ in (6). We now put k ¼ n ¼ 1 and write (6) as

Ri;1ðx1;m � x1;1Þ ¼ x
i;Pði;1Þ

2
ðmÞ
� xi;1. (31)

Subtract (31) at m ¼ r; s:

Ri;1ðx1;r � x1;sÞ ¼ x
i;Pði;1Þ

2
ðrÞ
� x

i;Pði;1Þ
2
ðsÞ
. (32)

Now evaluate (6) at n ¼ 1 and subtract the result at m ¼ p; q to get

Ri;kðx1;p � x1;qÞ ¼ x
i;Pði;kÞ

2
ðpÞ
� x

i;Pði;kÞ
2
ðqÞ
. (33)

Fix i; k and choose a permutation P to satisfy Pði;kÞ2 ðPð‘ÞÞ ¼ Pði;1Þ2 ð‘Þ. That is choose
Pð‘Þ ¼ ðPði;kÞ2 Þ

�1
ðPði;1Þ2 ð‘ÞÞ. Substituting p ¼ PðrÞ and q ¼ PðsÞ into (33), we get

Ri;kðx1;PðrÞ � x1;PðsÞÞ ¼ x
i;Pði;1Þ

2
ðrÞ
� x

i;Pði;1Þ
2
ðsÞ
¼ Ri;1ðx1;r � x1;sÞ, (34)

the latter following from (31). Now we can see by comparing (34) and (29) that, because
the molecule is generic,

Ri;k ¼ Ri;1. (35)

In summary, for an objective molecular structure that preserves molecules, and has generic
molecules, Ri;‘ is independent of ‘. This explains why Ri;‘ was independent of ‘ in all the
examples above.
Now we consider an objective molecular structure that preserves molecules for which

(for whatever reason) Ri;‘ is independent of ‘:

xi;k þ Riðxn;m � x1;kÞ ¼ xP1ðnÞ;P2ðmÞ. (36)
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Define the simple average position of molecule i by

x̄i ¼
1

M

XM
‘¼1

xi;‘. (37)

Now put n ¼ 1 in (36), use P1ð1Þ ¼ Pði;kÞ1 ð1Þ ¼ i, and average over m. We get

Rið x̄1 � x1;kÞ ¼ x̄i � xi;k. (38)

This shows that Ri maps molecule 1 rigidly into molecule i. In particular, subtracting (38)
at k; k0 we get

Riðx1;k � x1;k0 Þ ¼ xi;k � xi;k0 . (39)

Now, without putting n ¼ 1, we average (36) over m:

xi;k þ Rið x̄n � x1;kÞ ¼ x̄
Pði;kÞ
1
ðnÞ
. (40)

Here, we have re-emphasized the dependence of P1 on i; k. Subtract (40) at k; k0:

x̄
Pði;kÞ
1
ðnÞ
� x̄

Pði;k
0 Þ

1
ðnÞ
¼ xi;k � xi;k0 � Riðx1;k � x1;k0 Þ ¼ 0, (41)

the latter following from (39). This shows that x̄
Pði;kÞ
1
ðnÞ

is actually independent of k and
allows us to average (40) over k. We get

x̄i þ Rið x̄n � x̄1Þ ¼ x̄
Pði;kÞ
1
ðnÞ
. (42)

This proves that the set of averages x̄i; i ¼ 1; . . . ;N is an objective atomic structure. It is
interesting to note that we deal with simple position averages in this argument. However,
we could have also used mass averages, since we have assumed that the permutation P2

preserves species and therefore mass.
The question of whether we can reverse these arguments, that is, whether we can begin

from an objective atomic structure and construct an objective molecular one, is discussed
in Section 6.1.
5. Quantum mechanical significance of objective structures

An important question to consider is why, from the point of view of atomic forces, such
structures are rather commonly seen. To begin to explore this question we consider rather
general models of atomic forces that could arise from various fundamental theories. For
example, consider full quantum mechanics under the Born–Oppenheimer approximation.
Given nuclear positions of identical atoms x1; . . . ; xN we write the ground state quantum
mechanical energy as jðx1; . . . ;xN Þ. Specifically, this is given by

jðx1; . . . ;xN Þ ¼ KEþ EEþ ENþNN

¼ min
c anti�symmetric

normalized

X
s1;...;sP

¼�1
2

Z
R3P

1

2
jrcððr1; s1Þ; . . . ; ðrP; sPÞÞj

2 dr1; . . . ; drP

 

þ
XP

i;j¼1
iaj

Z
R3P

1

2

1

jri � rjj
jcððr1; s1Þ; . . . ; ðrP; sPÞÞj

2 dr1; . . . ;drP
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þ
XP

‘¼1

Z
R3P

V ðr‘; x1; . . . ;xNÞjcððr1; s1Þ; . . . ; ðrP; sPÞÞj
2 dr1; . . . ;drP

!

þ
1

2

XN

i;k¼1
iak

Z2

jxi � xkj
, ð43Þ

where Z is the atomic number of the identical atoms and for the assumed Coulomb
interactions:

V ðr; x1; . . . ; xNÞ ¼ �
XN

i¼1

Z

jr� xij
. (44)

For overall charge neutrality P ¼ ZN. Defined as such, this energy exhibits two
fundamental invariances:

jðxPð1Þ; . . . ;xPðNÞÞ ¼ jðx1; . . . ; xNÞ ¼ jðQx1 þ c; . . . ;QxN þ cÞ (45)

for all Q 2 O(3) and c 2 R3 and all permutations P of f1; . . . ;Ng. The permutation
invariance is immediately obvious, and the objectivity is easily seen by changing variables
ri ! Qri þ c in all the terms KE, EE and EN.
For molecular structures we can use the notation we have developed above, xi;j ; i ¼ 1; . . . ;

N; j ¼ 1; . . . ;M for the position of atom j in molecule i, but we do not assume that this is
necessarily an objective molecular structure. Then the energy is given by an expression like (43)
except that the electron–nuclear and nuclear–nuclear interaction energies (the last two terms of
(43)) are replaced by

ENþNN ¼
XP

‘¼1

X
s1;...;sP

¼�1
2

Z
R3P

V ðr‘; x1;1; . . . ;xN ;MÞjcððr1; s1Þ; . . . ; ðrP; sPÞÞj
2 dr1 . . . ;drP

þ
1

2

XN

i;k¼1

XM
j;m¼1
ðj;mÞaði;kÞ

ZðjÞZðmÞ

jxi;j � xk;mj
. ð46Þ

The whole expression KEþ EEþ ENþNN, with ENþNN replaced by (46), is again
minimized over antisymmetric normalized wave functions. Here ZðjÞ is the atomic number of
atom j and

V ðr; x1;1; . . . ;xN;M Þ ¼ �
XN

i¼1

XM
j¼1

ZðjÞ

jr� xi;jj
. (47)

The ground state energy is now

jðx1;1; . . . ;x1;M ; . . . ;xN;1; . . . ;xN;M Þ. (48)

Because of the different atomic numbers associated to the different atoms of the molecule the
invariance analogous to (45) that follows from these definitions is

jðxPð1;1Þ; . . . ;xPð1;MÞ; . . . ;xPðN ;1Þ; . . . ;xPðN ;MÞÞ

¼ jðx1;1; . . . ;x1;M ; . . . ;xN ;1; . . . ;xN ;MÞ

¼ jðQx1;1 þ c; . . . ;Qx1;M þ c; . . . ;QxN ;1 þ c; . . . ;QxN;M þ cÞ, ð49Þ
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where P now is a permutation of fð1; 1Þ; . . . ; ðN ;MÞg that preserves species (cf. (5)) and
therefore atomic number: ðk;mÞ ¼ Pði; jÞ¼)ZðmÞ ¼ ZðjÞ, and, as above,Q 2 O(3) and c 2 R3.

These forms of the energy would not be relevant for biological processes. In that case we
wrap statistical mechanics around these energies and consider, e.g., a canonical ensemble
parameterized by the mean positions of the atoms. After this transformation, all the
invariances given above are preserved and it is only necessary to reinterpret x1; . . . xN as
mean positions and to keep in mind that j would also depend on the temperature. Another
point to keep in mind is that many objective structures contain an infinite number of atoms
so their energy is infinite. In these cases the above has to be modified by considering energy
differences of compact perturbations relative to the objective structure but again the
invariances are expected to be preserved; in such cases, with appropriate hypotheses, the
force is expected to be finite and have the invariance obtained by formally differentiating
(49) with respect to a nuclear position.

Now we show what is nearly obvious by inspection, that the 3N equations of
equilibrium of the atoms of an objective atomic structure reduce to three equations. To see
this we consider an objective atomic structure,

S ¼ fxi þ Riðxj � x1Þ: j ¼ 1; . . . ;Ng, (50)

which we can also write as

xi þ Riðxj � x1Þ ¼ xPðjÞ, (51)

where P is a permutation of f1; . . . ;Ng. We solve (51) for xj to get

xj ¼ RT
i xPðjÞ þ x1 � RT

i xi, (52)

which can also be expressed as (replace k ¼ PðjÞ)

RT
i xk þ x1 � RT

i xi ¼ xP̄ðkÞ, (53)

where P̄ ¼ P�1 is the inverse permutation. Note that from (53), P̄ðiÞ ¼ 1. We fix i 2

f1; . . . ;Ng and evaluate (45) at the arguments ðx1;x2; . . . ;xi þ d; . . . ;xN Þ, and then we make
the choice

Q ¼ RT
i ; c ¼ x1 � RT

i xi (54)

in (45). We get, using (53) and (54),

jðx1; . . . ;xi þ d; . . . ;xN Þ ¼ jðQx1 þ c; . . . ;Qðxi þ dÞ þ c; . . . ;QxN þ cÞ

¼ jðxP̄ð1Þ; . . . ;x1 þQd; . . . ;xP̄ðNÞÞ, ð55Þ

where we have used that P̄ðiÞ ¼ 1. Now use the invariance of j under arbitrary
permutations to rearrange the arguments of the second of (55):

jðx1; . . . ;xi þ d; . . . ;xN Þ ¼ jðx1 þQd;x2; . . . ;xNÞ. (56)

Differentiating this with respect to d at d ¼ 0 and using Q ¼ RT
i we get

�
qj
qxi

¼ �Ri

qj
qx1

. (57)

This is the transformation law for forces on atoms of an objective atomic structure.
Equilibrium of one atom (qj=qxk ¼ 0) implies equilibrium of all atoms.
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For an objective molecular structure the 3MN equations off equilibrium reduce to 3M

equations, by a similar argument. In the molecular case the transformation law for forces is

�
qj
qxi;j
¼ �Ri;j

qj
qx1;j

ðno sum over jÞ. (58)

This is the most general result one can obtain without additional assumptions on the atoms
that compose the molecules. Note that these results are obtained without the specializing
assumptions of preservation of molecules (6). Also, we have tacitly assumed almost
nothing (beyond smoothness) about the atomic potential.
The Hessian matrix also is simplified. Its diagonal elements, obtained by taking two

derivatives of (56), are vastly simplified. For the off-diagonal elements we need to displace
two different atoms simultaneously and only one of these can be transformed to atom 1.
The resulting transformation law is easily worked out from (55) and (57) with two atoms
displaced. In the atomic case this is

q2j
qxiqxj

¼ Ri

q2j
qx1qxP̄ðjÞ

RT
i ðno sum over iÞ. (59)

(The right-hand side can be symmetrized with respect to i; j; also, recall that P̄ depends on
the choice of i.) This formula leads to considerable simplification of conditions of
(linearized) stability. There is an analogous simplification for objective molecular
structures.
Now it is extremely interesting to examine whether these reduced equilibrium equations

can be solved for a particular objective structure. We first consider objective atomic
structures.
As one can see from the examples above, objective atomic (and molecular) structures

have certain free parameters. For bacteriophage T4 tail sheath, for example, these could be
chosen as r; l; g given in (13). In general, let ðx1; . . . ; xpÞ 2 D be free parameters for a
certain objective atomic structure. Each atomic position is determined by these parameters,
so we can write explicitly, x1ðx1; . . . ; xpÞ; . . . ;xN ðx1; . . . ; xpÞ. When we substitute this into
the energy (or free energy), we get

j̄ðx1; . . . ; xpÞ ¼ jðx1ðx1; . . . ; xpÞ; . . . ; xNðx1; . . . ; xpÞÞ. (60)

As we vary the parameters, we can imagine that there are some cases in which the bond
lengths and angles are not far from those typical of the species. As we depart substantially
from these, by any changes of the parameters, we expect to encounter stiffness, i.e., higher
energies. This suggests that in suitable cases the function j̄ may have one or more energy
wells.
Let us assume that this is the case: j̄ðx̄1; . . . ; x̄pÞpj̄ðx1; . . . ; xpÞ for all x1; . . . ; xp near

x̄1; . . . ; x̄p. The condition of structural equilibrium is then,

0 ¼
qj̄ðx̄1; . . . ; x̄pÞ

qxj

¼
XN

i¼1

qj
qxi

�
qxi

qxj

¼
qj
qx1
�
XN

i¼1

RT
i

qxi

qxj

 !
. (61)

Here, we have used the transformation law for forces (57). In view of (57) and (61), we
have proved the following: if there is an equilibrium state under variations of the
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parameters, then each atom of the objective atomic structure is in equilibrium if

XN

i¼1

RT
i

qxi

qxj

 !�����
j¼1;...;p

contains three linearly independent vectors. (62)

Described compactly, we can say that structural equilibrium implies atomic equilibrium
for objective structures satisfying (62). In Section 6.1, we will show that for every objective
atomic structure p ¼ 3 and the condition (62) is satisfied, with a certain particular choice of
structural parameters.5 This will then show that for every objective atomic structure
structural equilibrium implies equilibrium of all the atoms.

In Section 8, we will explain that there is substantial simplification of first principles
calculations of the energy of an objective structure. Thus, the process of actually finding a
stable equilibrium of an objective structure among structures of the same type (structural
equilibrium) is expected to be quite easy.

The analogous condition for objective molecular structures is different but quite
interesting. In the molecular case we can think of varying both the atoms in molecule 1 and
also the parameters that describe the overall shape of the structure. For the purposes of
this paragraph we include in ‘‘structural parameters’’ both of these. In the objective
molecular case the condition analogous to (62) is that

XN

i¼1

RT
i;k

qxi;k

qxj

 !�����
j¼1;...;p

ðno sum over kÞ (63)

contains three linearly independent vectors for each k ¼ 1; . . . ;M and these M different
sets can be independently chosen (more precisely, these pM vectors span the M-fold
Cartesian product R3 � � � � � R3). If (63) holds for an objective molecular structure, then
structural equilibrium implies equilibrium of every atom.

This case of satisfying equilibrium is illustrated in a physical way by carbon: the
structures C60, a single graphite sheet, a carbon nanotube and diamond are all objective
molecular structures of carbon, each case having two carbon atoms per molecule, but these
structures all have different lattice parameters.
6. Group structure, classification and formulas for objective structures

6.1. Group structure

Consider an objective atomic structure S ¼ fxi : i ¼ 1; . . . ;Ng. We can define the
isometry group G of this structure as the set of all ðQ; cÞ;Q 2 O(3), c 2 R3 that restore the
structure, i.e.,

Qxn þ c ¼ xPðnÞ; n ¼ 1; . . . ;N, (64)

where P is a permutation of f1; . . . ;Ng. These form a group with the usual operations,
ðQ1; c1Þ � ðQ2; c2Þ ¼ ðQ1Q2;Q1c2 þ c1Þ. If we add the physically natural assumption that
there is a minimum distance between any two atoms of the structure then these groups are
discrete groups of isometries in 3-D. These groups are more numerous than the 230 groups
5For an objective atomic structure based on T4 tail sheath these turn out not to be r; l; g.
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associated with crystal lattices, as can be seen from the fact that cyclic groups and
icosahedral groups are included.
By the definition of an objective atomic structure, there are orthogonal transformations
fRi : i ¼ 1; . . . ;Ng such that S ¼ fxi þ Riðxn � x1Þ : n ¼ 1; . . . ;Ng for each i. We collect
the set of N orthogonal transformations and translations that appear in this definition,
H ¼ fðRi; ciÞ; i ¼ 1; . . . ;Ng, where we make the obvious choice ci ¼ xi � Rix1. The set H
defined in this way is not generally a group, but it is clear by the definitions that H � G.
However, we note that if ðQ; cÞ 2 G and P is associated to ðQ; cÞ 2 G via (64), then ðQ; cÞ
does satisfy the definition of an objective atomic structure for i ¼ Pð1Þ, where P is defined
in (64). That is, evaluating (64) at n ¼ 1 we have c ¼ xPð1Þ �Qx1, and substituting this
value of c back in (64) we have

xPð1Þ þQðxn � x1Þ ¼ xPðnÞ. (65)

That is, ðQ; cÞ satisfies the definition of an objective atomic structure with i ¼ Pð1Þ.
At first this seems to say thatH � G and thereforeH ¼ G but this is not true. The point

is that for a given xi the definition of an objective atomic structure only requires that we
select one ðRi; ciÞ, whereas the isometry group of the structure will include all of them that
satisfy the definition of an objective structure. Thus, if we simply enlarge H to include all
such transformations, then we get the nice group structure. This can be stated in an
analytical way:

G ¼ fðQ; cÞ : there is an i 2 f1; . . . ;Ng and a permutation P such that

xi þQðxj � x1Þ ¼ xPðjÞ; j ¼ 1; . . . ;N ; and c ¼ xi �Qx1g. ð66Þ

From this characterization a method of construction of all objective atomic structures is
possible. That is, given an objective atomic structure xi þ Riðxn � x1Þ ¼ xPðnÞ, we put
n ¼ 1, note that Pð1Þ ¼ i, and solve for xi:

xi ¼ Rix1 þ xi � Rix1 ¼ Rix1 þ ci, (67)

that is, using (66), S ¼ fQx1 þ c : ðQ; cÞ 2 Gg, the orbit of the point x1. We get the full set
S by using either G, in which case some of the points might be given multiple times, or by
using the subset H.
This characterization immediately suggests using the components xi ¼ ei � x1;

i ¼ 1; 2; 3 as the parameters described at the end of the preceding section. Thus there
are three of them, and with this choice (62) becomes Nei, showing that for every objective
atomic structure structural equilibrium (in this sense) implies atomic equilibrium.
All discrete groups of isometries in 3-D are evidently known, but we could not locate

a source. The most likely possible source, volume A (crystallographic groups) and
volume E (noncrystallographic groups, called ‘‘sub-periodic’’ there) of the International
Tables of Crystallography (Hahn, 2003) misses some such groups. The simple case of the
isometry group of a simple helix (24) with g and l chosen so that the helix has no
translational periodicity, is not there, as far as we can tell. From reading the International
Tables this author is not clear what precisely are the restrictions under which this
classification has been carried out. In any case we think that a listing of generators would
not be a useful way to generate these structures for the purpose of studying their
properties; formulas like (16) seem to be much more useful. We return to this point in the
following section.
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The degeneracy associated with the gap between H and G can be easily quantified.
Define

P1 ¼ fQ 2 Oð3Þ : x1 þQðxj � x1Þ ¼ xPðjÞ for some permutation Pg. (68)

This is a group (the product Q1Q2 corresponds to the permutation P1ðP2ðjÞÞ), the point

group of atom 1. Now let ðQ; cÞ and ðQ̂; ĉÞ belong to G and suppose these correspond to the
same value of i in the definition of an objective atomic structure:

xi þ Q̂ðxj � x1Þ ¼ xP̂ðjÞ; xi þQðxj � x1Þ ¼ xPðjÞ. (69)

Putting ‘ ¼ P̂ðjÞ, the first of these yields

Q̂Tðx‘ � xiÞ ¼ x
P̂
�1
ð‘Þ
� x1. (70)

Hence, using the second of (69) we have,

Q̂TQðxj � x1Þ ¼ Q̂TðxPðjÞ � xiÞ ¼ x
P̂
�1
ðPðjÞÞ
� x1, (71)

which implies that Q̂TQ 2 P1. Thus, the orthogonal transformations in an objective
atomic structure foliate the orthogonal part of G into cosets, each conjugate to P1.

Now we turn to the case of objective molecular structures. This case is somewhat
different from the atomic case. Consider such a structure S ¼ fxi;k:
i ¼ 1; . . . ;N; k ¼ 1; . . . ;Mg. We can again define the isometry group G of this structure
as the set of all ðQ; cÞ;Q 2 O(3), c 2 R3 that restore the structure, i.e.,

Qxn;m þ c ¼ xPðn;mÞ; n ¼ 1; . . . ;N; m ¼ 1; . . . ;M, (72)

where P is a permutation of f1; . . . ;Ng � f1; . . . ;Mg that preserves species (cf. (5)). By the
definition of an objective molecular structure, there are orthogonal transformations fRi;k :
i ¼ 1; . . . ;N; k ¼ 1; . . . ;Mg such that S ¼ fxi;k þ Ri;kðxn;m � x1;kÞ : n ¼ 1; . . . ;N; m ¼

1; . . . ;Mg for each i; k. We collect the set of MN orthogonal transformations and
translations that appear in this definition, H ¼ fðRi;k; ci;kÞ; i ¼ 1; . . . ;N; k ¼ 1; . . . ;Mg,
where we make the choice ci;k ¼ xi;k � Ri;kx1;k, and it is again clear by the definitions that
H � G. Evaluating (72) at n ¼ 1 and m ¼ ‘, we have c ¼ xPð1;‘Þ �Qx1;‘, and substituting
this value of c back in (72) we find that

xPð1;‘Þ þQðxn;m � x1;‘Þ ¼ xPðn;mÞ. (73)

However, now one can see that this is similar to, but not the same as the definition of an
objective molecular structure. That is, it can happen thatPð1; ‘Þ is not of the form ðk; ‘Þ for
any ‘ ¼ 1; . . . ;M. Hence, to obtain the subset of elements of H one has to do a careful
sorting procedure to find transformations in G for which Pð1; ‘Þ is of the form ðk; ‘Þ for
some ‘. Once H is found by a sorting procedure, it then follows that

xi;k ¼ Ri;kx1;k þ ci;k. (74)

Then, the choice of one molecule x1;k; k ¼ 1; . . . ;M, together with the knowledge of H
gives the structure. Unfortunately, this argument is circular, and so a further sorting of the
groups would be necessary. That is, the isometry group of the structure depends on the
symmetry of the molecule, so the group cannot be chosen independently of the molecule.
Equivalently, if we want to give the isometry group, then there are restrictions on the
choices of x1;k in (74).
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That being the situation, we then have to understand why the examples of multilattices,
T4 tail sheath, and objective molecular structures based on C60 do allow a simple mapping
of an arbitrary set of atoms to form the structure. The point is that for the underlying
objective atomic structures in all these cases H as defined above is already a group. To
explain further, consider an objective molecular structure that preserves molecules for
which Ri;‘ is independent of ‘. Suppose that x̄i þ Rið x̄k � x̄1Þ ¼ x̄PðiÞðkÞ, is the underlying
objective atomic structure, related to the given structure by averaging as described in
Section 4. Finally, suppose that for this objective atomic structure f x̄i; i ¼ 1; . . . ;Ng we
have H ¼ G. We then assign arbitrary positions pk; k ¼ 1; . . . ;M, and define the
xi;k ¼ x̄i þ Ripk. Then

xi;k þ Riðxn;m � x1;kÞ ¼ x̄i þ Ripk þ Rið x̄n þ Rnpm � x̄1 � pkÞ

¼ x̄i þ Rið x̄n þ x̄1Þ þ RiRnpm

¼ x̄PðiÞðnÞ þ RiRnpm. ð75Þ

So, it is sufficient to show that RPðiÞðnÞ ¼ RiRn in this case. But, by the definition of an
objective atomic structure applied twice,

x̄PðiÞðnÞ þ RiRnð x̄k � x̄1Þ ¼ x̄i þ Rið x̄n � x̄1Þ þ RiRnð x̄k � x̄1Þ

¼ x̄i þ Rið x̄PðnÞðkÞ � Rnð x̄k � x̄1Þ � x̄1Þ þ RiRnð x̄k � x̄1Þ

¼ x̄i þ Rið x̄PðnÞðkÞ � x̄1Þ

¼ x̄PðiÞðPðnÞðkÞÞ. ð76Þ

When H ¼ G there is one and only one orthogonal transformation associated to x̄PðiÞðnÞ.
Thus, RPðiÞðnÞ ¼ RiRn. In summary, if H ¼ G for an objective atomic structure, then the
associated transformations generate an objective molecular structure that preserves
molecules via the formula xi;k ¼ x̄i þ Ripk.
Now we return to (63), the condition (structural equilibrium ¼) atomic equilibrium). In

general, this is evidently not true in the molecular case because, as noted above in the
context of (74), there are symmetry restrictions on the choice of molecule. It can be seen,
however, from (74) and (63) that the condition (structural equilibrium ¼) atomic
equilibrium) holds for every objective molecular structure in which the underlying atomic
structure satisfies H ¼ G. These are necessarily objective molecular structures that
preserve molecules.

6.2. Formulas for objective structures

The results of the preceding section are useful for identifying structural parameters, but
do not seem to be useful for analysis of the properties of objective structures. For that, it
would be extremely useful to have formulas that generate objective atomic and molecular
structures like the ones given in the examples above.
To explain what we mean, we note that regardless of which of the 230 space groups

applies to it, we can generate any multilattice by assigning any vectors fp1; . . . ; pMg and a
basis fe1; e2; e3g and then writing the simple formula fniei þ pk : ðn

iÞ 2 Z3; k 2 f1; . . . ;Mgg.
This assignment immediately tells us how to generate the objective molecular structure that
preserves species, how to find a unit cell and then how to set periodic boundary conditions
for a first principles calculation, or to do other property calculations as described below in
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Sections 8 and 9. We would like formulas like this that generate objective structures in the
noncrystallographic case.

We first consider objective atomic structures. The case of N finite is simple. That is,
consider an objective atomic structure S ¼ fxi þ Riðxj � x1Þ ¼ xPðjÞg with N finite. Let

x̄ ¼
1

N

XN

j¼1

xj (77)

and average the equation xi þ Riðxj � x1Þ ¼ xPðjÞ over j. We get

xi ¼ x̄þ Riðx1 � x̄Þ. (78)

According to the results of the preceding section, we can without loss of generality assume
that the Ri belong to a subgroup G of O(3). Then the argument of Section 3.3 (which does
not use the finiteness of the group nor the fact that the group is icosahedral) shows that
(78) generates an objective atomic structure. This method generates objective structures
(like C60) associated with the Platonic solids. Thus, for N finite, since there are only a few
finite orthogonal groups, this method is effective.

Now we discuss N ¼1. Consider an objective atomic structure S ¼ fxi þ Riðxj � x1Þ

¼ xPðiÞðjÞg, where now we emphasize the dependence of P on i. The set of permutations
generates a finite or infinite matrix

(79)

Each row is a permutation of f1; . . . ;Ng and the first row can be taken to be 1; 2; . . . ;N
(without loss of generality, we choose R1 ¼ I). The first column is also 1; 2; . . . ;N. However,
the columns need not in general be permutations of 1; . . . ;N. We focus on the second row. We
consider successive applications of Pð2Þ to 1, i.e.,

½Pð2Þð1Þ�P :¼ Pð2ÞðPð2Þð. . .Pð2Þð1Þ . . .ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P times

. (80)

Suppose that ½Pð2Þð1Þ�L ¼ 1 for LpN and that L is the smallest integer for which this is true
(we allow L ¼1). Now define a new permutation P̂ by

P̂ð1Þ ¼ 1;

P̂ð2Þ ¼ Pð2Þð1Þ ¼ 2;

P̂ð3Þ ¼ Pð2Þð2Þ ¼ Pð2ÞðPð2Þð1ÞÞ;

..

. ..
.

P̂ðLÞ ¼ ½Pð2Þð1Þ�L�1:

(81)

We claim that P̂ð1Þ; . . . ; P̂ðLÞ are distinct numbers. If not—say we were to have P̂ðKÞ ¼
P̂ðMÞ for KoMpL—then by applying successively the inverse of Pð2Þ to the equation
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P̂ðKÞ ¼ P̂ðMÞ, we would get ½Pð2Þ�K ¼ 1 for KoL which contradicts the assumption that L

is the smallest such number.
Extend the definition of P̂ to the remaining numbers Lþ 1; . . . ;N in any way as a

permutation. Now define

x̂j ¼ xP̂ðjÞ (82)

and note that x̂1 ¼ x1 and x̂2 ¼ x2. Effectively we have renumbered the atoms of the given
objective structure in a convenient way from the perspective of the second row of the
matrix (79). That is, if we replace j by P̂ð‘Þ in the formula x2 þ R2ðxj � x1Þ ¼ xPð2ÞðjÞ and
use (82), we get

x̂2 þ R2ðx̂‘ � x1Þ ¼ x̂‘þ1; ‘ ¼ 1; . . . ;L� 1. (83)

But now we can develop a simple formula for x̂‘ by iterating (83):

x̂2 ¼ x̂2 þ R2ðx̂1 � x1Þ ¼ Iðx̂2 � x̂1Þ þ x̂1;

x̂3 ¼ x̂2 þ R2ðx̂2 � x1Þ ¼ ðR2 þ IÞðx̂2 � x̂1Þ þ x̂1;

..

. ..
.

x̂L ¼ x̂2 þ R2ðx̂L�1 � x1Þ ¼ ðR
L�2
2 þ RL�3

2 þ � � � þ R2 þ IÞðx̂2 � x̂1Þ þ x̂1:

(84)

But the latter, i.e.,

x̂P ¼ ðR
P�2
2 þ RP�3

2 þ � � � þ R2 þ IÞðx̂2 � x̂1Þ þ x̂1, (85)

is the equation for a helix in the case6 R2 2 SOð3Þ, (Falk and James, 2006, Section 5). We
can immediately make a classification of structures produced by (85) and draw several
conclusions:
1.
6

enu
Infinite case. This is the generic case in which the formula (85) produces an infinite
number of distinct atomic positions. There are various ways this can happen,
enumerated below (recall that by assumption x̂2ax̂1):
(a) R2ðx̂2 � x̂1Þ ¼ ðx̂2 � x̂1Þ. This produces an infinite line of atoms.
(b) detR2 ¼ 1;R2aI and ðx̂2 � x̂1Þ not parallel or perpendicular to the axis of R2. These

are nondegenerate helices of atoms.
(c) detR2 ¼ 1;R2aI and ðx̂2 � x̂1Þ perpendicular to the axis of R2 and there is no

integer K40 such that RK
2 ¼ I. This case is not interesting physically, as it

corresponds to a circle of infinitely closely spaced points.
(d) detR2 ¼ �1. In this case, letting jej ¼ 1 be an axis of �R2, we have that x2 � x1 is

not parallel to e and that either R2 ¼ I� 2e� e (two parallel lines of points) or that
RK

2 ¼ I has no integer solution K40. The latter case is not interesting physically, as
it produces two rings of infinitely closely spaced points.
Som

mera
2.
 Finite cases.
(a) detR2 ¼ 1;R2aI, x2 � x1 is perpendicular to the axis of R2 and there is an integer

K40 such that RK
2 ¼ I (a ring of atoms).

(b) detR2 ¼ �1 and x2 � x1 is parallel to the axis of �R2 (two atoms).
e interesting nonhelical configurations produced by this equation when R2 2 Oð3ÞnSOð3Þ are seen in the

tion and in the following section.
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(c) detR2 ¼ �1 and x2 � x1 is not parallel to the axis of �R2 and RK
2 ¼ I for some
integer K42 (two rings of atoms).
The construction given above could exhaust all of row 2 of the permutation matrix (79).
In fact, we are then done, as it can be shown that all of the structures produced so far are
objective atomic structures. More than that, with a suitable choice of the molecular
orientation, they are all objective molecular structures. We do not explain the reasons for
that here, as these structures will emerge as special cases of the more general ones described
below. Alternatively, the construction leading to (85) could exhaust a finite or infinite
proper subset of indices in row 2. (Even if it exhausts an infinite subset, this could simply
be a subsequence of row 2 so there could be an infinite set of elements left over.) In such
cases there is some point xr in the assumed objective atomic structure that is not produced
by the formula (85).

Let us suppose without loss of generality that this point is x3. We can now describe a
new permutation ~P in the same way as above but beginning with x3. That is, we define

~Pð1Þ ¼ 3;
~Pð2Þ ¼ Pð2Þð3Þ;
~Pð3Þ ¼ Pð2ÞðPð2Þð3ÞÞ;

..

. ..
.

~PðLÞ ¼ ½Pð2Þð3Þ�L�1:

(86)

This does not lead to a formula that is strictly analogous to (85) because in the previous
case we made use of the fact that x2 appeared as the first term on the right of (84), that is,
we based the derivation on using row 2 and x2. However, now we get points ~x1 ¼
x3; ~x2; ~x3; . . . given by the different formula:

~xP ¼ x̂P þ RP�1
2 ðx3 � x1Þ, (87)

where x̂P is given by (85). Now we can see an interesting pattern develop, when we
compare this formula to that formula for T4 tail sheath. In particular we can see if, instead
of having begun with x3, we had begun with a ‘‘different helix’’, then we would get an
interesting generalization of (87). We can get a possibly different helix by looking to row 3
of the permutation matrix and using x3 � x1 as the generator. This gives immediately a
formula analogous to (85) but with x2;R2 replaced by x3;R3. Using this new helix in place
of x3 in (87), we get the formula:

xp;q ¼
Xp�1
i¼0

Ri
2ðx2 � x1Þ þ R

p
2

Xq�1
j¼0

R
j
3ðx3 � x1Þ þ x1. (88)

This formula is essentially the same as (16) which generates T4 tail sheath.
The formula (88) has been derived for p41; q41. One can revisit the derivation for

negative values of the upper limit of the sum and one finds that the same formula still
emerges if the sum is interpreted properly. This interpretation is

Xr

i¼0

ai ¼
0; r ¼ �1;

�a�1 � a�2 � � � � � arþ1; ro� 1:

(
(89)

All sums in this paper should be interpreted in this way.
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We now do a calculation that suggests that the formula (88) might be more general than
it appears. First we recognize that we have only exploited necessary conditions: the
formula (88) does not in general give an objective structure. To see that, consider
x1;1 ¼ x2 þ R2ðx3 � x1Þ, and note that, by the basic definition of an objective atomic
structure, this point must be expressible in the form:

x1;1 ¼ x2 þ R2ðx3 � x1Þ ¼ x3 þ R3ðxp;q � x1Þ (90)

for some p; q. Whatever choice we make, it is clear that we get further restrictions on
x2 � x1;x3 � x1;R2;R3 that the structure be objective. The most obvious choice is
ðp; qÞ ¼ ð1; 0Þ, which gives the restriction,

x2 � x1 þ R2ðx3 � x1Þ ¼ x3 � x1 þ R3ðx2 � x1Þ, (91)

or, in compact notation,

t̂þ R̂t ¼ tþ Rt̂, (92)

where t̂ ¼ x2 � x1; t ¼ x3 � x1; R̂ ¼ R2;R ¼ R3. This can immediately be recognized as
the first of (15). Now we look at x2 from the perspective of x3, that is, following the basic
definition of an objective atomic structure, we seek ðp; qÞ such that

x1;0 ¼ x2 ¼ x3 þ R3ðxp;q � x1Þ. (93)

Now the obvious choice is ðp; qÞ ¼ ð1;�1Þ, from which, after a little calculation that makes
use of (91), we get the restriction,

R̂t ¼ RR̂RTt. (94)

Finally, we look at x2;1 from the perspective of x3, that is, we seek xp;q satisfying

x2;1 ¼ x3 þ R3ðxp;q � x1Þ. (95)

Again, the choice ðp; qÞ ¼ ð2; 0Þ seems compelling, from which we get that

R̂Rt̂ ¼ RR̂t̂. (96)

Combining (94) and (96) under the hypothesis that t is not parallel to Rt̂ we get the second
of (15):

R̂R ¼ RR̂. (97)

Of course, we made some arbitrary choices along the way to these restrictions. Different
choices might have given new objective structures. However, if we satisfy (91) and (97) we
are assured that the formula (88) gives an objective atomic structure, the proof being
exactly the same as for T4 tail sheath (recall that we only used (15) in that proof, not the
particular parameters of T4 tail sheath). Not only that, but with a suitable definition of the
orientation of the molecule, given by the second of (16), objective molecular structures are
obtained. In the following section we will see that this formula delivers some rather
unexpected structures, that are quite different from T4 tail sheath.
In summary we have obtained the formula fxi;j þ Ri;jpkg:

xp;q ¼
Xp�1
i¼0

R̂
i
t̂þ R̂

pXq�1
j¼0

Rjtþ x1,

Rp;q ¼ R̂
p
Rq, ð98Þ
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together with the restrictions

t̂þ R̂t ¼ tþ Rt̂; R̂R ¼ RR̂ (99)

with t̂a0; ta0, R̂;R 2 Oð3Þ. As explained in the preceding section, Eqs. (98) and (99)
always deliver an objective molecular structure. To complete the analysis, we solve the
conditions (99). This is not at all difficult using standard facts about rotation matrices but
it is tedious. All solutions of (99) are given in the Appendix.

In the argument above, we reconciled the possibility of two different (generalized) helices
through a point. By extending the reasoning, we can add a third helix through the same
point. The pattern of argument is the same as above so we do not give the details. The
result is the more general formula for objective molecular structures fxp;q;r þ Rp;q;rpkg:

xp;q;r ¼
Xp�1
i¼0

R̂
i
t̂þ R̂

pXq�1
j¼0

R̄
j
t̄þ R̂

p
R̄

q
Xr�1
k¼0

Rktþ x1,

Rp;q;r ¼ R̂
p
R̄

q
Rr, ð100Þ

together with the restrictions

t̂þ R̂t̄ ¼ t̄þ R̄t̂; R̂R̄ ¼ R̄R̂,

t̂þ R̂t ¼ tþ Rt̂; R̂R ¼ RR̂,

t̄þ R̄t ¼ tþ Rt̄; R̄R ¼ RR̄, ð101Þ

with t̂a0; t̄a0; ta0, R̂;R; R̄ 2 Oð3Þ. The proof that (100) and (101) always deliver an
objective molecular structure is a long version of the argument presented in Section 3.2
(and is available from the author). Of course, the formulas (98) and (99) are limiting cases
of (100) and (101), obtained by putting R ¼ I and passing to the limit t! 0. Based on
exploratory calculations, there is a basis for believing that ð100Þ1 and (101) deliver all
infinite objective atomic structures, and we conjecture that is true. In any case, in the next
section we show that the formulas (100) and (101) generate an amazing variety of objective
molecular structures.

7. Objective molecular structures given by (100) and (101)

In Section 3, we gave some examples of objective structures that either motivated this
study (as in T4 tail sheath) or were obvious after some thought. The methods of the
preceding section gave formulas for generating objective structures. It is clear from the
forms of these formulas how to recover the examples of Section 3, but it is more interesting
to generate new structures with these formulas, at least structures that were not anticipated
by this author. We collect some of these examples in this section. All of them are objective
molecular structures. Some of the most interesting of these arise from the use of
orthogonal transformations not in SO(3).

The simple helix (as in one of the helices of T4 tail sheath) the ring of molecules (e.g., as
pictured on the cover of the classic, Introduction to Protein Structure, by Branden and
Tooze, 1999), structures based on the Platonic solids or simple 1-, 2- or 3-D periodic
structures are not pictured here, as they are regarded as obviously objective.

We illustrate the structures using a particular molecule. The shape of this molecule is
irrelevant, as is the touching or nontouching of molecules, because all these structures are
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Fig. 4. A four molecule objective molecular structure. Left: front view, right: side view.
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objective molecular structures regardless of the choice of the molecule; it is the relationship

between molecules that is being illustrated. The molecule shown in the pictures is chosen to
be simple and rather unsymmetrical, so these relationships can be seen (note that it has a
blunt and a pointed end). Still, it is sometimes difficult (but important) to distinguish two
configurations that are related by 180� rotation vs. reflection. To make this clear, we give in
each case the orthogonal transformations used to construct each figure and the
corresponding values of t̂; t̄; t. It should also be mentioned that what is called ‘‘molecule’’
here could represent a collection of several actual molecules in a real structure.
Certain systems of four or eight molecules are objective molecular structures. Fig. 4

shows two views such a system of four molecules. This is produced by formula (100) with
R̄ ¼ R ¼ �Iþ 2e� e; R̂ ¼ �Iþ 2ê� ê; t ¼ t1; t̄ ¼ t1; t̂ ¼ teþ t̂1; jêj ¼ jej ¼ 1; ê � e ¼ 0; t1�
e ¼ 0; t̂1 ¼ t1 � ðê � t1Þê. Many choices of combinations of two-fold orthogonal transfor-
mations in formula (100) produce eight molecule structures, with typically more reflection
symmetry than the four molecule systems. Fig. 5 was produced using formula (100) with
the choices R ¼ �Iþ 2e� e; R̄ ¼ �Iþ 2ē� ē; R̂ ¼ I� 2ê� ê, with e; ē; ê orthonormal,
and with t ¼ t2ēþ t3ê; t̄ ¼ s1ēþ s3ê; t̂ ¼ s3ê. Evidently these structures can also be
produced by certain finite orthorhombic groups, but it is interesting that they also emerge
from (100) and (101).
A common type of structure delivered by either (98) or (100) is the pair of rings. There

are both staggered and unstaggered rings, Fig. 6. They can have any number of molecules
per ring, but the two rings have the same number. The staggering is not arbitrary. Of
course, one could not have an objective structure consisting of three rings because then the
middle ring would be distinguished. The pairs of rings shown were produced by (98)
evaluated in Case 2c of the Appendix. A natural example of an unstaggered double ring (or
a structure close to that) is the GroEL protein, an important chaperone protein that assists
protein folding (Braig et al., 1994; Branden and Tooze, 1999, p. 101).
Certain kinds of bilayers are also objective structures, Fig. 7. These are produced from

formula (100) using either the choice R̂ ¼ R̄ ¼ R ¼ I� 2e� e; jej ¼ 1; e � t ¼ e � t̄ ¼ e � t̂ or
the choice R̂ ¼ R̄ ¼ I� 2e� e; jej ¼ 1;R ¼ I; e � t ¼ 0; e � t̄ ¼ e � t̂. A bilayer with staggered
molecules (not pictured) is given by the formula (98) evaluated either in Cases 2a or 4d of
the Appendix. It should be noted that the values of t̂; t̄; t chosen should be rationally
related, i.e., their components in the same fixed basis should be rational numbers. If not,
then the formulas typically give an infinite bilayer of infinitely densely packed molecules.
Certain staggered and unstaggered molecular fibers with four molecules in the ‘‘cross-

section’’ are objective molecular structures, via the formula (100) (Fig. 8). A staggered case
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Fig. 5. An eight molecule objective molecular structure. Left: front view, right: side view.

Fig. 6. Double rings. Left pair: unstaggered with eight molecules per ring, right pair: staggered with 12 molecules

per ring.

Fig. 7. An objective molecular structure consisting of a bilayer of molecules. On the left, a few rows of the top

layer have been removed to reveal the relationship between the layers.
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follows from the choice R̂ ¼ R̄ ¼ I� 2ê� ê;R ¼ �Iþ 2e� e; t̄ ¼ t̄eþ ðê � tÞê; t̂ ¼ t̂eþ
ðê � tÞê; jêj ¼ jej ¼ 1; ê � e ¼ 0 (t arbitrary), while an unstaggered case is given by R̂ ¼ R̄ ¼

I� 2ê� ê;R ¼ I� 2e� e; t ¼ t1eþ t3ðe� êÞ; t̄ ¼ t2êþ t̄3ðe� êÞ; t̂ ¼ t2̂ eþ t̂3ðe� êÞ; jêj ¼
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Fig. 8. Some objective molecular fibers. Left pair: unstaggered, right pair: staggered.
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jej ¼ 1; ê � e ¼ 0. There is also different kinds of staggered case (not pictured) having again
a four molecule cross-section, in which the opposing pair of molecules in the cross-section
are at the same height; this is produced from formula (98) evaluated in Case 2b of the
Appendix. As for the bilayers, here it is also important to choose rationally related t̂; t̄; t;
otherwise the formula produces an infinite fiber with infinitely densely packed molecules. It
can be seen that these structures are quite different from helical structures as represented
by T4 tail sheath. In addition to being objective molecular structures, these are also 1-D
periodic structures; we only found fibrous structures like this with four molecule unit cells.
In hindsight, some of the structures illustrated here have examples in Nature. In other

cases it is not so clear, and it could be interesting to revisit various structures, particularly
protein structures, to see if the special relationships given here are indeed satisfied.

8. Bending and torsional response of nanoscale beams

In this section we present a rather different application of objective structures: the
calculation of bending and torsional response of nanoscale beams. The formulas given
here, together with an efficient implementation of density functional theory, allow one to
compute such a response for beams of elemental materials, say, as a function of atomic
number and cross-sectional dimensions. The simplifications afforded by the observation of
Example 3.4, that configurations produced by bending and torsion of a beam can be
described as objective structures, make these kinds of computations possible.
The rapid expansion of first principles calculations for crystalline materials in recent years

is owing to two factors: (1) the development and efficient implementation of density
functional theory (profound) and (2) the use of periodic boundary conditions on a small unit
cell (trivial). A recurring theme of this paper is that the interesting properties of crystals do
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not fundamentally arise from periodicity but rather from their status as objective structures.
For other objective structures, such as a bent and twisted beam, a first principles’ approach is
also possible, also on a small domain containing relatively few atoms. It is only necessary to
clarify what is this domain and to explain what kind of boundary conditions should replace
periodic boundary conditions. In computations on crystals, the assumption behind (2) is that
the electronic density inherits the periodicity of the lattice. For objective structures, the
analogous assumption is that the electronic density inherits the group structure of the
objective structure. Both assumptions, to the extent that they are justified, have equal status
with regard to the frame-indifference of quantum mechanics.

We consider the objective molecular structure described in Example 3.4 given by

xk;ði;jÞ ¼ Qk�1
g pði;jÞ þ ðk � 1Þle3. (102)

As described there, the ‘‘molecule’’ is indexed by ði; jÞ 2 Z2 \ O. For simplicity let us
suppose that Z2 \ O ¼ fði; jÞ : i ¼ 1; . . . ;M; j ¼ 1; . . . ;Mg is the M �M square and so
there are M2 atoms per molecule.

A simple way to define the fundamental domain and ‘‘objective boundary conditions’’ is

the following. Define the average position of molecule 1 by p̄ ¼ ð1=M2Þ
P
ði;jÞ pi;j. Let jej ¼ 1

and consider the two planes P1 ¼ fx : x � e ¼ p̄ � e� ðl=2Þe � e3g and P2 ¼ QgP1 þ le3 ¼
fx : x �Qge ¼ p̄ � eþ ðl=2Þe � e3g. Assuming le � e340 (otherwise, exchange the inequalities

in (103)), let D be given by the region between the planes

D ¼ fx : x � eXp̄ � e� ðl=2Þe � e3 and x �Qgeop̄ � eþ ðl=2Þe � e3g. (103)

With a good choice of e and the molecule, typically we will have that
pði;jÞ 2 D; i; j ¼ 1; . . . ;M, which we assume. There is quite a bit of freedom here about

the choice of e and pði;jÞ. We could also chooseP1 to be more a general surface than a plane

(P2 must still satisfy P2 ¼ QgP1 þ le3). For example, P1 could be a surface that

triangulates the atomic positions pði;jÞ. This freedom could be quite useful if a major surface

reconstruction7 would take place as we increase the applied forces and moments (see
below). Also, we may want to introduce a cut-off to avoid calculating the electronic density
far from the atoms; a sensible boundary condition based on the decay properties of the
electronic density could then be imposed on this cut-off surface, or else the density could be
matched to an implicit model of a solvent in the case of a submerged beam. The cut-off
would also have to respect the following condition (cf. (105) below): if A1 and A2 are the
subsets of P1 and P2 determined by the cut-off condition, then A2 ¼ QgA1 þ le3.

We define Dk ¼ Qk�1
ðgÞ Dþ ðk � 1Þle3 for all integers k and then,

S ¼
[

k

Dk. (104)

S contains all the atoms of the objective structure.
The density functional theory calculation of the electronic density rðxÞ is then carried

out on the domain D with the objective boundary condition:

rðxÞ ¼ rðQgxþ le3Þ; x 2 P1. (105)
7Surface reconstruction by itself does not invalidate the objective-structure ansatz. However, as in crystals, one

should always be aware of the possible necessity of having to double or triple, etc., the size of the molecule (unit

cell, in crystals) in order to achieve the lowest energy state.
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If a lateral boundary has been introduced by having a cut-off, we expect that no additional
boundary condition needs to be imposed there, beyond what is expected to make the
solution behave as if these boundary had not been imposed. Then r is extended to the
whole structure by noting that if x 2S then there is an integer k and a point z 2 D such
that x ¼ Qk�1

g zþ ðk � 1Þle3. Then we define

rðxÞ ¼ rðzÞ. (106)

A simple argument shows that if r is defined in this way, then it satisfies the basic
invariance condition (8) on all of S.
If e is not parallel to e3 then the two planes P1 and P2 intersect. This may or may not

lead to a problem for implementation but should not affect the invariance of r, which is
expected to satisfy (8) on all of space.
The density functional calculation described above just gives one value of the energy per

unit length ĵ which depends on the parameters that define the structure: pði;jÞ; g; l. We have
noted in (58) that the equations of equilibrium for this objective molecular structure reduce
to the M2 equations:

qĵ
qx1;ði;jÞ

¼ 0; i ¼ 1; . . . ;M ; j ¼ 1; . . . ;M. (107)

It would be natural to try to solve these by relaxing the M2 values pði;jÞ. But there remain
two additional parameters g and l. These additional parameters provide freedom to
prescribe applied forces and moments. Working out formulas for these is nontrivial in the
present general context and we do not confront this problem here. If ĵ satisfies rather
strong conditions of locality (which might exclude phenomena of ferroelectricity or
ferromagnetism) then it is expected that these solutions are consistent with an applied force
f ¼ f e3 and moment m ¼ me3 necessarily parallel to the axis e3 and with

f ¼
qĵ
ql
; m ¼

qĵ
qg

, (108)

cf. Ericksen (1977). Here, to be precise, ĵ is the energy per unit length measured in the
direction e3.
Following this pattern of thought, simplified atomic level simulations on a fundamental

domain with objective boundary conditions are possible with a variety of objective
molecular structures, including structures like the four and eight molecule systems
illustrated above. For a general objective molecular structure defined by S ¼ fxi;k þ

Ri;kðxn;m � x1;kÞ : n ¼ 1; . . . ;N ; m ¼ 1; . . . ;Mg one finds a fundamental domain D such
that the sets xi;1 þ Ri;kðD� x1;1Þ are pairwise disjoint and cover all of space (or at least an
enlarged neighborhood of the structure). Then, objective boundary conditions are that if
x 2 qD and xi;k þ Ri;kðx� x1;kÞ 2 qD for some ði; kÞ then rðxÞ ¼ rðxi;k þ Ri;kðx� x1;kÞÞ.
Returning to the case of the bent and twisted beams, it is interesting to speculate about

St. Venant’s principle. That is the principle that, for a long beam with free sides loaded at
its ends, all solutions of the equations of elasticity corresponding to a given force and
moment tend to each other and, among these, there is one which is particularly simple, the
appropriate St. Venant solution of linear elasticity. The point about this condition is that
there are a great many diverse boundary conditions, very far from each other in any of the
usual norms, that correspond to a given force and moment, so the fact that solutions
corresponding only to a given force and moment all should approach one solution is rather
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amazing. The only rigorous proof of this classic version of St. Venant’s principle is in linear
elasticity (Toupin, 1965). In nonlinear elasticity, Ericksen (1977) also speculates about its
validity, and despite the big difference in the theories (nonlinear elasticity vs. atomic)—
except the invariance groups which of course are the same—his arguments are not so far
from those in this section. Thus, we conjecture here that under suitable conditions on the
energy there is also a St. Venant’s principle at atomic level, even with just a few atoms in
the cross-section. In fact, from the present viewpoint, one could say that it is the invariance
group that is the crucial point, together with the definition of an objective structure. One
could even think that a single molecule chain subject to a resultant force and moment
consistent with (108) would be close to the present solution away from the ends, even when
the relative rotation between molecules is a large fraction of 2p.

A counterpoint to this speculation is the flexure solution of linear elasticity, which has
no counterpart among objective structures (in the flexural deformation, corresponding
atoms in different cross-sections, however these are defined, do not see the same
environment). The flexure solution is important to the general statement of St. Venant’s
principle in linear elasticity because it corresponds to an applied transverse force, and this,
together with the other St. Venant solutions, is used to build up a solution corresponding
to an arbitrary force and moment via superposition. In nonlinear theory there is anyway
no superposition. Our feeling is that it is the underlying invariance group that is critical to
a general version of St. Venant’s principle and that the inclusion of the flexure solution is
an artifact of linear elasticity.

9. Discussion

There are numerous interesting directions of research suggested by the relation
between objective structures and crystal lattices. Some of these are already being
studied for C nanotubes and C60 but other objective structures may present new
opportunities for interesting properties, arising from the variety of possible relationships
between molecules. There are also opportunities for unified treatment of properties of all
objective structures.
1.
 Collective properties, like ferromagnetism, ferroelectricity or superconductivity: Since
each atom in an objective structure sees the same environment, then each atom can have
the same unpaired spins, for example. More generally, each atom may have the same
local band structure. Similarly, the molecules of an objective structure could undergo a
simultaneous ferroelectric transition. If the macroscopic effect of these identical
electronic structures are enhanced by the overall structure, then one can get a strong
macroscopic effect. Such collective effects are particularly interesting in objective
structures when enhancement occurs due to the relative rotations between molecules
(interpreted broadly) of the structure, since such effects cannot occur in crystal lattices.
Optical properties may be of greatest interest.
2.
 Defects and failure: To understand the failure of crystal lattices, one calculates all
‘‘lattice invariant deformations’’, the deformations in a certain class that restores the
structure. Under severe stress, such deformations are effected by the passage of
dislocations. One can take a similar approach to objective structures: find the
deformations that restore the structure and then study what kinds of ‘‘dislocations’’
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produce these deformations along a low energy pathway, i.e., without simultaneously
breaking a large number of bonds. An interesting starting point for these thoughts is the
study of dislocations in structures like T4 tail sheath by Harris and Scriven (1970).
3.
 Phase transitions in objective structures: As quantified above in several cases, objective
structures have free parameters. The energy or free energy as a function of these
parameters may have energy wells. As one varies the temperature, pressure, field, etc.,
one may be able to induce a passage from one energy well to another, leading to a
transition from one objective structure to another of the same type. Structural
transitions of this type are expected to be common in objective structures, and the tail
sheath of bacteriophage T4 is a nice example.
4.
 Phonons and statistical mechanics: Because of the underlying group properties
discussed in Section 6 (cf. (59)) one should be able to organize the phonon calculation
for an objective structure along the lines already done for crystal lattices. The
appropriate mathematical subject is Fourier analysis on groups. A concrete study could
begin with simple formulas like (98) and (100) and this would be both interesting and
applicable to a broad collection of interesting structures. In crystals such calculations
lay the groundwork for simplified calculations of free energy via the method of effective
Hamiltonians (Rabe and Waghmare, 1995, 1996), which introduces a lattice Wannier
basis that conveniently parameterizes the low energy phonon modes. The symmetry
properties of crystal lattices play an important role for the derivation of this basis. One
can expect a similar kind of theory for other objective structures that specifically makes
use of the objective property.
5.
 The measurement of structure: As noted in the Introduction, much of what we know
from experiment on the structure of matter comes from X-ray analysis of crystallized
structures. However, many objective structures are not periodic. Could it be that, by
forcing them into a periodic structure via crystallization, one perturbs the special
relations between molecules that make it an objective structure, leading to a
misinterpretation of the structure? Are there new ways of interrogating objective
structures from uncrystallized samples? For crystalline solids, due to the fact that eik�x is
an eigenfunction of the Laplacian with the translation invariance of a 3-D periodic
crystal, the Fourier transform has a special relationship to both periodicity and the
wave equation. In practical terms these properties relate to the Bragg law and the
procedures of X-ray analysis. In objective structures one would seek other kind of
polarized solution of the wave equation invariant under the isometry group of an
objective structure. This is expected to lead to a transform, a theory of scattering, and,
ultimately, the design of an X-ray machine for the analysis of objective structures. These
procedures are likely to involve a particular way of preparing the incoming radiation.
Current work on fiber diffraction (Stubbs, 2001) from viruses does not seem to take this
point of view, but may contain important information for the development of these
ideas. A good starting point for this line of reasoning is formula (98) which in fact
produces most of the structures discussed by Stubbs.
6.
 Dynamics: Above we have noted the possibility of substantial simplification of
first principles calculations of energy and equilibrium in an objective structure resulting
from two features: (1) structural equilibrium implies atomic equilibrium (Sections 5
and 6.1) and (2) the use of objective boundary conditions on a fundamental domain
(Section 8). There is also the possibility of a simplification of MD calculations. This is a
generalization of the standard idea (Allen and Tildesley, 1987; Parrinello and
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Rahman, 1980; Toukan et al., 1983) for crystal lattices of assuming periodicity of
atomic positions with a large supercell. This allows MD on the supercell to represent
exact MD on the infinite crystal lattice, but corresponding to the special initial
conditions that are precisely periodic with the supercell periodicity. In objective
structures one could do a completely analogous thing with a superfundamental domain,
using the objectivity group of the objective structure to relate atomic positions in
domains related to the superfundamental domain by the appropriate group
transformations. In the objective case the reason that this procedure gives an exact
solution to the equations of MD (for appropriate objective initial conditions) is
because the right-hand side of those equations is equivariantunder the full set of
objectivity transformations. Some of these ideas are worked out in James and
Dumitrica (2006).
7.
 The Cauchy–Born rule for objective structures: In recent years, the Cauchy–Born rule
(Ericksen, 1984; Zanzotto, 1996; Friesecke and Theil, 2002) has played an important
role in the development of multiscale methods for crystalline materials involving the
passage from atomic to larger scales. The rule begins with the multilattice description of
crystals, the LM of (11) using the minimum number M of vectors pk to describe the
multilattice of the reference structure. Strictly speaking, that rule is that, to arrive at a
macroscopic theory with a local deformation gradient F one computes at atomic level
energies or stresses from a lattice defined by

fniFei þ ~pk : ðn
iÞ 2 Z3; k 2 f1; . . . ;Mgg (109)

with the ~pk chosen to secure equilibrium of the lattice. Zanzotto (1996) generalizes this
notion by allowing the number M not to be determined by the reference lattice.
Essentially, the rule permits calculations on homogeneous configurations to be extended
to inhomogeneous ones. This idea is also at the heart of the quasi-continuum method
(Tadmor et al., 1996). In the author’s view, the physical idea behind the rule is that
crystalline materials prefer nearly crystalline configurations even if they are
inhomogeneously stressed. Then the fact that the periodicity of the deformed crystal
is determined by the macroscopic deformation gradient acting on local lattice vectors is
inescapable based on any reasonable multiscale idea. The same physical idea can be
extended to objective structures: a macroscopic deformation should preserve locally the
objective structure. Our suggestion for a Cauchy–Born rule for an inhomogeneously
deformed objective atomic structure is strictly analogous to the crystalline case: it would
always be based on calculations on structures defined by, e.g., (98) and (99) to extract an
energy per unit area. The values of t; t̂;R; R̂ that would go into each such calculation
would be determined by the local values of stretch and curvature in the underlying shell
theory that is being used to describe the inhomogeneous structure.

This idea seems to be slightly different than the exponential Cauchy–Born rule successfully
used by Arroyo and Belytschko (2004). That is, their rule relates atomic positions in a

geometrically accurate way to the kinematics of the shell theory they choose, but they do
not use an underlying objective structure to do the calculation of energy. Since, as we show
above in Section 8, first principles calculations on objective structures can be drastically
simplified, then this observation seems to suggest an efficient way to do first principles
calculations for an inhomogeneously deformed C nanotube.

Alternatively, one could try to develop a ‘‘shell theory’’ in which the basic kinematics
uses exactly the variables t; t̂;R; R̂. This is done in Falk and James (2006).
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Appendix A. Solution of (99)

The following is an enumeration of all solutions of (99).
1.
 R; R̂ 2 SOð3Þ. Let jej ¼ 1 be on an axis of R, Re ¼ e. Then the second of (99) implies
that R̂Re ¼ RR̂e¼)RR̂e ¼ R̂e. Thus, R ¼ I or R̂ ¼ I, or ½RaI and R̂e ¼ �e�.
(a) R ¼ R̂ ¼ I. In this case t̂ and t are arbitrary (the structure is a 2-D crystal).
(b) R ¼ I; R̂aI. Here, t̂ is arbitrary but t is on the axis of R̂, R̂t ¼ t.
(c) R̂ ¼ I;RaI. Here, t is arbitrary but t̂ is on the axis of R, Rt̂ ¼ t̂.
(d) R̂aI;RaI.

(i) R̂e ¼ Re ¼ e. In this case we write

t̂ ¼ t̂1 þ t̂e; t ¼ t1 þ te, (110)

where t1 � e ¼ t̂1 � e ¼ 0. Then t̂; t are unrestricted but

t1 ¼ ðR̂� IÞ�1ðR� IÞt1, (111)

where the inverse is taken on the plane perpendicular to e (note that since R̂aI

then R̂� I is invertible on this plane).
(ii) R̂e ¼ �e. Here, R̂ ¼ �Iþ 2ê� ê for some jêj ¼ 1; ê � e ¼ 0, and also R ¼

�Iþ 2e� e. The corresponding t; t̂ are

t̂ ¼ t1eþ te� ê; t ¼ t2êþ te� ê (112)

for some t1; t2; t.

2.
 R 2 SOð3Þ, R̂ 2 Oð3ÞnSOð3Þ. In this case either R ¼ I or ½RaI;Re ¼ e; jej ¼ 1 and

R̂e ¼ �e�.
(a) R ¼ I. In this case R̂ ¼ I� 2ê� ê; jêj ¼ 1; t ¼ te; e � ê ¼ 0 and t; t̂a0 are arbitrary.
(b) RaI and R̂e ¼ e. In this case R ¼ �Iþ 2e� e; R̂ ¼ I� 2ê� ê; jêj ¼ 1; ê � e ¼ 0,

and

t ¼ t1eþ t2êþ t3e� ê; t̂ ¼ t̂1eþ t2ê (113)

for arbitrary t1; t2; t3; t̂1.
(c) RaI and R̂e ¼ �e. In this case Re ¼ �R̂e ¼ e (R and �R̂ are coaxial rotations) and

t ¼ t1; t̂ ¼ t1eþ t̂1, (114)

where t1 � e ¼ t̂1 � e ¼ 0 and t̂1 ¼ ðR� IÞ�1ðR̂� IÞt1, the inverse taken on the plane
perpendicular to e.
3.
 R 2 Oð3ÞnSOð3Þ, R̂ 2 SOð3Þ. This can be read off of Case 2 because the equations are
invariant under the change ðR̂; t̂Þ2ðR; tÞ.
4.
 R 2 Oð3ÞnSOð3Þ, R̂ 2 Oð3ÞnSOð3Þ. In this case either R ¼ �I or ½Ra� I;Re ¼
�e; jej ¼ 1, and R̂e ¼ �e�.
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(a) R ¼ �I. In this case t and R̂ 2 Oð3ÞnSOð3Þ are arbitrary but t̂ ¼ ð1
2
ÞðI� R̂Þt.

(b) Ra� I; R̂e ¼ e. In this case R ¼ I� 2e� e; R̂ ¼ I� 2ê� ê; jêj ¼ 1; ê � e ¼ 0 and

t ¼ t1eþ t2ðe� êÞ; t̂ ¼ t̂1êþ t̂2ðe� êÞ, (115)

where t1; t2; t̂1; t̂2 are arbitrary.
(c) Ra� I; R̂e ¼ �e;R� I invertible. In this case R̂ ¼ I� 2e� e and

t ¼ teþ t1; t̂ ¼ te, (116)

where t1 � e ¼ 0.
(d) Ra� I; R̂e ¼ �e;R� I not invertible. In this case R ¼ R̂ ¼ I� 2e� e and

t ¼ teþ t1; t̂ ¼ teþ t̂1; t1 � e ¼ t̂1 � e ¼ 0. (117)

(e) Ra� I; R̂e ¼ �e; R̂aI� 2e� e. In this case R̂� I is invertible, �R and �R̂ are
coaxial (with axis e), and

t ¼ teþ t1; t̂ ¼ teþ t̂1, (118)

where t1 ¼ ðR̂� IÞ�1ðR� IÞt̂1.
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