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Abstract

We introduce a generalization of periodic molecular dynamics that we term objective molecular

dynamics. It is a method of doing molecular dynamics for a restricted set of atoms, nonperiodically

mapping the time-dependent displacements of this small set of atoms onto the full, typically infinite

structure, such that the full structure satisfies exactly the full, unconstrained set of equations of

molecular dynamics subject to certain group-invariant initial conditions. The method is applicable to

a wide variety of interesting molecular structures including the tails, capsids and other parts of many

viruses, carbon nanotubes, many of the common proteins, C60 and many other nanostructures now

being synthesized, especially via the process of self-assembly. The method is illustrated by simulations

of carbon nanotubes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The most common way to implement molecular dynamics is via periodic molecular
dynamics (Allen and Tildesley, 1987; Parrinello and Rahman, 1980; Toukan et al., 1983;
Rurali and Hernandez, 2003) and this is the version that is often found as subroutines of
quantum mechanics codes. In this method one can assign the periodicity completely
independently of the type of atom or force law. The method can be adapted to isolated
systems by simply assigning the period to be much larger than the typical lattice parameter
see front matter r 2007 Elsevier Ltd. All rights reserved.
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of the substance and assigning the initial data appropriately, so that the collection of atoms
does not substantially interact with its periodic images for t40.

In periodic molecular dynamics atom i with mass mi and position xiðtÞ in the unit cell is
subject to the equations of motion

mi €xi ¼ �
qj
qxi

no sum over i, (1)

where the right-hand side accounts for the forces, in principle, exerted on i by the full set of
atoms in the periodic structure, or at least the atoms that fall within the cutoff, if there is
one. However, the positions of atoms in all other cells are not found by solving (1). Rather
they are forced to adopt the positions given by the assigned periodicity: atoms with mass
mi are forced to adopt positions xiðtÞ þ niei where the n1; n2; n3 are integers and the linearly
independent vectors e1; e2; e3 define the periodicity. At first sight, it might seem like there is
an inherent contradiction in the method—that the atoms in the other unit cells are forced
to go to certain places rather than to the places they would go if freely allowed to satisfy
the equations of motion—but, as is well known, there is no such contradiction. That is,
under physically natural hypotheses on the potential energy surface j, the full set of
equations of molecular dynamics for all the atoms has an invariant manifold associated
with arbitrarily assigned periodicity. That is, if the initial data are periodic in an
appropriate sense, the unconstrained unique solution of the equations of motion of all the
atoms retains exactly this periodicity. Besides mild conditions of smoothness of j, the key
hypotheses on j that are needed to prove this theorem are (1) translation invariance,
jðx1 þ c; x2 þ c; . . .Þ ¼ jðx1; x2; . . .Þ for all x1;x2; . . . and for all c, and (2) invariance under
permutations of atoms of like species: jðxPð1Þ;xPð2Þ; . . .Þ ¼ jðx1;x2; . . .Þ, where P is a
permutation of f1; 2; . . .g that preserves species, i.e., atomic mass and number. Translation
invariance and permutation invariance are properties of, say, a ground state potential
energy j that comes from general quantum mechanics under the Born–Oppenheimer
approximation, in which case the x1;x2; . . . are the ionic positions.

The method gives substantial simplification, because the equations of motion only have
to be solved for the atoms in the unit cell, and, if there is a cutoff, forces also only need to
be evaluated for a finite set of atoms. It is widely believed that if the unit cell is chosen to
contain a sufficient but modest number of atoms, and the periodicity is set properly,
periodic molecular dynamics gives many statistical properties that would be exhibited by
crystals composed of the atoms used in the simulation. Also, if one varies the periodicity,
then one can vary systematically the macroscopic stress in the crystal.

In this paper we introduce a simple but broad generalization of periodic molecular
dynamics that we term objective molecular dynamics. Its existence and potential usefulness
follow from two simple observations. First, the potential energy that comes from full
quantum mechanics under the Born–Oppenheimer approximation, as described above, is
actually fully frame-indifferent, in the sense that jðQx1 þ c;Qx2 þ c; . . .Þ ¼ jðx1;x2; . . .Þ
for all x1; x2; . . . and for all c and for all Q 2 O(3), where O(3) denotes the full orthogonal
group in three dimensions (Section 3.2). This fact, combined with the permutation
invariance described above, implies a much bigger invariant manifold than the one that is
exploited in periodic molecular dynamics. Second, the molecular structures that are
associated to this invariance contain some of the most widely studied structures in science:
carbon nanotubes, C60, viral capsids and many viral parts (necks, tails, baseplates), many
of the common proteins (actin, GroEL, hemoglobin, potassium channel, collagen),
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bilayers (staggered and unstaggered), and various kinds of molecular fibers; see James
(2006) for many examples. For reasons discussed in Caspar and Klug (1962), Crane (1950)
and James (2006), structures that are made by the process of self-assembly naturally give
rise to objective structures. Some of these structures have no 3, 2 or 1-D periodicity, and
therefore periodic molecular dynamics would not be applicable. Furthermore, even in the
case of a fiber or helical structure with 1-D periodicity, objective molecular dynamics
allows one to apply and vary forces and moments in ways that are not possible in periodic
molecular dynamics.
In objective molecular dynamics one gives a fundamental domain, a group, and initial

conditions for a set of atoms on the fundamental domain. The motions of atoms of the
whole structure are then determined by the group acting on the atoms in the fundamental
domain. Forces on atoms in the fundamental domain are computed from all other atoms
of the structure. Thus, an analogous simplification as is found in periodic molecular
dynamics occurs in objective molecular dynamics. If, in objective molecular dynamics, the
group chosen is translations niei as defined above, then objective molecular dynamics
reduces to periodic molecular dynamics. Objective molecular dynamics can simulate
certain kinds of large scale transient dynamic modes, in addition to the statistically
stationary ones; the nature of these modes is determined by the group.
This method of molecular dynamics would seem to be particularly useful for the study of

phase transformation and defect motion in nanostructures. In fact, the formulas for
objective molecular structures were abstracted from a study of the phase transformation in
bacteriophage T4 tail sheath (Falk and James, 2006). Pictures of the two phases in this case
are shown in the bottom left of Fig. 1. In addition, defects like the Stone–Wales defect
Fig. 1. Some objective molecular structures. These are all given by the formulas (4)–(7) with various choices of the

parameters. In each case the molecule is represented by a kind of unsymmetric blob.
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(Dumitrică et al., 2006) that can propagate in a helical fashion in a carbon nanotube would
seem good candidates for objective molecular dynamics.

The plan of this paper is as follows. In Section 2 we summarize some results of James
(2006) on objective structures. These are the structures to which objective molecular
dynamics applies, or, more precisely, the symmetry groups of these structures are the basis
of objective molecular dynamics. In Section 2 some formulas are given that always produce
such structures, and the symmetry groups are extracted from these formulas. In Section 3.1
the basic abstract theorem underlying objective molecular dynamics is given, followed in
Sections 3.3–3.5 by concrete cases that relate specifically to the formulas given in Section 2.
In Section 4 we consider an illustrative example: the dynamics of carbon nanotubes. In
Sections 4.1–4.2 we discuss carbon nanotubes as objective molecular structures and make
the connection with the widely used ðn;mÞ hexagonal-lattice notation. The actual
implementation of the abstract ideas requires the development of some technology
concerning the delineation of the group and corresponding fundamental domain which we
develop in Section 4.3.

In Section 4.4.1 we outline the modifications needed to transform classical molecular
dynamics into objective dynamics. Section 4.4.2 presents performed objective molecular
dynamics simulations on various carbon nanotubes. Unlike periodic molecular dynamics,
general objective molecular dynamics can exhibit transient dynamic modes on a scale that
is much larger than the size of the fundamental domain. We show how the energy of one of
these large-scale transient breathing modes becomes distributed into atomic scale
vibrations. Next we discuss the statics and dynamics of carbon nanotubes under applied
twist. This is a useful illustration of the method because we can continuously apply twist,
which cannot be done in periodic molecular dynamics. We first verify that the accepted
linearized properties of a carbon nanotube can be obtained with a small fundamental
domain. Then we consider a nanotube under applied twist and constant length. We are
able to nicely define a dramatic torsional instability that occurs near a value of twist of
2�=nm, see Fig. 9 and Section 4.4.2. Finally, we indicate how objective method can be used
to study bending deformations in nanotubes.

An objective molecular structure has structural parameters, i.e., parameters that can be
varied while retaining its property of being an objective structure, these being analogous to
the lattice vectors e1; e2; e3 in periodic molecular dynamics. In the latter these are conjugate
to applied stresses, and the expectation is similar in objective molecular dynamics. But in
objective molecular dynamics the nature of these ‘‘applied stresses’’ may vary widely with
the group; for a group appropriate to a carbon nanotube these are evidently the applied
axial force and axial moment. It is a fascinating question of what they might be in general,
but we postpone that to forthcoming work. Even in the periodic case, the issue of what is
the ‘‘stress’’ corresponding to a molecular dynamics simulation is somewhat controversial,
as indicated by the divergent definitions of stress found in the literature (Costanzo et al.,
2005; Hardy, 1982; Murdoch and Bedeaux, 1994; Zhou, 2005; Zimmerman et al., 2004).
Results along these lines for objective molecular dynamics are important because they are
needed to be able to plot, for example, a torque–twist relation for a carbon nanotube based
on fully dynamic simulations.

We conclude this introduction with three observations. First, it appears in our
simulations that objective molecular dynamics may be a ‘‘natural’’ method for objective
structures, in the sense that low energy modes that would contribute strongly to properties
calculated via statistical mechanics would be captured using small fundamental domains.
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The precise meaning of this awaits further study. Second, since objectivity, i.e., full frame-
indifference, extends to more general situations than full quantum mechanics under the
Born–Oppenheimer approximation—some situations for example in which the nuclear
positions are quantized or the electrons are treated dynamically—then it appears that
objective molecular dynamics has possible generalizations in these directions. However, in
the relativistic case, Lorentz invariance would give rise to other (interesting) issues. Third,
we note that objective molecular dynamics would seem to be especially useful in the
context of large scale simulations of viruses (see, e.g., Freddolino et al., 2006), giving
substantial speedup. For reasons most likely arising from the special relation between
objective structures and the process of self-assembly, viruses contain many objective
structures, e.g., capsids, necks, tails and baseplates, as well as specialized structures for
packing DNA, all tend to be objective molecular structures.
Notation. The summation convention is used here. Z is the integers and Z3 is the set of

triples of integers. Unless indicated otherwise, Greek letters are scalars, lower case Latin
letters are vectors in R3. Typically, uppercase Latin letters represent 3� 3 matrices, except
in Section 3.1 where they denote either infinite collections of vectors or else group
operations and in Section 4.4 where they denote quantities associated with the subgroup
used to define the MD simulations we do for the carbon nanotube. Ai denotes A multiplied
by itself i times, if i is a positive integer, or A�1 multiplied by itself jij times if i is a negative
integer. The letters Q and R, variously decorated, are reserved for matrices in
Oð3Þ ¼ fR : RTR ¼ Ig; here, the superscript T indicates the transpose, and I is the 3� 3
identity matrix. The upper limit of all summations in this paper can take positive or
negative integer values. If the upper limit is nonnegative, the summation has its usual
meaning; for negative values the meaning is

Xr

i¼0

ai ¼
0; r ¼ �1;

�a�1 � a�2 � � � � � arþ1; ro� 1:

(
(2)

Finally, we note that subscripts of vectors and matrices in this paper do not signify
components; instead, they label molecules and atoms within molecules.
2. Objective structures and their symmetry groups

Informally, an objective molecular structure is a finite or infinite collection of identical
molecules, each of which is composed of M atoms, such that corresponding atoms in
different molecules see exactly the same environment up to orthogonal transformation.
More precisely, a collection of position vectorsS ¼ fxi;j : i ¼ 1; . . . ;N; j ¼ 1; . . . ;Mg is an
objective molecular structure if there exists NM orthogonal matrices fR1;1; . . . ;RN;Mg such
that

S ¼ fxi;k þ Ri;kðxn;m � x1;kÞ : n ¼ 1; . . . ;N; m ¼ 1; . . . ;Mg ðno sum over kÞ (3)

for every choice of i 2 f1; . . . ;Ng; k 2 f1; . . . ;Mg. The connection with other related work
is discussed in James (2006). The terminology ‘‘objective’’ relates to the connection
between these structures and the fundamental invariance group of quantum mechanics, see
Section 3.2 below.
The main points about this definition are the following. First, in the notation xi;j, i

denotes the molecule while j denotes the atom within the molecule: one can say that xi;j is
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the position of atom j within molecule i. N can be infinite but M is always finite. In words,
the definition says that one can consider the entire structure from the point of view of atom
k of molecule 1, (xn;m � x1;k), do a suitable orthogonal transformation, Ri;k, add the result
to atom k of molecule i, (xi;k), and restore the entire structure. The key point is that the
left-hand side of (3) is independent of i and k (‘‘same structure’’), and the definition holds
for all i; k. Note that it is important that the second index labeled k appears three times, in
the indicated places, in this definition. If there is only one atom per molecule (M ¼ 1) we
say the structure is an objective atomic structure.

While the definition of an objective molecular structure refers only to the local
environment of corresponding atoms in different molecules, there is a close relation to
symmetry groups, in particular, groups of isometries (i.e., groups of transformations of the
form Qxþ c;Q 2 Oð3Þ; c 2 R3) in 3-D. This is discussed in James (2006), Section 6.1. For
the calculations done here, we have found the formulas like those given below to be easier
to use than the generators of those groups. In particular, for the example of the twisting of
a nanotube discussed below, the groups would change drastically with the angle of twist,
while the parameters in these formulas can be varied continuously. Objective molecular
dynamics can be phrased entirely in terms of these parameters.

For physical applications we adopt two additional assumptions on objective structures.
We say that the structure preserves species if the atomic mass and number of atom ði; kÞ is
the same as that of ðj; kÞ for all i; j ¼ 1; . . . ;N and all k ¼ 1; . . . ;M. An objective structure
is discrete if there exists a fixed r40 such that the collection of balls of radius r centered on
every atom is a pairwise disjoint collection.

We sometimes use different ways of indexing the molecule that are adapted to some
formulas for objective structures given below. That is, we replace i in xi;k by a set of two
integers ðp; qÞ, by writing xðp;qÞ;k, or three integers ðp; q; rÞ, writing xðp;q;rÞ;k, and use,
respectively, the indexing sets Z2 or Z3 for the molecules. We note that a structure
can be an objective molecular structure, but the ‘‘molecule’’ not be the actual physical
molecule as usually understood. This does not invalidate the theory. In fact, for many
objective molecular structures the molecule as embodied in (3) is the actual physical
molecule.

In James (2006) several explicit formulas are given for objective molecular structures.
These formulas give objective molecular structures independent of the structure of the
molecule. The molecule is denoted by assigned position vectors p1; . . . ; pM .
1.
 Finite structures. In this case N is finite and a finite subgroup of O(3), Q1; . . . ;QN , is
given with Q1 ¼ I, and y1 is a given vector in R3.

xi;j ¼ Qiðy1 þ pjÞ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M. (4)
2.
 Two-term formula

xðp;qÞ;k ¼ x1 þ
Xp�1
i¼0

Ri
2t2 þ R

p
2

Xq�1
i¼0

Ri
1t1 þ R

p
2R

q
1pk; k ¼ 1; . . . ;M, (5)

where p; q are integers, R1;R2 2 O(3) and t1; t2 2 R3, satisfy the restrictions

ðR2 � IÞt1 ¼ ðR1 � IÞt2; R1R2 ¼ R2R1. (6)



ARTICLE IN PRESS
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Three-term formula
3.
xðp;q;rÞ;k ¼
Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2 þ R

p
3R

q
2

Xr�1
k¼0

Rk
1t1 þ x1 þ R

p
3R

q
2R

r
1pk, (7)

where R1;R2;R3 2 O(3) and t1; t2; t3 2 R3 satisfy the restrictions

t3 þ R3t2 ¼ t2 þ R2t3; R3R2 ¼ R2R3,

t3 þ R3t1 ¼ t1 þ R1t3; R3R1 ¼ R1R3,

t2 þ R2t1 ¼ t1 þ R1t2; R2R1 ¼ R1R2. ð8Þ

The two-term formula is a special case of the three-term formula (put t1 ¼ 0;R1 ¼ I in
(7), (8)). We include both because a single-walled carbon nanotube, which we discuss in
detail later, is given by the two-term formula, and also because, if one compares the two-
and three-term formulas, one can immediately guess by analogy an n-term formula, with
associated restrictions, and this also gives objective molecular structures.
These formulas give lots of these structures. The three-term formula gives an arbitrary

ordered periodic crystal lattice, by the choice R1 ¼ R2 ¼ R3 ¼ I. Some other typical
structures produced by these three formulas are shown in Fig. 1, illustrated with a choice
of p1; . . . ; pM that produces an unsymmetrical blob-like molecule, so that the relationships
between molecules can be seen.
We should point out that the ‘-term formula ð‘X1Þ sometimes gives a finite structure,

even though the indexing set is infinite. In such cases, for large values of the first index, the
molecules fall precisely on molecules previously constructed; these become discrete
objective molecular structures by restricting in a suitable way the indices ðp; q; r; . . .Þ. Also,
for some choices of the t’s and R’s the structures are infinite but not discrete (though, as
stated above, they are always objective molecular structures). We deal with this explicitly
in our application to the carbon nanotube.
Now we extract some subgroups of the symmetry groups of structures given by these

formulas that will be useful for objective molecular dynamics. Of interest here are isometry
groups of the structure S, i.e., groups of orthogonal transformations and translations
ðQjcÞ that satisfy

QSþ c ¼S. (9)

These transformations form a group under the usual operations ðQ2jc2Þ � ðQ1jc1Þ ¼

ðQ2Q1jQ2c1 þ c2Þ. We just record the case of the finite groups and those of the three-term
formula; the corresponding group for the n-term form is then easily found by analogy.
The results are given below in the same notation as the preceding enumeration.
1.
 Finite structures. These are obvious: ðQjcÞ ¼ ðQij0Þ; i ¼ 1; . . . ;N.

2.
 Three-term formula. In this case ðQjcÞ are given by

Q ¼ Qp;q;r ¼ R
p
3R

q
2R

r
1; c ¼ cp;q;r ¼

Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2

þ R
p
3R

q
2

Xr�1
k¼0

Rk
1t1 � R

p
3R

q
2R

r
1x1. ð10Þ
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That these are symmetry groups of the given structures is proved by direct (but
 messy)
calculations (see James, 2006). We note also a related interesting fact: if one rearranges (9)
and (10), one gets

xðp;q;rÞ;k þQp;q;rðxðj;k;lÞ;‘ � xð0;0;0Þ;kÞ ¼ xðpþj;qþk;rþlÞ;‘. (11)

This shows immediately that the structure given by the three-term formula describes an
objective molecular structure, with molecule ‘‘1’’ in the basic definition (3) being labelled
by ð0; 0; 0Þ. Note that in this case Qp;q;r does not depend on the molecule. The reasons for
this, and a deeper discussion of the relation between group and structure, are given in
James (2006).

3. Objective molecular dynamics

3.1. Abstract form of the argument

We write the equations of molecular dynamics in a schematic way. X is shorthand for
xi;j ; i ¼ 1; . . . ;N ; j ¼ 1; . . . ;M, and we let n ¼ NM; typically N ¼ 1.

We are interested in time-dependent mappings X : ½0;TÞ ! Rn satisfying the initial value
problem:

M €X ¼ � rFðXÞ,

Xð0Þ ¼ X0,

_Xð0Þ ¼ V0, ð12Þ

with X0;V0 2 Rn n-dimensional vectors, the mass matrix M : Rn ! Rn is a linear
transformation on Rn and rF : Rn ! Rn. We assume conditions on rF such that this
system has a unique solution for all choices of ðX0;V0Þ 2 I. Here, I will be a suitably
chosen set that, for example, avoids singularities associated with two ions occupying the
same position. There is assumed to be a group G of affine transformations that act on R1

of the form

X! TX ¼ T0Xþ C. (13)

The group operation is composition: G1ðG2XÞ ¼ T01T
0
2Xþ T01C2 þ C1. There is also a

subgroup G0 obtained by putting C ¼ 0. The mass matrix is assumed to be invariant in the
sense that M ¼ T0MðT0Þ�1 for all T0 2 G0. The potential F is assumed to be equivariant in
the sense that

rFðTXÞ ¼ T0rFðXÞ (14)

holds for all X, and the set of initial conditions is also assumed to be invariant: if
ðX0;V0Þ 2 I, then ðTX0;T

0V0Þ 2 I for all G 2 G, with T;T0 related by (13).
Consider initial data that are group invariant in the sense that

TX0 ¼ X0,

T0V0 ¼ V0, ð15Þ

for all T 2 G. Then the solution corresponding to this initial data is invariant, in the sense
that

TXðtÞ ¼ XðtÞ; t 2 ½0;TÞ (16)
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for all T 2 G. The proof is trivial. Consider the solution XðtÞ and define for a fixed T 2 G

YðtÞ ¼ T�1XðtÞ ¼ ðT0Þ�1ðXðtÞ � CÞ. (17)

Then, substituting XðtÞ ¼ TYðtÞ ¼ T0YðtÞ þ C into (12), we get

MT0 €Y ¼ �rFðTYÞ. (18)

Using the invariances of M, F and of the initial data, we get:

M €Y ¼ �rFðYÞ,

Yð0Þ ¼ X0,

_Yð0Þ ¼ V0. ð19Þ

Thus, YðtÞ satisfies the same initial value problem as XðtÞ and, therefore, by uniqueness,
YðtÞ ¼ XðtÞ, 0ptoT . Since T 2 G was arbitrary, then, accounting for the relation between
XðtÞ and YðtÞ, we have

XðtÞ ¼ TXðtÞ (20)

for all T 2 G.
The actual group action, in components, corresponding to the various formulas given in

Section 2, is given explicitly below in Sections 3.3–3.5.

3.2. Invariance of the potential energy

We now discuss the invariance of the potential energy, or, more precisely, of the forces.
We use a fairly general format of defining the potential energy of the atomic system from
the ground state energy of full quantum mechanics under the Born–Oppenheimer
approximation. Various simpler models, such as density functional theory or semi-
empirical force fields, inherit this invariance.
We use the basic notation of objective molecular structures even though the atoms in

this section are not assumed to belong to such a structure.1 Thus we assume nuclear
positions xi;j ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M with M finite and N finite or infinite. We also
assume that nuclei ði; jÞ with a fixed value of the second index j all have the same atomic
number ZðjÞ. The ground state energy is obtained by minimizing the sum of terms
representing the kinetic energy (KE), the electron–electron interaction energy (EE), the
electron–nuclear energy (EN) and the nuclear–nuclear energy (NN) over antisymmetric
normalized wave functions:

jðx1;1; . . . ;x1;M . . . ; xN ;1; . . . ;xN;M Þ

¼ minðKEþ EEþ ENþNNÞ

¼ min

normalized
c anti�symmetric

X
¼�1

2

s1 ;...;sP

Z
R3P

1

2
jrcððr1; s1Þ; . . . ; ðrP; sPÞÞj

2 dr1 . . . drP

�

þ
XP

iaj
i;j¼1

Z
R3P

1

2jri � rjj
jcððr1; s1Þ; . . . ; ðrP; sPÞÞj

2 dr1 . . . drP
1The key point is that the invariance of rFðXÞ assumed in the preceding section has to hold for all X.
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T. Dumitrică, R.D. James / J. Mech. Phys. Solids 55 (2007) 2206–2236 2215
þ
XP

‘¼1

Z
R3P

V ðr‘; x1;1; . . . ;xN ;MÞjcððr1; s1Þ; . . . ; ðrP; sPÞÞj
2 dr1 . . . drP

!

þ
1

2

XN

i;k¼1

XM
ðj;mÞaði;kÞ

j;m¼1

ZðjÞZðmÞ

jxi;j � xk;mj
. ð21Þ

Here, there are P electrons, with (possible) positions ðr1; . . . ; rPÞ 2 R3P and spins
ðs1; . . . ; spÞ 2 f�1=2g

P, and the interaction between ions and electrons is taken to be a
Coulomb interaction:

V ðr; x1;1; . . . ;xN;M Þ ¼ �
XN

i¼1

XM
j¼1

ZðjÞ

jr� xi;jj
. (22)

For a neutral system

P ¼ N
XM
j¼1

ZðjÞ. (23)

Note the ‘‘min’’ in (21): we minimize out the wave function in order to get the ground state
potential energy j as a function of the parameters in the quantum mechanical energy. It is
the invariance of this potential energy that we need. This invariance follows directly from
its definition (21).

The invariance that follows from these definitions is

jðxPð1;1Þ; . . . ;xPð1;MÞ; . . . ;xPðN ;1Þ; . . . ;xPðN ;MÞÞ

¼ jðx1;1; . . . ;x1;M ; . . . ;xN ;1; . . . ; xN ;M Þ

¼ jðQx1;1 þ c; . . . ;Qx1;M þ c; . . . ;QxN ;1 þ c; . . . ;QxN ;M þ cÞ, ð24Þ

where P is a permutation of fð1; 1Þ; . . . ; ðN;MÞg that preserves atomic number:
ðk;mÞ ¼ Pði; jÞ¼)ZðmÞ ¼ ZðjÞ, and Q 2 O(3), c 2 R3. The proof of this invariance is
straightforward. For example, for the EN term, using the form of V given above,Z

R3P

V ðr‘;Qx1;1 þ c; . . . ;QxN ;M þ cÞjcððr1; s1Þ; . . . ; ðrP; sPÞÞj
2 dr1 . . . drP

¼

Z
R3P

V ðQTðr‘ � cÞ; x1;1; . . . ;xN ;MÞ jcððr1; s1Þ; . . . ; ðrP; sPÞÞj
2 dr1 . . . drP

¼

Z
R3P

V ðr̂‘; x1;1; . . . ;xN ;MÞ jcððQr̂1 þ c; s1Þ; . . . ; ðQr̂P þ c; sPÞÞj
2 jJjdr̂1 . . . dr̂P

¼

Z
R3P

V ðr̂‘; x1;1; . . . ;xN ;MÞjĉððr̂1; s1Þ; . . . ; ðr̂P; sPÞÞj
2 dr̂1 . . . dr̂P, ð25Þ

where J is the Jacobian of the transformation ðr̂1; . . . ; r̂PÞ ! ðr1 ¼ Qr̂1 þ c; . . . ; rP ¼

Qr̂P þ cÞ and therefore jJj ¼ 1, and ĉ is simply defined by

ĉððr̂1; s1Þ; . . . ; ðr̂P; sPÞÞ ¼ cððQr̂1 þ c; s1Þ; . . . ; ðQr̂P þ c; sPÞÞ. (26)

After changing variables in all the terms in the quantum mechanical energy, these terms
retain their present form with ĉ replacing c. From the definition (26) we note that ĉ is
antisymmetric and normalized, and therefore the minimization of the original energy over
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wave functions c can be replaced by an equivalent minimization over wave functions ĉ,
giving the same ground state energy and therefore proving the assertion. In physical terms
ĉ is just the wave function of the rotated2 and translated state. The permutation invariance
(under permutations of like species) of EN, as well as of NN, is obvious from the forms of
these terms.
To get the force on atom ði; jÞ we take the negative derivative of the potential energy with

respect to xi;j. Differentiating (24) with respect to xi;j, we get the invariance condition for
forces:

�
qj

qxP�1ði;jÞ
ðxPð1;1Þ; . . . ;xPð1;MÞ; . . . ; xPðN ;1Þ; . . . ;xPðN;MÞÞ

¼ �QT qj
qxi;j
ðQx1;1 þ c; . . . ;Qx1;M þ c; . . . ;QxN ;1 þ c; . . . ;QxN ;M þ cÞ. ð27Þ

Now we discuss special issues that arise with infinite systems, N ¼ 1. Already from the
formula (23), we see that infinite systems pose special problems, namely, that the energy, if
not ill-defined, is at least infinite. However, one expects that under suitable hypotheses on
the distribution of atoms that the force on an atom is nevertheless finite and has the
invariance given in (27). In fact, the expectation is that under such hypotheses the actual
value of the force is given by a formal3 application of the Hellmann–Feynman formula,
which exhibits the invariance (27). The type of argument that is expected to give these
results is the following: take the energy difference between a structure with one atom
displaced and the perfect structure, both structures cutoff by the same ball so the energies
are finite, then pass to the large-body limit by letting the radius of the ball go to infinity,
and finally pass to the limit in the difference quotient to get the force. To our knowledge,
there is no rigorous argument of this type in full quantum mechanics. However, it is widely
believed that the consequence of such an argument would be a finite force with the
invariance properties given in (27). In any case we shall assume that the invariance
condition on forces is (27), which is required to hold independently for all Q 2 O(3),
c 2 R3, permutations P that preserve species, and all arguments ðx1;1; . . . ;xN ;MÞ in a
domain I, which itself is invariant under these transformations.
Now we identify the group action more explicitly. Let the isometry group of the

structure be G defined by (9): ðQjcÞ 2 G¼)Qxi;j þ c ¼ xPði;jÞ, where P is a permutation of
fði; jÞ : i ¼ 1; . . . ;N; j ¼ 1; . . . ;Mg that preserves species. The use of the permutation P is
just a shorthand way of saying that this transformation restores the structure. Accounting
for the invariance of the forces (27), the group actions that make the argument given in
Section 3.1 work are (recall X ¼ xi;j ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M):

ðTXÞi;j ¼ QxP�1ði;jÞ þ c; ðT0XÞi;j ¼ QxP�1ði;jÞ. (28)

With these definitions we see that the invariance condition rFðTXÞ ¼ T0rFðXÞ assumed in
(14) is verified by (27). Also, using the species invariance of P, the mass matrix satisfies the
invariance condition T0MðT0Þ�1 ¼M. This, together with sufficient smoothness of qf=qxi;j

that insures a unique solution of the equations of molecular dynamics, verifies the
2Though in fact, as noted, Q can belong to the full orthogonal group.
3The usual derivation of the Hellmann–Feynman formula is valid only for finite systems.
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hypotheses of Section 3.1. The conclusion is TXðtÞ ¼ XðtÞ, which explicitly is

Qxi;jðtÞ þ c ¼ xPði;jÞðtÞ. (29)

In principle, this gives the mapping between atoms of the structure that ensures an exact
solution of the equations of molecular dynamics. Depending on the choice of the subgroup
of the isometry group, this gives effectively a reduction of the system, typically from
infinite to finite. Roughly speaking, a large subgroup will imply that the simulation will
be highly constrained but the motions of only a few atoms will need to be simulated.
A smaller subgroup will allow more simulated atoms, but perhaps a more representative
simulation in terms of properties of the structure.

All this is rather abstract. To see exactly what are these groups and to understand more
clearly what really one needs to do in an actual simulation, we specialize these conditions
of invariance to the formulas for objective structures. We do this separately in the atomic
(where the formulas are particularly simple) and molecular cases.

3.3. Three-term formula: atomic case

We consider the three-term formula (7) in the atomic case, M ¼ 1, and we drop the
second index, xi ¼ xi;1; i ¼ 1; . . . ;N. Recall that in the three-term formula we also replace
the indexing set f1; . . . ;Ng by Z3 and use ðp; q; rÞ in place of i. The atomic positions for an
objective atomic structure are

xp;q;r ¼ x1 þ
Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2 þ R

p
3R

q
2

Xr�1
k¼0

Rk
1t1, (30)

where R1;R2;R3 2 O(3) and t1; t2; t3 2 R
3 satisfy the restrictions:

t3 þ R3t2 ¼ t2 þ R2t3; R3R2 ¼ R2R3,

t3 þ R3t1 ¼ t1 þ R1t3; R3R1 ¼ R1R3,

t2 þ R2t1 ¼ t1 þ R1t2; R2R1 ¼ R1R2, ð31Þ

and x1 2 R3. Under these restrictions the formula (31) always generates an objective
atomic structure. That is, if we put Rp;q;r ¼ R

p
3R

q
2R

r
1 then

xp;q;r þ Rp;q;rðxj;k;l � x0;0;0Þ ¼ xpþj;qþk;rþl . (32)

It is again worth noting that this family of structures helps us understand what structure is
being simulated; for the argument itself, we are merely using it to generate an appropriate
group.

Thus, we extract some isometry groups of this family of structures. An isometry group
that generates the full structure when applied to a single atomic position will give a highly
constrained4 simulation, having only one atom in the fundamental domain, so what is
desired is a good collection of subgroups that allow a broad set of fundamental domains
containing various numbers of atoms. We have noted in (10), or one can see immediately
from (32), that the following orthogonal transformations and translations restore the full
structure S ¼ fxp;q;r : ðp; q; rÞ 2 Z3g:

QSþ c ¼ S, (33)
4Though not necessarily trivial; for a carbon nanotube, the radius could oscillate uniformly.
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where

Q ¼ Qp;q;r ¼ R
p
3R

q
2R

r
1; c ¼ cp;q;r ¼

Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2

þ R
p
3R

q
2

Xr�1
k¼0

Rk
1t1 � R

p
3R

q
2R

r
1x1. ð34Þ

These transformations form a group under the usual operations ðQ2jc2Þ � ðQ1jc1Þ ¼

ðQ2Q1jQ2c1 þ c2Þ.
We extend the notation by letting n ¼ ði; j; kÞ 2 Z3 and Z ¼ ðp; q; rÞ 2 Z3. A very useful

family of subgroups of the group defined by (34) is obtained by taking m ¼ mj
i to be a fixed

3� 3 invertible matrix of integers and defining the subgroup by restricting ðQZ; cZÞ in (34)
to the values Zj ¼ mj

ix
i, where x 2 Z3. After some calculation it is seen that this does give a

subgroup. We note that, if we think of the triple of integers as generating a Bravais lattice
via the usual formula Zjej ¼ pe1 þ qe2 þ re3, the choice Zj ¼ mj

ix
i is exactly the method of

assigning the subgroup in periodic molecular dynamics for this lattice. Thus this method of
assigning the subgroup exactly maps the periodic MD problem to the objective MD
problem. In both cases j det mjX1 is the number of atoms in the fundamental domain, and
therefore the number of atoms effectively being simulated. See, however, the remark at the
end of this section.
Now we give some detail on the invariance conditions for these subgroups, following the

notation of Sections 3.1 and 3.2. For these subgroups the permutation of (28) is PðnÞ ¼
nþ Z, Zj ¼ mj

ix
i; x 2 Z3. The invariance condition (27) on the forces becomes

�
qj

qxn�Z
ð. . . ;xn1 ;xn2 ; . . . ;xnN

; . . .Þ

¼ �QT
Z
qj
qxn
ð. . . ;QZxn1�Z þ cZ;QZxn2�Z þ cZ; . . . ;QZxnN�Z þ cZ; . . .Þ. ð35Þ

The final invariance condition on the solution is

xnþZðtÞ ¼ QZxnðtÞ þ cZ, (36)

which holds for all t 2 ½0;TÞ, all n ¼ ði; j; kÞ 2 Z3, and all Z ¼ ðp; q; rÞ of the form Zj ¼ mj
ix

i

where x 2 Z3.
To do an objective MD simulation in this format, consider triples of integers ði; j; kÞ that

lie in the set

I ¼ l1m
j
1 þ l2m

j
2 þ l3m

j
3 :
X

lip1; 0plio1
n o

\ Z3. (37)

These are triples of integers in a parallelpiped defined by the vectors ðmj
1; m

j
2;m

j
3Þ and there

are j det mj of them. Assign the initial positions and velocities of the atoms xn; n 2 I, in any
way. Construct other atoms in the structure by applying the formula (36) to n 2 I and all Z
as given there. The atoms that are directly simulated are only xn; n 2 I, but forces on these
atoms are calculated using all other atoms of the structure. If the forces have a cutoff, only
atomic positions corresponding to a restricted set of Z in (36) need to be calculated, i.e.,
only those whose positions fall within the cutoff. At each timestep the positions of the
atoms not being simulated need to be updated using (36). The group, i.e., the matrices QZ
and cZ, must remain fixed during the course of the simulation.
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We conclude this section by echoing the warning given two paragraphs after (8). That is,
the three-term formula sometimes gives structures that are not discrete.5 Strictly speaking,
the structures generated are still objective structures (because (32) holds), but the
molecular dynamics fails. The point of failure of the argument is at the end of the
paragraph following (27), because the potential typically has a singularity when two atoms
approach each other. Thus it is important to enforce discreteness of the structure. We show
how to do this in the case of carbon nanotubes, but we do not yet have a complete
understanding of the conditions for discreteness in the general case.
3.4. Three-term formula: molecular case

Now we very briefly outline the objective molecular case. The underlying structure is
now given by

xðp;q;rÞ;k ¼
Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2 þ R

p
3R

q
2

Xr�1
k¼0

Rk
1t1 þ x1 þ Rp;q;rpk, (38)

where R1;R2;R3 2 O(3) and t1; t2; t3 2 R
3 satisfy the restrictions:

t3 þ R3t2 ¼ t2 þ R2t3; R3R2 ¼ R2R3,

t3 þ R3t1 ¼ t1 þ R1t3; R3R1 ¼ R1R3,

t2 þ R2t1 ¼ t1 þ R1t2; R2R1 ¼ R1R2, ð39Þ

x1 2 R3, Rp;q;r ¼ R
p
3R

q
2R

r
1, and fx1 þ p1; . . . ;x1 þ pMg are the positions of atoms within

molecule ð0; 0; 0Þ. Under these restrictions the formula (31) always generates an objective
molecular structure. That is, if we put Rp;q;r ¼ R

p
3R

q
2R

r
1 then

xðp;q;rÞ;k þ Rp;q;rðxðj;k;lÞ;‘ � xð0;0;0Þ;kÞ ¼ xðpþj;qþk;rþlÞ;‘. (40)

As we have noted above (and as can be seen directly from (40)), the following orthogonal
transformations and translations restore the full structure S ¼ fxp;q;r : p; q; r 2 Zg:

QSþ c ¼ S, (41)

where

Q ¼ Qp;q;r ¼ R
p
3R

q
2R

r
1; c ¼ cp;q;r ¼

Xp�1
i¼0

Ri
3t3 þ R

p
3

Xq�1
j¼0

R
j
2t2

þ R
p
3R

q
2

Xr�1
k¼0

Rk
1t1 � R

p
3R

q
2R

r
1x1. ð42Þ

Note the interesting fact that even in the objective molecular case, the transformations ðQjcÞ
depend on the choice of molecule, but not on the atom within the molecule (see James,
2006).
5If one wants to understand intuitively how a failure of discreteness can occur, note that the three-term formula

in a very special case ðR1 ¼ R2 ¼ R3 ¼ I; t1 ¼ 0; t3 ¼ ð1=aÞt2 ¼ tÞ is ðpþ aqÞt. If a is irrational and p and q are

chosen to be suitable large negative and positive integers, respectively, one sees that this formula produces denser

and denser arrays of atomic position near the origin.
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As above, let n ¼ ði; j; kÞ 2 Z3 and Z ¼ ðp; q; rÞ 2 Z3 represent triples of integers. Let
m ¼ mj

i be a fixed 3� 3 invertible matrix of integers. The subgroups of interest are obtained
by restricting ðQZ; cZÞ in (42) to the values Zj ¼ mj

ix
i, where x 2 Z3.

For these subgroups the permutation of (28) is PðnÞ ¼ nþ Z, Zj ¼ mj
ix

i; x 2 Z3, as in the
atomic case. The invariance condition (27) on the forces is

�
qj

qxn�Z;k
ð. . . ;xn1;1; . . . ;xn1;M ; . . . ;xnN ;1; . . . ;xnN ;M ; . . .Þ

¼ �QT
Z

qj
qxn;k
ð. . . ;QZxn1�Z;1 þ cZ; . . . ;QZxn1�Z;M þ cZ; . . . ;QZxnN�Z;1

þ cZ; . . . ;QZxnN�Z;M þ cZ; . . .Þ. ð43Þ

The final invariance condition on the solution is

xnþZ;kðtÞ ¼ QZxn;kðtÞ þ cZ, (44)

which holds for all t 2 ½0;TÞ, all n ¼ ði; j; kÞ 2 Z3, and all Z ¼ ðp; q; rÞ of the form Zj ¼ mj
ix

i

for some x 2 Z3.
To set up the simulation one follows the procedure given above for the objective

atomic case; it is only necessary, for each value of n 2 I to add to the simulation the M

position vectors p1; . . . ; pM whose initial positions and velocities can be arbitrarily
assigned.
3.5. Case of the finite groups

This case is simple. Recall that a finite subgroup G ¼ fQ1; . . . ;QNg of O(3) is assigned,
Q1 ¼ I, and the structures are given by S ¼ fxi;j ¼ Qiðy1 þ pjÞ : i ¼ 1; . . . ;N; j ¼

1; . . . ;M ; y1 2 R3g. Let PðiÞðkÞ; k ¼ 1; . . . ;N be a permutation of f1; . . . ;Ng associated
to the multiplication table of the group G, that is, PðiÞðkÞ ¼ ‘ if QiQk ¼ Q‘. Then an easy
calculation yields

xi;j þQiðxk;m � x1;jÞ ¼ xPðiÞðkÞ;m, (45)

and also

QSþ c ¼S, (46)

where Q ¼ Qi; c ¼ 0. The permutation appearing in (28) associated to a group element i is
simply Pðm; kÞ ¼ ðPðiÞðmÞ; kÞ. The invariance condition (27) on the forces is

�
qj

qx
ðPð‘ÞÞ�1ðiÞ;j

ðxPð‘Þð1Þ;1; . . . ;xPð‘Þð1Þ;M ; . . . ;xPð‘ÞðNÞ;1; . . . ; xPð‘ÞðNÞ;MÞ

¼ �QT
‘

qj
qxi;j
ðQ‘x1;1; . . . ;Q‘x1;M ; . . . ;Q‘xN ;1; . . . ;Q‘xN ;MÞ ð47Þ

(no sum over ‘). The final invariance condition on the solution is

xPð‘ÞðiÞ;jðtÞ ¼ Q‘ xi;jðtÞ, (48)

which holds for all t 2 ½0;TÞ, all i; ‘ ¼ 1; . . . ;N, and all j ¼ 1; . . . ;M.
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T. Dumitrică, R.D. James / J. Mech. Phys. Solids 55 (2007) 2206–2236 2221
4. Example: single-walled carbon nanotubes

4.1. Single-walled carbon nanotubes in the hexagon-lattice nomenclature

The structure of carbon nanotubes is commonly specified in the literature in terms of
indices n and m. In the unrolled representation, these indices represent the components of
the circular circumference vector c of the nanotube on the lattice vectors a and b of the
honeycomb lattice, i.e., c ¼ naþmb. By convention, the lattice vectors a and b are the
particular ones shown in Fig. 2. After rolling into the shape of the carbon nanotube, c is
mapped to a circular circumference on the nanotube. The chirality or wrapping index is
measured by the angle w enclosed by c and the lattice vector a. The special cases
corresponding to ðn; 0Þ and ðn; nÞ are called zigzag and armchair configurations, respectively.

Given ðn;mÞ the formula for the position vectors of atoms on the nanotube is

yðp; qÞ ¼ r cosð2pxðp; qÞÞ e1 þ r sinð2pxðp; qÞÞ e2 þ Zðp; qÞ e3, (49)

where e1; e2; e3 is an orthonormal basis, e3 being on the axis of the nanotube, and

r ¼

ffiffiffi
3
p

lC2C

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
,

xðp; qÞ ¼
ð2nþmÞpþ ð2mþ nÞq

2ðn2 þm2 þ nmÞ
,

Zðp; qÞ ¼
3lC2Cðpm� qnÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p . ð50Þ
Fig. 2. The two carbon nanotubes discussed in Cases 1 and 2 are specified on a graphene sheet by the vector c,

which is mapped onto the nanotube’s circumference. The vectors t01; t
0
2; p
0
2 are mapped by (49) onto the vectors

t1; t2; p2 used in the objective description of the nanotube. Shaded area corresponds to the primitive fundamental

domain.
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Here, lC2C is the bond length on the sheet before rolling. To get the positions of all the
atoms on the nanotube, one evaluates (49), (50) at the arguments ðp; qÞ and ðpþ 1=3; qþ
1=3Þ where ðp; qÞ runs over all pairs of integers. The position vectors yðp; qÞ and yðpþ

1=3; qþ 1=3Þ represent the positions of atoms that were at positions paþ qb and
ðpþ 1=3Þaþ ðqþ 1=3Þb, respectively, before rolling. The two positions yðp; qÞ and yðpþ

1=3; qþ 1=3Þ can be taken as the coordinates of each two-atom molecule in the sense of
objective structures.
The mapping (49), (50) describes an exact isometric mapping of the graphene sheet

shown in Fig. 2. Due to finite curvature effects, the bond lengths of atoms will be slightly
changed upon rolling. This can be compensated for by scaling r and Z appropriately; in the
actual physical case the equilibrium bond lengths will anyway be slightly different from
those of a graphene sheet. This will not matter for objective molecular dynamics of
nanotubes, because this dynamics allows relaxation of the radius. However, as we explain
below, the twist and extension of a carbon nanotube can be prescribed in objective
molecular dynamics.
In conjunction with Fig. 2, we will implement the theory on two kinds of nanotubes.
1.
 Case 1: n ¼ 9; m ¼ 0. In this case c ¼ 9a and the chiral angle w ¼ 0.

2.
 Case 2: n ¼ 6; m ¼ 6. In this case c ¼ 6aþ 6b and the chiral angle w ¼ p=6.
4.2. Carbon nanotubes as objective molecular structures

Single-walled carbon nanotubes are objective molecular structures in which the molecule
contains two carbon atoms. We will show that they are given by the two-term formula,
that is,

xðp;qÞ;k ¼ x1 þ
Xp�1
i¼0

Ri
2t2 þ R

p
2

Xq�1
i¼0

Ri
1t1 þ R

p
2R

q
1pk; k ¼ 1; 2, (51)

where p; q are integers, R1;R2 2 O(3) and t1; t2 2 R3, satisfy the restrictions

ðR2 � IÞt1 ¼ ðR1 � IÞt2; R1R2 ¼ R2R1 (52)

We will use the notation

Qy ¼

cos y � sin y 0

sin y cos y 0

0 0 1

0
B@

1
CA, (53)

and all components here and below are expressed in the same orthonormal basis ðe1; e2; e3Þ
and in all cases R1 ¼ Qy1 ;R2 ¼ Qy2 . Since coaxial rotation matrices commute, the second
condition of (52) holds. When the orthogonal matrices R1 and R2 have these simple coaxial
forms, the formula (51) also has a simpler alternative form that will be useful. To derive
this form, decompose t1 ¼ t1e3 þ r1 and t2 ¼ t2e3 þ r2, where r1 � e3 ¼ r2 � e3 ¼ 0.
Considering only t1 (t2 is similar) we choose s1 � e3 ¼ 0 to satisfy ðR1 � IÞs1 ¼ r1 (this
can always be done if y1a0). Now iterate the formula R1s1 � s1 ¼ r1 to get

R
q
1s1 ¼ s1 þ

Xq�1
j¼0

R
j
1r1. (54)
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Note also that

Xq�1
j¼0

R
j
1ðt1e3Þ ¼ qt1e3. (55)

Now substitute t1 ¼ t1e3 þ r1 and t2 ¼ t2e3 þ r2 into (51) and use (54) and (55), and their
analogs for t2, and also note that the compatibility condition ðR2 � IÞt1 ¼ ðR1 � IÞt2
becomes simply s1 ¼ s2. Calling s ¼ s1 ¼ s2, we conclude that the two-term formula (51) in
this case is equivalent to6

xðp;qÞ;k ¼ x1 � sþ R
p
2 R

q
1ðsþ pkÞ þ ðpt2 þ qt1Þe3; k ¼ 1; 2. (56)

Note that, since e3 is the axis of R1;2 this formula can be interpreted as applying successive
commuting screw transformations ðR

p
2jpt2Þ � ðR

q
1jqt1Þ to the two-atom basis sþ p1;2, as

noticed before in White et al. (1993) and Popov (2004).
But now by comparing (56) to (49) we see that we have proved that any ðn;mÞ-carbon

nanotube is an objective molecular structure given by the two-term formula. That is, first
we put x1 ¼ s in (56) so that the centerline of the tube is the three-axis as in the formula
(49). Then, using the coaxiality of R1 and R2, we have that R

p
2R

q
1 ¼ Qpy2þqy1 . Thus, we can

take p1 ¼ 0 and s ¼ re1 and (56) reduces exactly to (49) evaluated at integers ðp; qÞ, where

y2 ¼ 2pxð1; 0Þ ¼
pð2nþmÞ

n2 þm2 þ nm
; y1 ¼ 2pxð0; 1Þ ¼

pð2mþ nÞ

n2 þm2 þ nm
(57)

and

t2 ¼ Zð1; 0Þ ¼
3m lC2C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p ; t1 ¼ Zð0; 1Þ ¼

�3nlC2C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p . (58)

The remaining points, formula (49) at ðpþ 1=3; qþ 1=3Þ, are obtained by an appropriate
choice of p2. That is, by trigonometric identities,

r cosð2pxðpþ 1=3; qþ 1=3ÞÞe1 þ r sinð2pxðpþ 1=3; qþ 1=3ÞÞe2

¼ r cosð2pðxðp; qÞ þ xð1=3; 1=3ÞÞe1 þ r sinð2pxðp; qÞ þ xð1=3; 1=3ÞÞe2
¼ r ½cos 2pxð1=3; 1=3Þe1 þ sin 2pxð1=3; 1=3Þe2� cosð2pðxðp; qÞÞ

þ r ½� sin 2pxð1=3; 1=3Þe1 þ cos 2pxð1=3; 1=3Þe2� sinð2pxðp; qÞÞ. ð59Þ

Thus we have exact agreement of (49) at ðpþ 1=3; qþ 1=3Þ and (56) at ðp; qÞ and k ¼ 2 if
we choose

p2 ¼ r cosð2pxð1=3; 1=3ÞÞe1 þ r sinð2pxð1=3; 1=3ÞÞe2 þ Zð1=3; 1=3Þe3 � s

¼ yð1=3; 1=3Þ � yð0; 0Þ. ð60Þ

Obviously, there is some freedom in the choice of s; p1; p2 in the formula (56) for the
description of a given nanotube. For example, one can replace s by sþ c and
correspondingly change pk to pk � c, k ¼ 1; 2, without changing the atomic positions. In
fact, this freedom can be used to make s ¼ 0, so that t1 and t2 are conveniently both
parallel to e3.
6The reason for not writing the two-term formula in this simplified way originally is that the formulas (51), (52)

describe objective molecular structures that are not describable by (56).
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In summary, carbon nanotubes of any chirality ðn;mÞ are objective atomic structures
given by the two-term formula (51) with a two-atom molecule. The values of R1;2 are given
by (53) with y ¼ y1;2 given in (57), t1;2 ¼ t1;2 þ ðR1;2 � IÞs with s ¼ re1 and t1;2 given in (58),
p1 ¼ 0 and p2 is given by (60). There is the additional freedom of simultaneously changing
s! sþ c, and pk ! pk � c without affecting the atomic positions.
In fact, in the specific examples below we will take advantage of this additional freedom

to make t1;2 parallel to e3, by assigning c ¼ �s ¼ �yð0; 0Þ. In this case we have

p1 ¼ yð0; 0Þ; p2 ¼ yð1=3; 1=3Þ, (61)

and

t2 ¼ Zð1; 0Þe3 ¼
3mlC2C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p e3; t1 ¼ Zð0; 1Þe3 ¼

�3nlC2C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p e3. (62)

In the two nanotube cases given in the preceding section, taking lC2C ¼ 1:42 Å we have:
1.
 Case 1 ðn ¼ 9;m ¼ 0Þ. y2 ¼ 2p=9; y1 ¼ p=9, t2 ¼ 0; t1 ¼ ð0; 0;�2:13ÞÅ, p1 ¼ ð3:5; 0; 0ÞÅ,
p2 ¼ ð3:3; 1:2;�0:7ÞÅ.
2.
 Case 2 ðn ¼ 6;m ¼ 6Þ. y2 ¼ p=6; y1 ¼ p=6. t2 ¼ ð0; 0; 1:23ÞÅ, t1 ¼ ð0; 0;�1:23ÞÅ,
p1 ¼ ð4:1; 0; 0ÞÅ, p2 ¼ ð3:82; 1:39; 0ÞÅ.

4.3. Specification of the subgroup and fundamental domain

In this section we define the subgroup G and a fundamental domain D, or, for a carbon
nanotube. By definition, a fundamental domainD � R3 of G is a region with the properties
that (1) the group applied to D fills all of space and, (2) the images of D under the group
are nonoverlapping: ðQ1Dþ c1Þ \ ðQ2Dþ c2Þ ¼ ; for distinct group elements ðQ1jc1Þ,
ðQ2jc2Þ. Within the fundamental domain we need to specify a number of position vectors,
representing simulated atoms, and their initial positions and velocities. In practice it would
only be necessary to specify this domain in a suitable neighborhood of a cylinder that
coincides with the (say T ¼ 0) nanotube.
In reality, to put into practice the method, knowledge of the fundamental domain is

unnecessary. That is, one can place any number of atoms at any positions, map these to
other locations using the subgroup, simulate the equations of molecular dynamics using just
the original set of atoms while calculating the forces on these from all other atoms, and,
finally, ensure at every time step that the other atoms continue to be given as the group orbit
of the original set. However, for most applications, one wants to simulate the motions of
atoms that are reasonably close to a given structure which is, say, an objective molecular
structure. In that case one wants to consider a fundamental domain (and subgroup)
corresponding to that structure. Then one chooses the number of atoms in the fundamental
domain, and their initial positions, to be reasonably close to those for given structure.
Thus, the subgroup, fundamental domain and simulated atoms have to be chosen rather

carefully, so as to be compatible with the equilibrium structures of Cases 1 and 2. First we
notice that for these structures there are an infinite number of pairs ðp; qÞ that give each
atom. This is related to the observation that the formula (51) is constructed from the two
helices of points

Pp�1
i¼0R

i
2t2 and

Pq�1
i¼0R

i
1t1 and these intersect each other at an infinite

number of points.
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To begin the construction of useful subgroups and we begin at ðp; qÞ ¼ ð0; 0Þ and we
follow each of the helices to the first intersection point. That is, we find the integers ðp̄; q̄Þ,
smallest in absolute value, that satisfy

X̄p�1
i¼0

Ri
2t2 ¼

X̄q�1
i¼0

Ri
1t1. (63)

Straightforward calculations show that (63) is equivalent to the two conditions:

R
p̄
2 ¼ R

q̄
1 and p̄ðt2 � e3Þ ¼ q̄ðt1 � e3Þ, (64)

where e3 is a unit vector on the common axis of R1 and R2, as above. This gives the
following:
1.
 Case 1. p̄ ¼ 9 and q̄ ¼ 0.

2.
 Case 2. p̄ ¼ 6 and q̄ ¼ �6.
This gives us a way to remove the degeneracy of multiple labels for points, by restricting
the indices ðp; qÞ. That is, restricting to the strip confined by consecutive turns of one of the
helices ensures that we obtain a unique labeling of points on the nanotube. That is, we
restrict ðp; qÞ 2 Z2 to the following in each case:
1.
 Case 1. 0ppo9 and �1oqo1.

2.
 Case 2. 0ppo6 and �1oqo1.
We note that this choice is not unique. One can take the points labeled by ð0; 0Þ and any
choice of ðp; qÞ and this generates a helix through these two points. Then the region
between consecutive turns of the helix defines a suitable strip that gives unique labels of all
points on the nanotube.

The definition of ðp̄; q̄Þ given above, either (63) or (64), implies that xðp̄;0Þ;k ¼ xð0;q̄Þ;k. But
it actually implies much more.

Lemma 4.1. If R
p̄
2 ¼ R

q̄
1 and p̄ðt2 � e3Þ ¼ q̄ðt1 � e3Þ, then

xðp;qÞ;k ¼ xðpþp̄;q�q̄Þ;k (65)

for all integers ðp; qÞ and k ¼ 1; . . . ;M.

Proof. We have to check whether, under the given hypotheses,

Xpþp̄�1

i¼0

Ri
2t2 þ R

pþp̄
2

Xq�q̄�1

i¼0

Ri
1t1 þ R

pþp̄
2 R

q�q̄
1 pk ¼

Xp�1
i¼0

Ri
2t2 þ R

p
2

Xq�1
i¼0

Ri
1t1 þ R

p
2R

q
1pk, (66)

that is, after cancelling the terms involving pk, whether

Xpþp̄�1

i¼p

Ri
2t2 þ R

pþp̄
2

Xq�q̄�1

i¼0

Ri
1t1 � R

p
2

Xq�1
i¼0

Ri
1t1 ¼ 0. (67)
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This is in turn equivalent to

X̄p�1
i¼0

R
pþi
2 t2 þ R

pþp̄
2

Xq�q̄�1

i¼0

Ri
1t1 � R

p
2

Xq�1
i¼0

Ri
1t1

¼ R
p
2

X̄p�1
i¼0

Ri
2t2 þ R

p̄
2

Xq�q̄�1

i¼0

Ri
1t1 �

Xq�1
i¼0

Ri
1t1

" #
¼ 0. ð68Þ

Now examine the middle term in the brackets:

R
p̄
2

Xq�q̄�1

i¼0

Ri
1t1 ¼ R

q̄
1

Xq�q̄�1

i¼0

Ri
1t1 ¼

Xq�1
i¼q̄

Ri
1t1 ¼

Xq�1
i¼0

Ri
1t1 �

X̄q�1
i¼0

Ri
1t1. (69)

Replacing the middle term back in (68), we see that this expression does indeed vanish
(cf. (63)), proving the lemma. &

Now return to the basic invariance condition

xnþZ;k ¼ QZxn;k þ cZ; Zj ¼ mj
iz

i. (70)

This invariance condition is consistent with the condition xðp;qÞ;k ¼ xðpþp̄;q�q̄Þ;k in the
following sense. That is, if we put Z ¼ ðp̄;�q̄Þ in (70), and notice that

QZ ¼ Qðp̄;�q̄Þ ¼ R
p̄
2R
�q̄
1 ¼ I, (71)

and also that

cZ ¼ cðp̄;�q̄Þ ¼
X̄p�1
i¼0

Ri
2t2 þ R

p̄
2

X̄q�1
i¼0

Ri
1t1

¼
X̄p�1
i¼0

Ri
2t2 þ R

q̄
1

X̄q�1
i¼0

Ri
1t1

¼
X̄p�1
i¼0

Ri
2t2 �

X̄q�1
i¼0

Ri
1t1

¼ 0. ð72Þ

Therefore the key point for assuring that the ðT ¼ 0Þ structure of the carbon nanotube is
preserved by the choice of subgroup and fundamental domain is that Z ¼ ðp̄;�q̄Þ is
achieved by some pair of integers z ¼ ðz1; z2Þ. That is, for some such pair, we have that

mj
iz

i
¼ Zj where ðZ1; Z2Þ ¼ ðp̄;�q̄Þ. (73)

Equivalently, we have that

m�1
p̄

�q̄

 !
2 Z2. (74)

We simply choose an invertible matrix of integers mj
i consistent with (74). We use this to

define the subgroup. As explained above the simulated atoms consist of the pairs of
integers in the parallelogram confined by the two vectors ðm11; m

2
1Þ and ðm

1
2;m

2
2Þ; more
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precisely, the pairs of integers in the region

fl1ðm11;m
2
1Þ þ l2ðm12;m

2
2Þ :
X

lip1; 0plio1g. (75)

We call this set the objective domain. It gives a convenient representation of atoms whose
positions are in the fundamental domain.

In the next section we will choose various subgroups by making various choices of mj
i. It

will be useful to notice a quick way to get these subgroups corresponding for arbitrary
ðn;mÞ-nanotube. It is easily seen that these subgroups are obtained using the same basic
formulas (51)–(62) as for the full nanotube, but substituting ðm11; m

2
1Þ for ð1; 0Þ and ðm

1
2;m

2
2Þ

for ð0; 1Þ in (57) and (62). We will use capital letters ðY1;Y2;T1;T2Þ (in place of
ðy1; y2; t1; t2Þ) to denote these kinematic quantities for these subgroups. They are given by:

Y2 ¼ 2pxðm11;m
2
1Þ and Y1 ¼ 2pxðm12; m

2
2Þ, ð76Þ

T2 ¼ Zðm11;m
2
1Þe3 and T1 ¼ Zðm12;m

2
2Þe3. ð77Þ

We also use the notation (c.f., (53))

R1 ¼ QY1
and R2 ¼ QY2

. (78)

4.4. Classical objective molecular dynamics simulations of carbon nanotubes

4.4.1. From translational to objective molecular dynamics

For the purpose of testing the above ideas we have implemented the objective MD
scheme in the context of classical molecular dynamics. From the multitude of the available
potentials to model the carbon–carbon covalent bonding we have selected the three body
potential given by Tersoff (1988), already implemented into a periodic MD scheme in the
computational package Trocadero (Rurali and Hernandez, 2003). The employed carbon
parameters were taken from Saada et al. (1999). Our aim is not to give a detailed
quantitative study of carbon nanotubes, but rather to illustrate the capabilities of the
method.

As explained at the end of the preceding section, we will use the set of quantities
Y2;Y1;T2;T1 to define the subgroup. The simulated atomic positions will be denoted by
P1; . . . ;PM ; M ¼ 2j det mj. That is, following the remark after (75), the two-term formula
with Y2;Y1;T2;T1 and ‘‘molecule’’ P1; . . . ;PM expresses how atoms are related in the
objective MD scheme, and this formula, with appropriate choice of P1; . . . ;PM is
compatible with the usual assignment of ðT ¼ 0Þ atomic positions for the full nanotube. In
short, the scheme is defined by the formula

X
ðz1;z2Þ;k ¼ X1 þ

Xz1�1
i¼0

Ri
2T2 þRz2

2

Xz2�1
i¼0

Ri
1T1 þRz1

2 R
z2

1 Pk. (79)

The set of parameters Y2;Y1;T2;T1 represents input data for the computational scheme.
With given initial conditions, the simulated atoms have time-dependent positions
P1ðtÞ; . . . ;PMðtÞ; t40 and the full set of atoms have time-dependent positions X

ðz1;z2Þ;kðtÞ

given by (79).
To adapt the existing periodic MD format of Trocadero to the objective case, there are

two issues that need to be addressed, namely (i) the replacement of periodicity conditions
with the objective relations between replicas and (ii) the handling of symmetry arising out



ARTICLE IN PRESS
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of Newton’s third law for the computed pair forces. Concerning issue (i), we use (79)
together with a neighbor search to find atoms within the cutoff of the atomic forces. The
neighbor search routine calculates the distance between the atom with position PiðtÞ ¼

Xð0;0Þ;iðtÞ in the fundamental domain and atom k from the ðz1; z2Þ replica, situated at
X
ðz1;z2Þ;kðtÞ. If within the model’s cutoff radius, atom k is validated as a neighbor of i, a

force contribution on i due to neighbor k, Fik, is then computed. Regarding the second
issue (ii), the pair force assigned to the atom X

ðz1;z2Þ;kðtÞ, equals �Fik by Newton’s third law.
This contribution is ‘‘passed’’ to the atom k situated in the fundamental domain through
the objectivity transformation

Fki ¼ �R
�z1

2 R�z
2

1 Fik. (80)

Note that the periodic case is regained if both R2 and R1 are identity matrices.
With these two conceptual modifications we were able to successfully perform classical

objective MD simulations on carbon nanotubes. We provide next a general description of
how to manipulate the parameters of an objective MD simulation, so as to prescribe an
axial strain and twist, and then discuss as an example application the torsional instabilities
of carbon nanotubes.
4.4.2. Objective molecular dynamics simulations

An interesting observation related the discussion at the end of Section 4.3 is that an
objective domain for one nanotube can serve as the objective domain for nanotubes of
other chirality and radius if the input parameters Y2;Y1;T2;T1 are adjusted according to
Eqs. (76) and (77). Thus, a large class of nanotubes can be efficiently simulated only by
modifying these input parameters. This is not the case with the traditional periodic MD
(based on axial periodicity), which requires a rather high minimum number of atoms
depending on the nanotube radius and chiral angle. For this reason calculations on
chiral tubes (with wa0 or 30�) are rare. Both observations point to the flexibility of
objective MD.
To select an objective domain we made the particular choice m1 ¼ ð3; 0Þ and m2 ¼ ð0; 3Þ

corresponding to the shaded area of Fig. 3. The condition (74) holds for both ð9; 0Þ
and ð6; 6Þ nanotubes and in general for all nanotubes whose n and m indices are multiples
of 3. The resulting parameters are Y2 ¼ 2pxð3; 0Þ ¼ 3y2;Y1 ¼ 2pxð0; 3Þ ¼ 3y1, T2 ¼

Zð3; 0Þe3;T1 ¼ �Zð0; 3Þe3 and there are M ¼ 2j det mj ¼ 18 simulated atoms.
Having decided on the objective domain, we can now start an MD run. As indicated

above, objective MD allows certain large-scale dynamic modes. To illustrate this point we
started a cold simulation (velocities were taken to be zero) on a 18-atom patch with the
Y2;Y1;T2;T1 adjusted for a (12,12) tube. Purposely, the atomic positions (given by
formula (49)) were assigned a 7% larger radius. This way all initial phonons will be
contained in the out-of-plane A1 vibrational mode, which couples to the radial breathing
motion of a tube. The 18-atom objective domain was evolved with a velocity Verlet
algorithm with a time step of 1 fs. In order to monitor the occupancy of the breathing
mode, we can simply plot the time evolution of the average CNT radius. The results of
Fig. 4(a) suggest an apparent initial damping of the breathing vibrations, followed by
almost a full revival, after 40 ps. Thus, under the radial expansion initial conditions, the
lattice motion is contained in the large-scale breathing oscillations. In simulations
corresponding to Fig. 4(b), the atoms were given an additional 7% displacement along the
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Fig. 3. Objective domain (shaded area) for both the ð6; 6Þ and ð9; 0Þ nanotubes. T01 and T02 indicate, in the unrolled

representation, the vectors T1 and T2 vectors given by relation (77) and used in the objective description (79).

Indices corresponding to the 18 simulated atoms lie the objective domain.
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nanotube axis. The time evolution of the average radius suggests that the addition of this
higher energy axial mode facilitates the passage of energy from the large-scale breathing
mode into small-scale atomic level vibrations, in the spirit of studies of Fermi et al. (1955).
For comparison, Fig. 4(c) displays the same quantity measured from a periodic MD
simulation with an 384-atom translational supercell, which initially was given the 7%
radial increase. Thermalization is now achieved on a few ps time scale. Fig. 4(d) plots the
time evolution of temperatures for the simulations shown in (a) and (c), and supports the
same conclusions: while in the periodic MD case a thermal equilibrium is established
around the 400K, the large temperature oscillations around the same average value
suggest that equilibration was not reached in the objective MD case.

It is important to notice that, while the angles Y2;Y1 given by formula (76) depend
only on the choice of m, the T2 and T1 vectors given by (77) depend also on the parameter
lC2C, the bond length on the sheet before rolling. To relieve a possible strain along the
nanotube axis and obtain the relaxed values of T2 and T1 belonging to a specific (n;m)
tube, we have performed potential energy surface scans as a function of lC2C (viewed now
as a parameter) under the constraints of fixed Y2 and Y1 and fixed fraction
jT1j=jT2j ¼ �Zð0; 3Þ=Zð3; 0Þ ¼ n=m. Relaxations were performed with a conjugate gradient
scheme. The relaxation tolerance was of 10�6 a:u: for energy and 10�4 a:u: for the atomic
forces.

For each value of lC2C the relaxed nanotube adopts a particular radius R. It is useful to
plot the calculated energies (measured per atom and relative to a flat patch) of the relaxed
18-atom patches belonging to various ðn;mÞ tubes as function of 1=R2 (Fig. 5). As expected
in view of the isotropic properties of a graphite layer in the linear regime, the bending
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Fig. 4. MD simulation of a (12,12) carbon nanotube to study the passage of energy from large-scale to small-scale

modes: From an 18-atom objective MD simulations, (a) and (b) shows the evolution of the average radius when

simulation starts from distinct initial conditions. Time evolution of the (c) tube radius in a PBCMD and of the (d)

temperature in both MD types.
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energy Eb shows no chirality dependence. We have found that the dependence on
curvature can be described with great precision by the formula E ¼ 1=2DR�2, where the
constant D ¼ 29:2meVnm2=atom represents the flexural rigidity of the graphite layer.
From the above discussion it is now obvious that, having the equilibrium values for T2

and T1 at zero temperature, imposing a longitudinal strain � on the patch can be done by
changing T1 and T2 to ð1þ �ÞT1 and ð1þ �ÞT2 (which does not change jT1j=jT2j ¼ n=m)
and keeping the angles Y2 and Y1 fixed. The average radius of the nanotube will relax
during the simulation, allowing for a Poisson contraction.
The procedure for applying an arbitrary axial twist per unit length of a rad=nm at fixed

strain is as follows: while preserving the equilibrium values for T2 and T1, the angles Y2

and Y1 are modified to Y2 þ ajT2j and Y1 � ajT1j. This simple procedure contrasts with
the relative rigidity imposed by periodic MD, where a is constrained by the rotational
symmetry of the tube and the number of unit cells.
We performed structural relaxations on twisted nanotubes with the same 18-atom

objective domain. We found a linear regime where the energy per length varied as
Et ¼ 1=2Ka2, and we interpreted K as the torsional modulus. For a twisted hollow thin
walled cylinder in the linear elastic regime, it is expected that K will have a linear
dependence with the cube of the tube radius, which was obtained from the simulation in
each case. The results displayed in Fig. 6 confirm this expectation. Moreover, the tube
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Fig. 5. Curvature-strain energy for nanotubes as a function of the square of their inverse radius. The insert shows

the dependence with chirality ðwÞ for an approximately equal-radius family of tubes. Data were obtained using an

objective domain containing 18 atoms corresponding to the shaded area of Fig. 3. The n and m indices are

multiples of 3.

Fig. 6. Torsional modulus K versus the cube of the nanotube radius. The 18-atom objective domain shown in

Fig. 3 was used in all simulations and armchair ðn ¼ 9; 12; 21; 24; 27; 30Þ, zigzag ðn ¼ 12; 18; 51Þ, and chiral [ð12; 3Þ,
ð12; 6Þ, ð21; 3Þ, ð30; 24Þ, ð33; 24Þ, ð33; 27Þ, ð45; 12Þ, ð48; 6Þ] tubes were simulated.

T. Dumitrică, R.D. James / J. Mech. Phys. Solids 55 (2007) 2206–2236 2231



ARTICLE IN PRESS
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chirality does not show any influence on the graph. A more precise fitting yields
K ¼ ð9232� 114Þ � ðR=nmÞ3:033�0:019 eVnm. The calculation for K was performed for a
small a range, from 0� to 2�=nm, in which no deviations from the quadratic dependence of
the strain energy on a were observed.
Next, we indicate the utility of objective MD method in situations involving bifurcation

and complex shape changes. The examples presented in Fig. 7 demonstrate that the
objective MD can describe severe buckling patterns that arise when a (12,12) tube is
subjected to a twist of a ¼ 10�=nm.
The structure with four azimuthal lobes shown in Fig. 7(a) was obtained using both

periodic MD (axial periodicity) with a fundamental domain containing 1728 atoms and
objective MD using the objective domain shown in Fig. 7(b). This domain follows the
circumference (in the T1 direction) and the helical buckling (along T2). It is characterized
by m1 ¼ ð5;�3Þ and m2 ¼ ð3; 3Þ, the angles Y2 ¼ p=6 andY1 ¼ p=2, and contains 48 atoms.
As suggested by the continuum treatment for buckling of cylindrical shell subjected to

torsion (Timoshenko, 1936), the nonlinear response of a carbon nanotube is expected to
involve skew harmonic modes with a distinct number of azimuthal lobes and half waves
along the tube axis. While the study of various modes is cumbersome when using periodic
MD, it can be readily done on carefully selected domains compatible with the skew
harmonics. Starting with the domain represented in Fig. 7(b), two larger domains with
rotation angles Y1 of 2p=3 and p can be obtained by changing m2 to (4,4) and (6,6),
respectively. Objective relaxation of the perfect cylindrical nanotube built from these new
domains leads to the lower energy modes having three and two azimuthal lobes and the
same axial period. The configurations we obtained (after further relaxations) are displayed
in Figs. 7(c) and (d). Note that objective MD study of modes with different axial periods is
also possible and this would require similar adjustments in the T2 direction.
The objective MD capability of allowing an arbitrary twist along with the ability to

study in a decoupled way the distinct deformation modes allows one to precisely pinpoint
the critical level of twist beyond which the cylinder shape becomes unstable, i.e., the
bifurcation point. The results of a series of careful energy minimizations are summarized in
Fig. 8, where plots of energy vs. the twist angle a are shown for three choices of objective
domains. In each case the axial stress was relaxed in the same manner as described above.
The upper dotted curve uses a two-atom objective domain with y2 ¼ p=12. Clearly, none of
the deformation modes of Fig. 7 can be described using this domain, which preserves the
perfect cylindrical shape. The two lowest curves correspond to objective domains used for
the two ðY1 ¼ pÞ and three ðY1 ¼ 2p=3Þ lobe modes of Figs. 7(d) and (c), respectively. At a
critical level of about 2�=nm twist the perfect structure can lower its energy by assuming
the two-lobe state or the three-lobe state at slightly higher a; the two bifurcations are very
close together as indicated. Another interesting feature is that these transitions occur with
significant length changes. The inset of Fig. 8 summarizes the obtained twist-induced
length changes for the three investigated modes. Interestingly, while the perfect structure
has the tendency to elongate under a, the spirally buckled morphologies are significantly
shorter than the no twist state. This means that if axial relaxation is prevented a
considerable amount of axial stress can be stored in the tubule. We emphasize that
although the nonlinear instabilities under torsion have been noticed before (Yakobson
et al., 1996; Zhang et al., 2005), the objective approach allows for an unprecedented
characterization of bifurcation points and a decoupled study of the various response
modes.
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Fig. 7. Response of a (12,12) nanotube exposed to a 10�=nm twist. (a) The structure with four azimuthal lobes

(shown in the axial and transversal view), was obtained using both a translational unit cell (upper) and the

objective domain shown in (b). The vector T01 is along the tube circumference andY1 ¼ p=2. Three (c) and two (d)

azimuthal lobes were obtained when the domain was expanded along T1 and Y1 was correspondingly changed to

Y1 ¼ 2p=3; p. All structures shown were reconstructed from the objective domain shown by using the relation

(79). Colors correspond to distinct azimuthal replicas of the objective domain.
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In general, one must expect that in an objective molecular dynamics simulation the
overall features of the results, e.g., the number of lobes in the example above, can depend
on the choice of the fundamental domain. Thus, while the simulation represents exact
molecular dynamics in the limit of vanishing time step, it may not represent ‘‘typical’’
molecular dynamics. That is, the solution obtained from generic initial conditions may
have different overall features. The situation is familiar from periodic molecular dynamics,
where a doubling of the size of the supercell can sometimes give different results. In
practical terms a firm prediction is better supported by several simulations using several
fundamental domains, especially in cases that the wavelength of an instability is of the
order of the size of the fundamental domain.

Finally, we indicate how objective method can be used to study bending deformations in
nanotubes: in the framework provided by formula (79), bending can be imposed via the
rotation matrix R1 and by choosing R2 ¼ I, T1 ¼ T1 ¼ 0, while the selected simulation
domain should capture the full circumference of the tube. Effectively, these choices reduce
the two-term formula to the one-term formula. Fig. 9 shows results from a series of
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Fig. 8. Energy of a (12,12) nanotube as a function of the twist angle a. The lowest modes of Fig. 7(d) and Fig. 7(c)

emerge at about 2�=nm. Upper curve corresponds to the perfect cylindrical shape. The marked Y1 values

correspond to the used objective domains. Inset shows the axial strain induced by twisting.

Fig. 9. (a) Energy of a (12,12) nanotube as a function of the square of bending curvature. Nanotube structure in

the (b) linear (Y1 ¼ 6�, r ¼ 21 nm) and (c) nonlinear (Y1 ¼ 20�, r ¼ 7:1 nm) bending regime. Simulations employ

a 480-atom periodic cell shown in yellow (light gray).
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optimization calculations performed on a translational cell containing 480 atoms from a
(12,12) tube. At small bending (Figs. 9a and b) the energy measured per atom grows as
EB ¼ ð1=2Þkr�2, where k ¼ 6:23meV mm2. The optimized bent geometry of Fig. 9b shows
the simulation domain (yellow) and two replicas (blue) obtained with formula (79). Under
higher bending, for Y1 ¼ 20�, the emergence of buckling can be observed in Fig. 9c.
Overall, we have illustrated in this section how the objective MD method based on a

classical potential (Tersoff) can be useful in studying the mechanical response of carbon
nanotubes. Due to the typically small number of atoms contained in an objective domain,
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it is computationally attractive to use the proposed scheme in conjunction with more
precise tight-binding (Hua et al., in preparation) or first principles potentials. We note, as
discussed in James (2006), both tight-binding and density functional theory methods for
computing the energy of a particular configuration can also be simplified by using objective
boundary conditions.
Acknowledgment

This work was carried out at the Minnesota Supercomputing Institute. TD acknowl-
edges support from MRSEC-NSF DMR-0212302, and NSF-NIRT CTS-0506748. The
work of RDJ was supported by DOE, DE-FG02-05ER25706, NSF-NIRT, DMS-0304326,
AFOSR STTR, FA9550-05-C-0035, and the AH-PCRC. He is also pleased to acknowl-
edge the support of the Humboldt Foundation, and the hospitality of the MPI-MIS.
References

Allen, M.P., Tildesley, D.J., 1987. Computer Simulation of Liquids. Oxford University Press, Oxford.

Caspar, D.L.D., Klug, A., 1962. Physical principles in the construction of regular viruses. Cold Spring Harbor

Symp. Quant. Biol. 27, 1–24.

Costanzo, F., Gray, G.L., Andia, P.C., 2005. On the definitions of effective stress and deformation gradient for

use in MD: Hill’s macro-homogeneity and the virial theorem. Int. J. Eng. Sci. 43, 533–555.

Crane, H.R., 1950. Principles and problems of biological growth. Sci. Mon. 70, 376–389.
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