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TWISTED X-RAYS: INCOMING WAVEFORMS YIELDING
DISCRETE DIFFRACTION PATTERNS FOR HELICAL

STRUCTURES∗

GERO FRIESECKE† , RICHARD D. JAMES‡ , AND DOMINIK JÜSTEL†

Abstract. Conventional X-ray methods use incoming plane waves which result in discrete
diffraction patterns when scattered at crystals. Here we find, by a systematic method, incoming
waveforms which exhibit discrete diffraction patterns when scattered at helical structures. As ex-
amples we present simulated diffraction patterns of carbon nanotubes and tobacco mosaic virus.
The new incoming waveforms, which we call twisted waves due to their geometric shape, are found
theoretically as closed-form solutions to Maxwell’s equations. The theory of the ensuing diffraction
patterns is developed in detail. A twisted analogue of the Von Laue condition is seen to hold, with the
peak locations encoding the symmetry and the helix parameters, and the peak intensities indicating
the electronic structure in the unit cell. If suitable twisted X-ray sources can in the future be realized
experimentally, it appears from our mathematical results that they will provide a powerful tool for
directly determining the detailed atomic structure of numerous biomolecules and nanostructures with
helical symmetries. This would eliminate the need to crystallize those structures or their subunits.
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summation
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1. Introduction. This paper explores—at the level of modeling and simulation—
the possibility of novel X-ray methods for the determination of the detailed atomic
structure of highly regular but not periodic molecules. The details are worked out
for helical structures. These include carbon nanotubes, the necks and tails of viruses,
and many of the common proteins (actin, collagen). The quest for novel methods is
motivated by the fact that current X-ray methods, while hugely successful, have im-
portant shortcomings. A native helical assembly of proteins either has to be broken at
the outset and the proteins crystallized, which is difficult and may lead to non-native
forms; or one uses X-ray fiber diffraction, which resolves only the axial but not the
angular symmetry into sharp peaks.

Roughly, our idea is the following. Conventional X-ray methods use incoming
plane waves

(1.1) E(x, t) = nei(k·x−ωt), B(x, t) = 1
ω (k× n)ei(k·x−ωt),

and result (in the relevant regime of X-ray wavelength � sample diameter � distance
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1192 G. FRIESECKE, R. D. JAMES, AND D. JÜSTEL

of detector from sample, Fresnel number � 1) in the outgoing field

(1.2) Eout(x, t) = − const

|x− xc|
n′ei(k

′(x)·x−ωt)

∫
Ω

e−i(k′(x)−k)·yρ(y) dy,

with polarization vector n′ = (I − k′
|k′| ⊗

k′
|k′| )n and outgoing wavevector k′(x) =

|k| x−xc

|x−xc| . Here ρ is the electron density of the illuminated sample, Ω is a finite three-

dimensional region occupied by the sample, xc denotes a typical point in the sample,
I is the 3 × 3 identity matrix, a ⊗ b denotes the 3 × 3 matrix abT , and |a| is the
euclidean norm of the vector a.

The emergence of the Fourier transform in (1.2), and its amazing properties re-
garding constructive/destructive interference, underlie the power of X-ray methods for
periodic structures. One can see from (1.2) and its derivation that the Fourier integral
kernel e−i(k′−k)·y is directly arising from the assumption of a plane-wave source (1.1).
Other sources would give other kernels. This suggests the following line of research:
design the incoming radiation (as a solution of Maxwell’s equations) such that the ker-
nel interacts with highly symmetric but noncrystalline structures with the same dra-
matic properties of constructive/destructive interference as occurs in the periodic case.

This design problem for the incoming waves can be formalized into the following
mathematical problem: find time-harmonic solutions to Maxwell’s equations which are
simultaneous eigenfunctions of a continuous extension of the generating symmetry
group of the structure. Why this is a good formalization is a long story, told in
section 4.

For discrete translation groups, which are the generating symmetries of crystals,
we show that the design problem is solved precisely by the plane waves used in classical
X-ray methods. This is a new characterization of electromagnetic plane waves. It
explains why plane waves are right for crystals.

For helical symmetry groups, the design problem can also be completely solved.
The ensuing family of incoming waves is
(1.3)

E(r, ϕ, z, t) = ei(αϕ+βz−ωt)

⎛
⎜⎜⎝
cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

n1+in2

2
n1−in2

2 0
n2−in1

2
n2+in1

2 0
0 0 n3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
Jα+1(γr)
Jα−1(γr)
Jα(γr)

⎞
⎟⎟⎠,

where (α, β, γ) ∈ Z×R× (0,∞) is a parameter vector analogous to the wavevector k
in (1.1), n ∈ C3 is a polarization vector which must satisfy (0, γ, β) · n = 0, and the
frequency ω is given by ω = c|(0, γ, β)|. The cartesian vector (0, γ, β) has a simple
physical meaning which will emerge when decomposing twisted waves into plane waves
(see (6.21)). The Jα are Bessel functions, (r, ϕ, z) are cylindrical coordinates with
respect to the helical axis, and E is the cartesian field vector with respect to a fixed
basis of R3, with the third component corresponding to the axial direction. We call
the electric fields (1.3) twisted waves. Figure 1 shows the twisted wave with parameter
vector (α, β, γ) = (5, 3, 1) and polarization vector n = (1, 0, 0).

Thus twisted waves consist of four factors: a scalar plane wave on the cylinder; a
rotation matrix which rotates the field direction along with the base point; a somewhat
mysterious polarization tensor which depends on the polarization vector; and a vector
of three Bessel functions of neighboring order.

Twisted waves exhibit orbital angular momentum (OAM). In fact, they are eigen-
states of the correctly defined [CT97] angular momentum operator on vector fields (see
section 6). Intriguingly, similar waveforms have been experimentally realized, such
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TWISTED X-RAYS 1193

Fig. 1. A twisted wave with angular, axial, and radial wavenumbers (α, β, γ) = (5, 3, 1). The
plot shows the real part of the first component of the wave. Red: positive values; Blue: negative
values. Note the helical shape of the level sets restricted to a co-axial cylinder, and the Bessel pattern
perpendicular to the axis.

as optical higher-order Bessel beams [AD00] and photons and beams carrying OAM
[AB92, HD92, MTT07]. A related recent development is the creation of electron vor-
tex beams [UT10, VTS10]. The detailed form (1.3) differs somewhat from previously
reported OAM waveforms. Scalar Bessel beams as reported in [AD00] describe the
individual twisted-wave components but not their interplay; and the Laguerre–Gauss
vector beam reported in [AB92] is well-approximated in the focus region by a Hansen
cylindrical vector harmonic [Ha34] with transversal pilot vector a, but the latter is
not quite a twisted wave either.1

The helical shape of the level sets in Figure 1 suggests that for suitable values of
the angular and axial wavenumbers, twisted waves can induce resonant electronic os-
cillations of every single molecule in a structure with helical architecture. Thus one can
hope for diffraction intensities which strongly depend on the twisted wave parameters.

At least in the axial direction, the radiation scattered by a helical structure indeed
exhibits sharp discrete peaks with respect to the radiation parameters α and β. More
precisely, the signal of a helical structure in the axial direction vanishes unless the
angular/axial wavenumbers of the twisted wave minus the axial wavenumber of the
outgoing wave belong to the reciprocal helical lattice shifted left or right by precisely
one angular wavenumber. This is an analogue of the Von Laue condition, but waves
and structure are curved. The shifts come from the fact that the polarization direction
of a twisted wave rotates along with the base point. Details are given in section 8.
Moreover, as in X-ray crystallography, the unit cell electron density can be recovered,
up to a scalar phase problem, from the peak intensities. A further attractive feature
is that the outgoing signal is invariant under axial translations and rotations of the
structure.2

1The Hansen vector harmonics are defined as curl (aψ) and curl curl (aψ), where ψ is a scalar
cylindrical harmonic, i.e., ψ(r, ϕ, z) = ei(αϕ+βz)Jα(γr), and a ∈ R3 is a fixed “pilot vector”. One can
check that the axial choice a = (0, 0, a3) yields the waveform (1.3) with n = (ia3γ, 0, 0) (respectively,
n = a3γ(0,−β, γ)), but any other choice of a does not yield a twisted wave, and conversely any other
twisted wave is not a Hansen vector harmonic.

2By comparison, the signal produced by fiber diffraction as described by the Cochran–Crick–
Vand formula [CCV52] is not invariant under axial rotations, causing well-known difficulties in the
interpretation of fiber diffraction images.
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1194 G. FRIESECKE, R. D. JAMES, AND D. JÜSTEL

These results suggest a hypothetical set-up of structure analysis with twisted
X-rays. Send a twisted wave towards a co-axial helical structure. Use a detector
further along the axis to record the diffracted intensities as a function of the incoming
radiation parameters. Solve a scalar phase problem to infer the electron density. See
Figure 2.

electron density

Fig. 2. Hypothetical set-up of structure analysis with twisted X-rays.

The plan of the paper is as follows. Section 2 extends the standard scalar Fourier
transform model for plane-wave diffraction to a vector-valued electromagnetic model
needed to treat general incoming waveforms. Sections 4–6 formulate the radiation
design problem and derive plane waves and twisted waves from it. Sections 7–9
develop the theory of diffraction patterns of twisted X-rays. Finally, in section 10 we
present simulated diffraction patterns of a carbon nanotube and of tobacco mosaic
virus. Some of the results presented here were announced in [JFJ16].

2. Electromagnetic model for the diffracted radiation. Incoming electro-
magnetic waves will be sought as solutions to Maxwell’s equations in vacuum,

(2.1)
1

c2
∂E

∂t
= curlB, divE = 0,

∂B

∂t
= −curlE, divB = 0,

which are time-harmonic, that is, E(x, t) = E0(x)e
−iωt, B(x, t) = B0(x)e

−iωt for
some ω > 0. Here E and B are the electric and magnetic fields and c is the speed of
light. SI units are used throughout. The fields are defined on R3 × [0,∞) and take
values in C3. This ansatz reduces Maxwell’s equations (2.1) to

ΔE0 = −ω
2

c2
E0, divE0 = 0,(2.2)

B0 = − i

ω
curlE0.(2.3)

We are interested in bounded solutions to (2.2)–(2.3). A basic example, and the one
used in classical X-ray crystallography, are plane waves

(2.4) E0(x) = neik0·x, B0(x) =
1

ω
(k0 × n)eik0·x, where |k0| =

ω

c
, k0 · n = 0.

Here k0 (the wavevector) and n (the polarization vector) are arbitrary vectors in
R3 and C3 satisfying the two conditions in (2.4). Time frequency, wavevector, and
wavelength λ are related by λ = 2π/|k0| = 2π c

ω . The last expression provides a
meaningful definition of wavelength for general time-harmonic solutions to Maxwell’s
equations.

The standard scalar Fourier transform model or oscillator model of X-ray diffrac-
tion patterns (see, e.g., [AM76]) which underlies the crystallography and biocrystal-
lography literature is insufficient for our purposes. We are seeking incoming waves
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which exhibit resonances with, say, helical structures, and—as it turns out—these will
necessarily contain fluctuating polarization directions. As a consequence we need a
full electromagnetic (vector-valued) extension of the standard model.

Such an electromagnetic model can be obtained as follows. Consider any electron
density ρ(y), y ∈ R3, and a classical model of the electrons driven by the incoming
fields and producing the well-known Lienard–Wiechert fields [Gr99]. Pass to a non-
relativistic (weak-field) limit; superpose fields from all the electrons; and make a far
field approximation X-ray wavelength� sample diameter � distance between sample
and detector, Fresnel number � 1. The details can be found in our companion paper
[FJJ16]. The resulting expression for the diffracted electromagnetic field is
(2.5)

Eout(x, t) = − ce�
ei(k

′(x)·x−ωt)

|x− xc|

(
I− k′(x)

|k′(x)| ⊗
k′(x)
|k′(x)|

)∫
R3

E0(y)ρ(y) e
−ik′(x)·ydy,

Bout(x, t) =
1

ω
k′(x) × Eout(x, t),

with outgoing wavevector familiar from the oscillator model,

(2.6) k′(x) =
ω

c

x− xc

|x− xc|
.

(The diffraction model (2.5)–(2.6) is standard, though only special cases or pieces are
given in textbooks.) Here E0(y)e

−iωt is the incoming electric field, a solution to the
time-harmonic Maxwell equation (2.2), ρ : R3 → R is the electron density of the
sample, xc is a typical point in the sample, and ce� is a universal constant depending,
among other things, on the charge and mass of the electron.

If the incoming electromagnetic field is replaced by its real part, as it properly
should to model physical incoming X-rays, the diffracted radiation is given by the real
part of (2.5).

According to the model (2.5)–(2.6), the outgoing wavevectors k′ have the same
length as the incoming wavevector k, i.e., |k′| = |k|. This relation has the impor-
tant microscopic physical interpretation that the photon energy is conserved in the
scattering. Note that the energy of a photon with wavevector k is E = |p|c, where
p = �k is the photon momentum. Thus the model (2.5)–(2.6) corresponds to elastic
or Thomson scattering.

For incoming plane waves (2.4), equation (2.5) for the electromagnetic field re-
duces to
(2.7)

Eout(x, t) = − ce�
ei(k

′(x)·x−ωt)

|x− xc|
n′(x) f(k′(x)−k0), Bout(x, t) =

1

ω
k′(x)×Eout(x, t),

with scalar integral factor and outgoing direction-dependent polarization vector

(2.8) f(k′ − k0) =

∫
R3

e−i(k′−k0)·yρ(y) dy, n′(x) =
(
I− k′(x)

|k′(x)| ⊗
k′(x)
|k′(x)|

)
n.

The integral factor f appearing in (2.8) is just the well-known structure factor or
form factor or scattering factor [Gr99, Ja98, AM76, AM11]. Mathematically, it is
the Fourier transform of the electron density, evaluated at the difference k′ − k of
the outgoing and incoming wavevectors. The expressions (2.8) including that for
n′ agree with the result derived in [Sa09] from perturbative nonrelativistic quantum
electrodynamics (QED).
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1196 G. FRIESECKE, R. D. JAMES, AND D. JÜSTEL

In X-ray experiments the electromagnetic fields E and B cannot be measured
directly; a detector only records the scalar field intensity. The latter is defined (see,
e.g., [Gr99]) as the time average of the absolute value of the Poynting vector and has
the physical dimension of power transferred per unit area, i.e., energy transferred per
unit area per unit time. In formulae,

(2.9) I(x) = lim
T→∞

1

T

∫ T

0

|S(x, t)| dt, S(x, t) =
1

μ0
ReEout(x, t) × ReBout(x, t).

Here and below, μ0 and ε0 are the magnetic and electric constants, which are related
to the speed of light by the equation ε0μ0 = 1/c2, and S denotes the Poynting vector.
Note that the latter is the flux vector for the energy density e = 1

2 (ε0|ReE|2 +
|ReB|2/μ0) in Maxwell’s equation. It can be shown via standard arguments (see
[FJJ16]) that the intensity of the outgoing field at the observation point x is in our
case equal to

(2.10) I(x) =
c ε0
2

|Eout(x, t)|2,

where Eout is the complex electric field in (2.5) (note that its absolute value is inde-
pendent of t). The appearance of the complex field amplitude comes from the time
averaging in (2.9).

In particular, by (2.7), (2.8), the data gathered from a sufficiently large set of
observation points x and incoming plane-wave wavevectors k0 delivers the abstract
data set

(2.11) |ρ̂(k)|2, k ∈ Rd,

and the X-ray interpretation problem, i.e., the task of inferring atomic structure,
ρ, from X-ray diffraction data, |ρ̂|2, reduces to the phase problem for the Fourier
transform. Note that the data set (2.11) is a function on the dual (wavevector)
space of the physical space on which the density is defined. The abstract “diffraction
intensity” or “diffraction spectrum” or “diffraction measure” (2.11) constitutes the
starting point of previous mathematical work on X-ray diffraction of crystals [St94,
Fr07] and quasicrystals [Ho95, BM04, BG08, BG13].

For general incoming radiation, it will be useful to interpret the integral in (2.5)
physically as a generalized structure factor and mathematically as an integral trans-
form that depends on the incoming field E0 and maps the electronic charge density ρ
to a vector field on the dual (wavevector) space,

(2.12) fE0(k) = (RE0ρ)(k) =

∫
R3

E0(y)ρ(y)e
−ik·ydy (k ∈ R3).

For plane waves, this expression is just the Fourier transform of ρ multiplied by
the incoming polarization. Thus the expression (2.12) generalizes the Fourier trans-
form, and might be called the radiation transform of ρ with respect to E0. For any
bounded solution to the time-harmonic Maxwell equation (2.2), equation (2.12) natu-
rally establishes RE0 as a linear map from L1(R3) to the space of bounded continuous
vector fields on the dual (wavevector) space R3. Like the Fourier transform, it can be
extended to tempered distributions and maps these to vector-valued tempered distri-
butions. This extension will be useful when discussing diffraction in the idealized but
important case of infinite helices, nanotubes, and crystals.
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3. Classical Von Laue condition. Given a complete mathematical model of
the outgoing electromagnetic field such as (2.5), we can cast the Von Laue condition
of classical X-ray crystallography [FKL12] in the form of a mathematical theorem.
Let L be a Bravais lattice in R3, i.e., a set of the form

(3.1) L = AZ3 for some invertible 3× 3 matrix A.

Let ρ be any smooth L-periodic function on R3. Any such ρ can be written in the
form

(3.2) ρ(x) =
∑
a∈L

ϕ(x− a) = (ϕ ∗ δL)(x)

for some smooth, rapidly decaying function ϕ belonging to the Schwartz space S(R3),
where (f ∗ g)(x) is the convolution

∫
R3 f(x− y)g(y) dy and δL(x) =

∑
a∈L δ(x− a).

In the Von Laue condition, the reciprocal lattice of L will naturally emerge. The
latter is defined by

(3.3) L′ = {k ∈ R3 : k · a ∈ 2πZ for all a ∈ L},

and is given in the case of (3.1) explicitly by L′ = 2πA−TZ3, where A−T denotes the
transpose of the inverse of the matrix A. The Von Laue condition can now be stated
as follows.

For simplicity, we only consider the square root of the intensity, i.e., up to trivial
constants, the absolute value of the electric field (2.7). The latter, unlike its square,
remains a well-defined mathematical object for infinitely extended systems, by inter-
preting it as a distributional Fourier transform. The powerful machinery of Fourier
analysis then allows one to mathematically understand in a quick way the phenome-
non of discrete diffraction patterns.

Theorem 3.1 (Von Laue condition). Let L be the Bravais lattice (3.1), and let
ρR be the electron density of a finite sample of diameter R of an L-periodic crystal,
i.e., ρR(x) =

∑
a∈L, |a|≤R ϕ(x − a) for some ϕ ∈ S(R3) (so that as R → ∞, ρR

approaches an L-periodic density, represented in the form (3.2)). Assume that the
incoming electric field is a plane wave E0(y) = n eik0·y (see (2.4)), and the outgoing
radiation is given by the electromagnetic model (2.5)–(2.6) with density ρR. Denote
the corresponding intensity (2.10) by IR(x;k0). Assume, moreover, without loss of
generality that xc = 0. Then
(3.4)

lim
R→∞

(IR(x;k0))
1/2 = c0

(2π)3

| detA|
1

|x|

∣∣∣n−( k′(x)
|k′(x)| ·n)

k′(x)
|k′(x)|

∣∣∣ ∑
a′∈L′

|ϕ̂(a′)|δa′ (k′(x) − k0) ,

where k′(x) = ω
c

x
|x| , c0 = ( cε02 )1/2ce�, and the convergence holds in the sense of

distributions. In particular, the outgoing signal is zero unless the difference between
outgoing and incoming wavevector, k′(x)− k0, is a reciprocal lattice vector.

For the simple diffraction model (2.11), analogous results for I1/2 were presented
in [St94, Fr07], and a rigorous treatment of the intensity I renormalized by volume

was given in [Ho95]. The factor
∣∣n −

(
k′(x)
|k′(x)| · n

)
k′(x)
|k′(x)|

∣∣, which reduces for real n to

| sin(∠(n,k′(x)))| |n|, expresses the well-known fact—missed by the model (2.11)—
that scattering along the polarization direction of the incoming X-ray beam is sup-
pressed. We remark that the right-hand side of (3.4) makes rigorous sense (as a locally
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bounded measure) via the standard definition of the delta function if considered as
a function of the incoming wavevector k0 at fixed observation point x, as implicitly
assumed in the simple model (2.11). The meaning if considered as a function of x at
fixed k0 is more complicated, due to the composition of the delta function with the
nonlinear map x �→ k′(x), and is not used here.

Proof. The central term in the outgoing field (2.7) is the structure factor fR(k
′−

k0) = ρ̂R(k
′ − k0). As the sample diameter R gets large, ρR obviously converges

weakly in the space S ′(R3) of tempered distributions to the L-periodic density ρ given
by (3.2). By continuity of the Fourier transform under this convergence, ρ̂R(· − k0)
converges weakly in S ′(R3) to the tempered distribution ρ̂(·−k0). By the generalized
Poisson summation formula (see, e.g., [Fr07]), the Fourier transform of δL is

(3.5) δ̂L =
(2π)3

| detA|δL
′ ,

with L′ given by (3.3). The Fourier calculus rule f̂ ∗ g = f̂ ĝ and the above conver-
gences now give

ρ̂ =
(2π)3

| detA| ϕ̂ δL
′ , lim

R→∞
fR(k

′(x) − k0) =
(2π)3

| detA| (ϕ̂δL
′) (k′(x)− k0) .

Since the asymptotic expression for the structure factor is, by inspection, a locally
bounded measure, its absolute value is well defined (see, e.g., [Di75]) and corresponds
in the above case to replacing the factor ϕ̂ by its absolute value. The result now
follows immediately from (2.10) and the formula for n′(x) in (2.8).

4. The design equations. We now have a second look at plane waves. Why
are they the right radiation to use for the analysis of crystals?

Every researcher interested in X-ray diffraction is familiar with the Bragg/Von
Laue phenomenon: the outgoing signal of a plane wave scattered at a crystal consists
of sharp discrete peaks. But suppose plane waves were not given to us a priori, as
the radiation emitted by conventional X-ray tubes. Would we know how to come up
with them if our goal was to achieve a nice diffraction pattern? What, exactly, is the
“connection” between a particular family of solutions to Maxwell’s equations on the
one hand and point sets with crystalline order on the other?

The connection is that plane waves and crystals have matching symmetries. By
this we do not mean that they have the same symmetries. Plane waves have a larger,
“continuous” family of symmetries. We first explain this informally, then make it
precise in group-theoretical language, and then generalize beyond crystals.

Start with a crystal, i.e., a structure with atomic positions
(4.1)

S = {x(ν)
0 + a : a ∈ L, ν = 1, . . . ,M}, L = {iv1 + jv2 + kv3 : i, j, k ∈ Z} = AZ3,

where x
(1)
0 , . . . ,x

(m)
0 are the positions of finitely many reference atoms, v1, v2, v3 are

linearly independent vectors in R3, and A is the matrix with columns given by these
vectors. Thus the atom positions are obtained by translating finitely many reference
atoms by each element of the lattice L. Mathematically, this means that the crystal
is the “orbit” of a finite set of points under a discrete group L of translations, and in
particular that each element of L is a symmetry of the crystal, i.e., maps it to itself.
The discrete translation group L is the generating symmetry group of the crystal.
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We now look at plane waves,

(4.2) E0(y) = neik0·y, n ∈ C3, k0 ∈ R3, k0 · n = 0.

Plane waves also have a translation symmetry. Their values at different positions just
differ by phase factors,

(4.3) E0(x0 + a) = (phase factor depending on a)E0(x0) for all a ∈ R3,

with

(4.4) (phase factor in (4.3)) = eik0·a.

Mathematically, (4.3) means that the wave, a vector field on R3, is an “eigenfunc-
tion” of the operator which translates a vector field by a vector a ∈ R3, T−a : E0 �→
E0(·+a). These operators form a continuous group which describes the action of the
translation group T on vector fields. Hence plane waves are simultaneous eigenfunc-
tions of the continuous translation group T .

We now come to the interaction between wave and structure. The interaction
occurs via the generalized structure factor (2.12) in the diffracted radiation field.
Assume for simplicity that the density is a sum of delta functions at the atom positions,
ρ(y) =

∑
a∈L δx0+a(y). Then this factor is

(4.5) fE0(k
′) =

∫
R3

E0(y)ρ(y)e
−ik′ ·ydy =

∑
a∈L

E0(x0 + a)e−ik′·a.

The eigenfunction property (4.3) of the waves holds in particular for the crystalline
translations a ∈ L, and so the structure factor reduces to a phase factor sum. The
phase factors come from the symmetry of the wave. The points where they are
evaluated come from the symmetry of the structure. And the sum “behaves nicely”:
it interferes constructively when e−i(k′−k0)·a = 1 for all a ∈ L, i.e., when k′ − k0

belongs to the reciprocal lattice L′, and destructively otherwise.
To get constructive interference, it would be enough if the wave had just the

same symmetry as the crystal, i.e. if (4.3)–(4.4) were true only for a’s in the discrete
translation group L.3 But to get destructive interference when the incoming radiation
parameter k0 or the lattice parameters A are tuned off resonance, one needs (4.3)–
(4.4) for all a.

In summary, the discrete diffraction patterns of classical X-ray crystallography
can be traced to the fact that crystals and plane waves have matching symmetries.
Constructive interference comes from the fact that plane waves share the symmetry of
crystals. Destructive interference comes from the fact that plane waves have a larger,
continuous symmetry group.

Everything so far is just an abstract rationalization of a very well known phe-
nomenon. But can it be generalized? The key is to realize that the foundation on
which X-ray crystallography is built, the complex exponential form (4.2), can actually
be derived from the innocent looking eigenvalue equation (4.3). If we combine two
translations, x �→ (x + a) �→ (x + a) + b, we can either apply (4.3) to the whole
translation, or separately to the two translations by a and b, and so

(4.6) (phase factor at a+ b) = (phase factor at a) · (phase factor at b).

3This condition has infinite-dimensionally many solutions: it just means that the electric field

multiplied by a complex exponential, E(x)e−i(k′−k0)·x, shares the periodicity of the crystal. In the
context of electron wavefunctions instead of electric fields, such waves are known as Bloch waves.
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Mathematically, this means that the phase factor is a group homomorphism from
the translation group to the multiplicative group C\{0}. And the only such group
homomorphisms are the scalar complex exponentials (4.4)! Equation (4.4) together
with (4.3) implies (2.4) (with polarization vector n = E0(x0)), up to the orthogonality
constraint on n and k0. The latter follows from Maxwell’s equations, (2.2). So plane
waves are those solutions to (4.3) which satisfy Maxwell. (See Theorem 5.1 for a
precise statement.)

Thus we have a path from crystals to plane waves,

crystal −→ generating symmetry group
(4.7)

−→ continuous extension of symmetry group

−→ eigenfunctions of continuous symmetry group which solve Maxwell.

This path can be generalized. We can start from any structure which is generated
by a discrete isometry group, say a helical structure. The continuous extension of the
group is then the helical group He described in (6.1) below. Solving the resulting
combined eigenfunction/Maxwell problem will yield twisted waves.

The noncrystalline but highly symmetric structures which are generated by some
discrete isometry group form an interesting class. This class was recently introduced
and studied by one of us [Ja06], and has been named objective structures. Like crystals,
objective structures can be completely classified [DEJ].

The remarkable constructive/destructive interference properties of the structure
factor (4.5) survive as long as the generating symmetry group of the structure is
abelian. Here we can rely on a far-reaching generalization of the Poisson summation
formula due to Weil [We64] (see section 8). We note that Weil had a completely
different motivation, number theory rather than molecular biology.

To conclude this section, we formulate the design problem suggested by the path
(4.7) precisely. Translations are a special case of isometries of three-dimensional space.
The Euclidean group E(3) of isometries consists of the elements g = (R|c) acting on
points in R3 according to the rule g(x) = Rx + c, where R is any orthogonal 3 × 3
matrix and c ∈ R3. The natural action on vector fields E : R3 → C3 is

(4.8) ((R|c)E) (x) = RE
(
R−1(x− c)

)
.

Note that R−1(· − c) is the inverse element (R|c)−1. The translation symmetry (4.3)
of plane waves has a natural analogue for any closed subgroup G of the Euclidean
group E(3), namely that

(4.9) (gE0)(x) = χgE0(x) for some complex number χg and all g in G.

Equation (4.9) together with (2.2) are our design equations. In words, the incoming
radiation is simultaneously an eigenfunction of the group (with eigenvalues χg) and
a divergence-free eigenfunction of the Laplacian (with eigenvalue −ω2/c2). Typically,
G—the “desired symmetry of the radiation”—is obtained as a continuous extension
G ⊃ G0 of a discrete subgroup G0 of E(3)—the “generating symmetry of a structure”.

Note that the transformed field gE0 (left-hand side in (4.9)) reduces to the left-
hand side of (4.3) when the group element g is given by the translation (I| − a).

In the next two sections, we will solve the design equations for some interesting
examples. We will make use of the fact that as for (4.3), the eigenvalue χ(g) as a
function of g must be a group homomorphism.
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Lemma 4.1 (character lemma). If E0 is any solution to the design equations
(2.2), (4.9) for the group G which is not identically zero, then the function χ : G→ C

in (4.9) is a bounded continuous group homomorphism from G to the multiplicative
group C\{0}.

Proof. The argument is the same as that leading to (4.6). Equation (4.9) shows
that for g1, g2 ∈ G,

(4.10) χ(g1g2)E0 = (g1g2)E0 = g1(g2E0) = χ(g1)g2E0 = χ(g1)χ(g2)E0.

Evaluation at a point x where E0 is not zero shows that χ is a group homomorphism.
Boundedness and continuity of χ are a direct consequence of the same properties
for E0.

In the case when G is abelian, the bounded continuous group homomorphisms to
C\{0} are called the characters of G. The group of characters

(4.11) G′ := {χ : G→ C\{0} : χ is a character of G}

is called the dual group of G and satisfies the reflexivity relation (G′)′ ∼
= G.

As will become clear after having discussed some examples, the dual group G′

can be interpreted physically as a space of scalar “waves” on the group or equiva-
lently a “wavevector space” which parameterizes the radiation that solves the design
equations, just as the wavevectors k0 in (4.2) parameterize plane waves.

Finally we remark that the design equation (4.9) is intrinsically abelian and should
really only be used for abelian G. Namely, (4.11) shows that the action of G on
simultaneous eigenfunctions must be abelian, (g1g2)E0 = (g2g1)E0, since the right-
hand side in (4.10) is independent of the order of the gi.

For non-abelian but compact subgroups G of E(3), a generalization of the design
equations which can yield radiation families on which G acts in a non-abelian way
has been worked out by one of us, and will be presented elsewhere. This may be
of interest to analyze structures such as buckyballs and icosahedral viruses [CK62],
which are generated by non-abelian discrete symmetries. In this case one can appeal
to representation theory of groups. The set of characters of G is no longer given by
(4.11), and has the structure of a hypergroup [La15] instead of a group.

5. Plane waves as solution to the design equations. After having formal-
ized our design criterion for structure-adapted radiation into a set of equations, we
can state our insight from section 4 that plane waves are right for crystals as a math-
ematical theorem.

Theorem 5.1 (plane waves are right for crystals). Let G be the translation group

(5.1) T = {(I|c) : c ∈ R3}, x �→ x+ c.

Then the solutions to the design equations ( (2.2), (4.9)) are precisely the plane waves

(5.2) E0(x) = n eik0·x, k0 ∈ R3, n ∈ C3, k0 · n = 0.

Proof. By the character lemma, the function χ : G → C in (4.9) must be a
character of T . The characters are well known to be given by

(5.3) χk(a) = eik·a, k ∈ R3.

D
ow

nl
oa

de
d 

06
/3

0/
16

 to
 1

28
.1

01
.1

42
.1

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1202 G. FRIESECKE, R. D. JAMES, AND D. JÜSTEL

Fix k0 ∈ R3, and consider the character χ−k0 . The design equation (4.9) says that

E0(· − a) = ei(−k0)·aE0 for all a ∈ R3.

Evaluation at x = a gives E0(0) = e−ik0·xE0(x), that is, E0 is of form neik0·x with
n = E0(0). The first of the Maxwell equations in (2.2) holds automatically. The
second one holds if and only if k0 · E0(0) = 0. This completes the proof.

The proof says that fixing a wavevector k0 corresponds precisely to fixing a
character χ : G → C in the symmetry condition (4.9). For each fixed character,
the solutions of the design equations form a complex vector space parameterized by
{n ∈ C3 : k0 · n = 0}. This vector space has dimension 2, except in the special case
χ = 1, where the dimension is 3.

6. Twisted waves. We now look at the case when G is the helical group

(6.1) He = {(Rθ|τe) : θ ∈ [0, 2π), τ ∈ R}, Rθ =

⎛⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞⎠ ,

where e is a given unit vector in R3, τ is the amount of displacement along e, and
Rθ is the rotation about e by the angle θ. The above matrix representation of Rθ

corresponds to a cartesian coordinate system in which the third coordinate direction
is given by e.

This group naturally arises as the continuous extension of any discrete generating
symmetry group of a helix or nanotube structure.

It will be convenient to work in cylindrical coordinates with respect to the helical
axis, that is,

(6.2) e = e3 =

⎛⎝0
0
1

⎞⎠ , x =

⎛⎝x1x2
x3

⎞⎠ =

⎛⎝r cosϕr sinϕ
z

⎞⎠ , r ∈ [0,∞), ϕ ∈ [0, 2π), z ∈ R.

In cylindrical coordinates, the action (4.8) of the helical group (6.1) on vector fields
assumes the following simple form:

(6.3)
(
(Rθ|τe)E

)
(r, ϕ, z) = RθE(r, ϕ− θ, z − τ).

See Figure 3. Here and below, E is a function from polar coordinate space to the
cartesian space R3; that is, E1, E2, E3 are the cartesian field components of E, and
the action of the group on the direction of the field vectors is the usual action of the
3× 3 matrix Rθ on vectors.

Theorem 6.1 (twisted waves). Let G be the helical group He with axis e. Then
the solutions to the design equations ( (4.9), (2.2)) are precisely

(6.4) E0(r, ϕ, z) = ei(αϕ+βz)RϕN(n)

⎛⎝Jα+1(γr)
Jα−1(γr)
Jα(γr)

⎞⎠ ,

with (α, β, γ) ∈ Z×R× (0,∞) (“parameter vector”), n ∈ C3 (“polarization vector”),
and

(6.5) (0, γ, β) · n = 0.
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Fig. 3. Action of the helical group on vector fields and design of twisted waves. Start from a
given vector field E. The transformed field E′ (right-hand side of (6.3)) under the action of a typical
element of the helical group is obtained as follows: (i) translate the base points along the helical axis
e by some amount τ while leaving the field direction unchanged; (ii) rotate the base points by some
angle θ; and (iii) rotate the field direction by the same angle. The design equations require that the
transformed field only differs from the original field by a phase factor, regardless of how τ and θ
are chosen. Time-harmonic electric fields with this property are named twisted waves and can be
proven to have the mathematical form (6.4) (see Theorem 6.1).

Here N(n) is a certain 3× 3 matrix (“polarization tensor”) which depends linearly
on the polarization vector n,

(6.6) N(n) =

⎛⎝n1+in2

2
n1−in2

2 0
n2−in1

2
n2+in1

2 0
0 0 n3

⎞⎠ ,

the Jα are Bessel functions, (r, ϕ, z) are cylindrical coordinates (6.2) with respect to
the helical axis, and E0 is the cartesian field vector. The associated frequency in the
design equations is given by ω = c|(0, γ, β)|.

We call the electric fields (6.4)–(6.6) twisted waves. Figure 1 in the introduction
shows the twisted wave with parameter vector (α, β, γ) = (5, 3, 1) and polarization
vector n = (1, 0, 0).

Substituting the elementary identity (6.18) into (6.4) yields the following alterna-
tive representation of twisted waves in terms of separated solutions to the Helmholtz
equation:
(6.7)
E0(r, ϕ, z) = n+e

i((α+1)ϕ+βz)Jα+1(γr)+n−ei((α−1)ϕ+βz)Jα−1(γr)+n0e
i(αϕ+βz)Jα(γr),

where n+, n−, and n0 are the columns of the polarization tensor N(n) in (6.6).
Note that the three contributions in (6.7) are not themselves solutions to Maxwell’s
equations, because only their sum is divergence-free.

The parameters α and β can be interpreted as eigenvalues of angular momentum
and momentum. Namely, it is easily checked that the twisted wave (6.4), (6.6) is an
exact solution to the eigenvalue equations

(6.8) JzE0 = αE0, PzE0 = βE0, where Jz =
1

i

∂

∂ϕ
+

⎛⎝0 −i
i 0

0

⎞⎠, Pz =
1

i

∂

∂z
.

Here Pz is the well-known quantum mechanical momentum operator in the axial
direction, and Jz is the correctly defined angular momentum operator on vector fields
with respect to the helical axis (whose cartesian form (6.9) can be found in [CT97]).
These operators arise in our context of classical electrodynamics as the infinitesimal
generators of the action (4.8) of the rotational and translational subgroup of the helical
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group (6.1) on vector fields: in cartesian coordinates,

d

dθ
RθE(R−1

θ x)
∣∣∣
θ=0

=
(
−e · (x ∧∇) + e∧

)
E(x) =

1

i
(JzE)(x),(6.9)

d

dτ
E(x− τe)

∣∣∣
τ=0

= −(e · ∇)E(x) =
1

i
(PzE)(x).(6.10)

We remark that the eigenvalue equations (6.8) are equivalent to the design equation
(4.9) with character χ(θ, τ) = e−i(αθ+βτ).

Proof. First we exploit the symmetry condition. By the character lemma, the
function χ in (4.9) must be a character of the helical group He. It is clear from
the parameterization (6.1) that the helical group He is isomorphic to S1 × R, where
S1 ∼

= [0, 2π) with the usual addition of angles modulo 2π. The characters χ : S1×R →
C\{0} of S1 × R are well known to be

(6.11) χα,β(θ, τ) = ei(αθ+βτ), (α, β) ∈ Z× R.

In particular, the dual group (4.11) is given by (He)
′ ∼
= Z × R. Fix (α, β) ∈ Z × R,

and consider the character χ−(α,β) : S1 × R → C\{0}. The first design equation,

(4.9), says that RθE0(r, ϕ − θ, z − τ) = ei(−αϕ−βτ)E0(r, ϕ, z). Evaluation at ϕ = θ,
z = τ gives

(6.12) E0(r, ϕ, z) = ei(αϕ+βz)RϕE0(r, 0, 0).

Now we exploit the Helmholtz equation (first equation in (2.2)). Substituting the
ansatz (6.12) into this equation gives three coupled ordinary differential equations
(ODEs) for E0(r, 0, 0). These ODEs can be decoupled by simultaneously diagonal-
izing the matrices Rϕ, ϕ ∈ [0, 2π), with a unitary transformation. Simultaneous
diagonalization is possible because the group SO(2) of these matrices is abelian. We
have
(6.13)

Rϕ = U

⎛⎝eiϕ e−iϕ

1

⎞⎠U−1 for all ϕ ∈ [0, 2π), with U =

⎛⎝ i√
2

−i√
2

0
1√
2

1√
2

0

0 0 1

⎞⎠ .

Let Ẽ(r, ϕ, z) := U−1E0(r, ϕ, z). Using the notation σ1 = 1, σ2 = −1, σ3 = 0,
we have that Ẽj(r, ϕ, z) = ei((α+σj)ϕ+βz)Ẽj(r, 0, 0). Since the Helmholtz equation

is invariant under the transformation E0 �→ Ẽ = U−1E0, we can substitute Ẽ into
this equation and obtain, using that the Laplacian in cylindrical coordinates is Δ =
∂2/∂r2 + 1

r∂/∂r + ∂2/∂ϕ2 + ∂2/∂z2, the following ODE for the components:

(6.14)

(
∂2

∂r2
+

1

r

∂

∂r
− (α+ σj)

2

r2
+
(
(ωc )

2 − β2
))

Ẽj(r, 0, 0) = 0, j = 1, 2, 3.

That is, the radial functions Ẽj(r, 0, 0) are solutions to Bessel’s equation. Boundedness

of Ẽj implies that we must have (ω/c)2 − β2 ≥ 0. Moreover, for integer values of α
there is only a one-dimensional space of bounded solutions, given by
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(6.15) Ẽj(r, 0, 0) = cjJα+σj (γr), γ =
√
(ωc )

2 − β2, cj ∈ C.

For reasons that will emerge later, it is fruitful to parameterize the solution space not
by c ∈ C3 but by n := Uc. It follows that

(6.16) E0(r, 0, 0) = N(n)

⎛⎝Jα+1(γr)
Jα−1(γr)
Jα(γr)

⎞⎠ , n ∈ C3, N(n) := U diag(U−1n).

Here and below, diag(c) denotes the diagonal matrix whose diagonal entries are given
by the components of the vector c. Using (6.13), it is easy to check that the 3 × 3
matrix N(n) introduced above is given by the expression in the theorem. Substitution
into (6.12) shows that E0 has the form (6.4), except that n ∈ C3 is still arbitrary.

It remains to analyze the second Maxwell equation, divE0 = 0. A lengthy cal-
culation (included for the convenience of the reader in the supplementary material
(M104341 01.pdf [local/web 246KB])) shows that the field given by (6.12), (6.16)
satisfies

(6.17) divE0 = i ((0, γ, β) · n) ei(αϕ+βz)Jα(γr).

In particular, we see that the field is divergence-free if and only if (6.5) holds. This
completes the proof of Theorem 6.1.

Next we present an interesting algebraic property of the somewhat mysterious
polarization tensor which emerged from the above proof.

Lemma 6.2 (intertwining lemma). The polarization tensor N(n) introduced in
(6.16) satisfies

(6.18) RϕN(n) = N(n)

⎛⎝eiϕ e−iϕ

1

⎞⎠ for all n ∈ C3.

Equation (6.18) means that N(n) “intertwines” the standard representation and
the diagonal representation of the rotational subgroup SO(2) of the helical group He

on C3.

Proof. By the diagonal representation (6.13) of Rϕ and the fact that diagonal
matrices commute, we have, abbreviating the diagonal matrix in the lemma by Dϕ,

RϕN(n) = U DϕU
−1N(n) = U Dϕdiag(U

−1n) = U diag(U−1n)Dϕ = N(n)Dϕ.

Next we compute the magnetic field associated with a twisted wave. We use the
cylindrical components of the wave and apply the formula for the curl of a vector
field v in cylindrical coordinates given in the supplementary material. After some
calculation we find that

(6.19) curlE0 = ei(αϕ+βz)RϕN(ik0 × n)

⎛⎝Jα+1(γr)
Jα−1(γr)
Jα(γr)

⎞⎠ , k0 :=

⎛⎝0
γ
β

⎞⎠ .

That is, to obtain the curl one just has to replace the vector n inside the polarization
tensor by ik0 × n.
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The magnetic field associated with the twisted wave (6.4) can be immediately
read off from (2.3) and (6.19):

(6.20) B0(r, ϕ, z) = ei(αϕ+βz)RϕN( 1
ωk0 × n)

⎛⎝Jα+1(γr)
Jα−1(γr)
Jα(γr)

⎞⎠ , with k0 as in (6.19).

Hence for twisted waves, with the “right” definition of wavevector, the map from E0

to B0 is precisely the same map on the polarization vector n as for plane waves (2.4).
A deeper understanding of this fact, and of the related formula (6.17) for the

divergence, can be achieved from the Fourier decomposition of twisted waves which

can be derived via the Bessel integral Jα(A) =
1
2π

∫ 2π

0
ei(αϕ

′−A sinϕ′)dϕ′ (see the sup-
plementary material for details and visualization):

(6.21) E0(x) =
1

2π

∫ 2π

0

(
eiαΦRΦn

)
eiRΦk0·xdΦ.

Formula (6.21) has an interesting alternative interpretation, namely as a group average
instead of a k-space integral. Letting Eplane(x) denote the plane wave n eik0·x, one
has

(6.22) E0(x) =

∫
G

χα(g)
(
gEplane

)
(x) dμ(g),

where G is the group of rotations around the cylindrical axis, χα(g) = eiαϕ is a
character of the group, and dμ = 1

2πdΦ is the Haar measure on the group. This
shows that a twisted wave is an integral of the image of a plane wave under the group
of rotations about a fixed axis against a character. The polarization vector n and
the “cartesian reduced wavevector” (0, γ, β) are just the polarization vector and the
wavevector of this plane wave; the angular wavenumber α comes from the character.

Expression (6.22) is an example of a Wigner projection, a concept first introduced
in the context of quantum systems in [Wi31]. It is clear that (6.22) yields a solution to
the design equations (4.9), (2.2): first, it implies by an elementary change of variables
that for any h ∈ G, hE0 = χ−α(h)E0; and second, it satisfies (2.2), since the group
action (4.8) maps solutions to Maxwell’s equations again to solutions. This approach
allows one to construct solutions to the design equations for general abelian isometry
groups [Ju16], but the remarkable fact that in the helical case Wigner-projecting plane
waves already gives all solutions does not follow from the above considerations.

7. The reciprocal lattice of a helical structure. Helical structures are orbits
of a finite set of atoms under a discrete subgroup of the helical group. For these
structures, in the context of X-ray fiber diffraction a notion of “reciprocal helical
lattice” has been introduced by Klug, Crick, and Wyckoff [KCW58], by periodically
extending the helical subgroup to a Bravais lattice in R2 and applying the concept of
reciprocal Bravais lattice. We show here that this notion of reciprocal helical lattice
has an intrinsic group-theoretic meaning which parallels, rather than needs to rely
on, that of the reciprocal lattice in the crystal case. The reciprocal helical lattice and
its group-theoretic meaning emerge naturally from the diffraction patterns of helical
structures subjected to twisted waves ; see the following section.

The atomic positions in a helical structure are of the form

(7.1) S = {g x(ν)
0 : g ∈ H0, ν = 1, . . . ,M},
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where x
(1)
0 , . . . ,x

(M)
0 are the atomic positions of a reference molecule and H0 is a

discrete helical group, by which we mean a discrete subgroup of the helical group He

with axis e (see (6.1)) of the form

(7.2) H0 = {gi0h
j
0 : i ∈ Z, j = 1, . . . , n}, h0 = (Rθ0 |τ0e), g0 = (R2π/n|0),

with θ0 ∈ [0, 2π), τ0 ∈ R, τ0 = 0, and n ∈ N.
Alternatively, we can describe the group (7.2) by a parameter space H0, called

the helical lattice, which parameterizes the group elements by their rotation angle and
translation parameter,

H0 =

{
(Rθ|τe) :

(
θ
τ

)
∈ H0

}
,

H0 =

{
i

(
2π
n
0

)
+ j

(
θ0
τ0

)
mod

(
2π
0

)
: i, j ∈ Z

}
=

(
2π
n θ0
0 τ0

)
︸ ︷︷ ︸

=:A

Zn×Zmod

(
2π
0

)
.(7.3)

Here vmod(2π, 0) denotes the unique vector in [0, 2π)×R which differs from v by an
integer multiple of (2π, 0). See Figure 4. In case n = 1 and M = 1, g0 is the identity
and S is a helix. When n = 1 andM > 1, g0 is the identity and S a “molecular helix,”
built from identical copies of a reference molecule with M atoms. In case n > 1, S is
the union of n identical helices, basic examples being “zigzag” or “armchair” carbon
nanotubes. The parameters τ0 and θ0 of the generating screw displacement h0 encode
the pitch p and the number q of subunits per turn of the helices. The pitch is defined as
the axial displacement for one full rotation. p = 2πτ0/θ0, and the number of subunits

(i.e., rotated and translated copies of the set {x(1)
0 , . . . ,x

(M)
0 }) per turn is q = 2π/θ0.

In physical and biological examples, the latter number is typically a rational number
but not an integer.

Example 1 (carbon nanotubes). Carbon nanotubes of all chiralities are of the
form (7.1), (7.3). For the single-walled (n′,m′) nanotube,M = 2 and n = gcd(n′,m′).
To give a specific example, single-walled (6,5) carbon nanotubes with axis e = (0, 0, 1)
correspond to M = 2 (two atoms per unit cell), n = 1 (single helix),

θ0 =
149

182
2π, τ0 =

3

2
√
91
� with � = 1.43Ao (C-C bond length),

x(1) = (r, 0, 0), where r =

√
3
√
91

2π
� (nanotube radius), x(2) = (Rθ0/3| τ3e)x

(1).

Example 2 (tobacco mosaic virus (TMV)). This is a basic example of a fila-
mentous virus, built from a single protein. The protein molecules are arranged in a
low-pitch helix, with 16 1

3 proteins per turn and with adjacent turns in contact. The
parameter values in (7.1), (7.3) areM = 1284 (number of atoms in the protein), n = 1
(single helix), and

θ0 =
2π

16 1
3

=
3

49
2π, τ0 = 1.402Ao.

The values for θ0 and τ0, taken from [GZ11], correspond to the low-calcium state.

The groups in (7.3) are not some ad hoc ansatz. It can be shown that they are
the lattice subgroups of the helical group (6.1), whereas the Bravais lattices are the
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lattice subgroups of the translation group (5.1).4

We now introduce a purely group-theoretical notion of reciprocal lattice. We first
state this notion in abstract mathematical language and then show how it reduces to
familiar concepts in the crystalline and helical case.

Definition 7.1 (reciprocal lattice group). Let H0 be a lattice subgroup of the
helical group (see (7.3)), or more generally any lattice subgroup of a locally compact
abelian group H. Recall from (4.11) the dual group of H, H ′ = {χ : H → C\{0} :
χ is a character of H}. The reciprocal lattice group of H0 with respect to H is the
set of those characters of H which are equal to 1 on H0, i.e.,

H ′
0 = {χ ∈ H ′ : χ(h) = 1 for all h ∈ H0}.

Thus the reciprocal lattice group H ′
0 is a subgroup of the dual group H ′. In

group theory, H ′
0 is a well-known object, called the annihilator of H0 [HR63] or the

orthogonal group of H0 with respect to H [RS00]; the latter terminology views the
equation χ(h) = 1 as analogous to the vanishing of a proper inner product between
elements χ and h of some vector space.

Physically, the dual group consists of certain scalar waves on the group or equiv-
alently of the wavevectors parameterizing them, and the reciprocal lattice group con-
sists of resonant scalar waves on the group or the corresponding resonant wavevectors.
Table 1 below gives their explicit form in the crystalline and helical cases.

Table 1

The symmetry groups associated with crystals and helical structures. The ambient isometry
group, lattice subgroup, and reciprocal lattice group govern, respectively, the radiation, the structure,
and the diffraction pattern.

Crystals Helical structures

Ambient isometry group H Translations {(I|a) : a ∈ Rd} Screw displacements {(Rθ |τe) : θ ∈ [0, 2π), τ ∈ R}

lattice subgroup H0
{(I|a) : a ∈ AZd},

A invertible d× d matrix

{
(Rθ|τe) :

(
θ

τ

)
∈ AZn × Z mod

(
2π

0

)}
,

A invertible 2× 2 matrix of form (7.3)

parameter space H0 AZd AZn × Z mod

(
2π

0

)

characters χ χk(a) = eik·a χα,β(θ, τ) = ei(αθ+βτ)

dual group H′ {χk : k ∈ Rd} {χα,β : (α, β) ∈ Z× R}
parameter space Rd Z× R

reciprocal lattice group H′
0 {χk : k ∈ 2πA−TZd} {χα,β :

(
α

β

)
∈ 2πA−TZ× Z}

parameter space H′
0 (recipr. lattice) 2πA−TZd 2πA−TZ× Z

reciprocal lattice H′
0 in a basis

{hb1 + kb2 + �b3 : h, k, � ∈ Z},
bi columns of 2πA−T (d = 3)

{i′
⎛
⎝ n

−nθ0
τ0

⎞
⎠+ j′

⎛
⎝ 0

2π
τ0

⎞
⎠ : i′, j′ ∈ Z}

To derive the reciprocal lattice groupsH ′
0 and their parameterizationsH′

0 in Table
1, we use Definition 7.1 and (5.3), (6.11). In the crystal case we obtain

H ′
0 = {χk : k ∈ Rd, k · a ∈ 2πZ for all a ∈ AZd} = {χk : k ∈ 2πA−TZd},

4In group theory, a subgroup is called a lattice subgroup if it is discrete, i.e., has no accumulation
points, and there exists a set of finite volume (Haar measure) whose orbit under the subgroup gives
the whole group. To derive the representation (7.2), one shows and uses that each such subgroup
must be the image of a lattice subgroup of the two-dimensional translation group R2 under the map
h : R2 → He defined by h(θ, τ) = (Rθmod 2π |τe), and chooses a minimal rotation as one of the
generators of the group.
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recovering the standard definition (3.3) of the reciprocal lattice, and in the helical
case (7.3),

H ′
0 =

{
χα,β : (α, β) ∈ Z× R,(
α
β

)
·
(
θ
τ

)
∈ 2πZ for all

(
θ
τ

)
∈ AZn × Zmod

(
2π
0

)}
= {χα,β : (α, β) ∈ H′

0} with H′
0 = 2πA−TZ× Z.(7.4)

The parameterizationH′
0, emerging here from group theory, is precisely the reciprocal

helical lattice, introduced in [KCW58] in the context of fiber diffraction via physical
considerations. See Figure 4.

Fig. 4. A discrete helical group (left, (7.3)) and the associated reciprocal helical lattice (right,
(7.4)). Here θ is the rotation angle about the helical axis and τ the displacement along the axis,
and the reciprocal parameters α and β are the angular and the axial wavenumber. The slope of the
reciprocal basis vector pointing to the right is the inverse pitch multiplied by 2π. The discrete helical
group is a subset of the continuous helical group He=̃S1× R ( (6.1), shaded vertical strip), whereas
the reciprocal helical lattice is a subset of the dual group Z× R (shaded vertical lines).

8. Diffraction of twisted waves: Twisted Von Laue condition. We now
calculate the outgoing radiation when twisted waves are scattered off helical struc-
tures of infinite length. The existence and location of resonant parameter values can
be derived in an elementary manner [JFJ16]. The complete analysis here recovers
this result via a Poisson summation formula on the helical group, and in addition
establishes the vanishing of the signal elsewhere, i.e., a sharp peak structure, and the
peak strengths.

The key point is to evaluate the structure factor (2.12) when E0 is a twisted wave
(6.4) with parameters (α, β, γ) ∈ Z× R× (0,∞).

In the case of an axial detector, we will proceed in three steps: (1) transform to
cylindrical coordinates; (2) treat the integration over ϕ′ ∈ S1 and z′ ∈ R jointly rather
than separately, because these variables are “intertwined” in the electron density of a
helical structure, and use Fourier calculus on the group S1 × R to essentially reduce
the integral to the Fourier transform of an infinite sum of delta functions on S1 × R;
(3) apply the Poisson summation formula. In the case of a nonaxial detector, treated
in the supplementary material (M104341 01.pdf [local/web 246KB]), two additional
steps are necessary: (1b) eliminate the ensuing phase nonlinearity of the plane-wave
factor inside the integral (2.12) by expanding this plane wave into cylindrical waves,
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which mathematically corresponds to a Fourier series expansion in the angle variable;
(3b) eliminate the expansion of step 1b in the case of a nonaxial detector.

Step 1 (cylindrical coordinates). Let (r, ϕ, z) and (r′, ϕ′, z′) be cylindrical coor-
dinates for x and y; i.e., x is given by (6.2) and y1 = r′ cosϕ′, y2 = r′ sinϕ′, y3 = z′.
Next, let (R,Φ, Z) be the cylindrical components of the outgoing wavevector field
k′(r, ϕ, z), i.e., k′ = Rer +Φeϕ + Zez, where er, eϕ, and ez are the usual cylindrical
unit vectors. It follows that

(8.1) R(r, ϕ, z) =
ω

c

r√
r2 + z2

, Φ(r, ϕ, z) = 0, Z(r, ϕ, z) =
ω

c

z√
r2 + z2

.

In the special case of an axial detector, i.e., (r, ϕ, z) = (0, 0, z), the cylindrical com-
ponents of the outgoing wavevector k′(r, ϕ, z) are

(8.2) R = 0, Φ = 0, Z =
ω

c
sign(z).

Thus it follows from (2.6), (2.12) that

fE0(k
′(0, 0, z)) = N(n)

∫ ∞

0

[∫
S1×R

ρ(r′, ϕ′, z′)

·

⎛⎝ei[(α+1)ϕ
′+(β−Z)z′]blablabla

blablaei[(α−1)ϕ′+(β−Z)z′]bla

blablablablaei[αϕ
′+(β−Z)z′]

⎞⎠ dϕ′dz′
]⎛⎝Jα+1(γr

′)
Jα−1(γr

′)
Jα(γr

′)

⎞⎠ r′dr′.(8.3)

Step 2 (exploit helical symmetry and Fourier calculus on S1×R). Consider now
a helical structure, i.e., a structure generated by any discrete helical group H0 (see
(7.3)). The electron density ρ will be H0-periodic, that is, in cylindrical coordinates,

ρ(r′, ϕ′, z′) = ρ(r′, ϕ′−θmod 2π, z′−τ) for all
(
θ
τ

)
∈ H0, H0 = AZn×Zmod

(
2π
0

)
,

and rapidly decaying in the direction perpendicular to the helical axis. Typical ex-
amples of H0-periodic densities are depicted in Figure 5. By choosing a suitable
partition of unity, such a ρ can be written as a sum of rotated and translated copies
of a localized, rapidly decaying function ψ,

(8.4) ρ(r′, ϕ′, z′) =
∑
a∈H0

ψ(r′, ϕ′ − a1 mod 2π, z′ − a2).

The function ψ can, for instance, be taken as the restriction of ρ to the unit cell U of
the structure,
(8.5)

ψ = ρU =

{
ρ in U ,
0 outside U ,

U = {(r′, ϕ′, z′) : (ϕ′, z′) ∈ A [0, 1]2, r′ ∈ (0,∞)},

but other constructions with a smooth ψ make sense too.
The decomposition (8.4) of ρ can be fruitfully rewritten as a convolution of ψ

with an infinite sum of delta functions,

ρ = ψ ∗
S1×R

δH0 , δH0 =
∑
a∈H0

δa,
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where the convolution on S1 × R is defined as

(8.6) (f ∗
S1×R

g)(r, ϕ, z) =

∫
S1×R

f(r, ϕ− ϕ′ mod 2π, z − z′) g(r, ϕ′, z′) dϕ′dz′.

In what follows we drop the subscript from the convolution sign. We now use Fourier
calculus on S1 × R. The Fourier transform F

S1×R
with respect to the angle and axis

variables is a function on the dual group (S1 × R)′ ∼
= Z× R, defined as

(8.7) (F
S1×R

f)(r,Φ, Z) =
1

2π

∫
S1×R

f(r, ϕ, z) e−i(Φϕ+Z z)dϕdz.

The square bracket in (8.3) has the form of such a Fourier transform on S1×R; for in-
stance, the top left component of the square bracket equals 2π(F

S1×R
(ψ∗δH0)(r

′,−(α+

1), Z − β).

Step 3 (Poisson summation formula on S1 × R). We now use the (trivial) con-
volution rule on S1 × R,

(8.8) F
S1×R

(f ∗ g) = 2πF
S1×R

f · F
S1×R

g,

and the following nontrivial result from Fourier analysis on abelian groups which
makes the reciprocal helical lattice appear:

Lemma 8.1 (Poisson summation formula on S1 × R). Let H0 be any discrete
helical group (see (7.3)), and let H ′

0 be the reciprocal lattice group. The corresponding
parameterizations H0 ⊂ S1 × R, see (7.3), and H′

0 ⊂ Z× R, see (7.4), satisfy

(8.9) F
S1×R

δH0 =
2π

| detA| δH
′
0
.

This identity is a special case of the general Poisson formula on locally compact
abelian groups going back to Weil [We64]; see, e.g., [RS00].5 A more elementary
derivation of (8.9) is to first consider the case θ = 0, where the result follows by
combining the usual Poisson formula on R,

δ̂aZ = 2π
a δ 2π

a Z
,

with the following, elementary to check, Poisson formula on S1: if L = { 2πj
n : j =

0, . . . , n− 1}, then

δL(ϕ) =
n−1∑
j=0

δ 2πj
n
(ϕ), ϕ ∈ [0, 2π), δ̂L(ν) =

n

2π
δnZ(ν) =

n

2π

∑
a∈nZ

δa(ν), ν ∈ Z.

Here f̂(ν) denotes the Fourier coefficient (2π)−1
∫ 2π

0 e−iνϕf(ϕ) dϕ. Note that the
delta functions in the left sum are Dirac deltas, whereas the delta functions in the
right sum are Kronecker deltas. The general result (8.9) now follows from a suitable
change of variables.

Equations (8.8), (8.9) yield

(8.10) F
S1×R

(ψ ∗ δH0) =
(2π)2

| detA| (FS1×R
ψ) · δH′

0
,

5In this context, the formula is stated and derived up to an overall multiplicative constant.
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and therefore

fE0(k
′(0, 0, z)) =

(2π)3

| detA| N(n)Dα,β,γ(R,Z)

⎛⎝δH′
0
(−(α+1), Z − β)

δH′
0
(−(α+1), Z − β)

δH′
0
(−α,Z − β)

⎞⎠ ,

(8.11)

with Dα,β,γ(R,Z) =

∫ ∞

0

⎛⎝ F
S1×R

ψ(−(α+ 1), Z − β)Jα+1(γr
′) 0 0

0 F
S1×R

ψ(−(α− 1), Z − β)Jα−1(γr
′) 0

0 0 F
S1×R

ψ(−α,Z − β)Jα(γr
′)

⎞⎠ r′dr′.

The matrix components of the above integral can be interpreted as a Hankel transform.
Recall that for any α ∈ Z, the Hankel transform of order α maps scalar functions of
a radial variable belonging to the interval (0,∞) to scalar functions on (0,∞) and is
defined as

(8.12) (Hαf)(γ) =

∫ ∞

0

f(r′)Jα(γr′) r′dr′ (γ > 0).

This together with the fact that δH′
0

=
∑

a∈H′
0
δa′ and δa′(−(α ± 1), Z − β) =

δa′±(1,0)(−α,Z − β) yields
(8.13)

fE0(k
′(0, 0, z)) =

(2π)3

| detA| N(n)
∑

a′∈H′
0

(
H−a′

1
F
S1×R

ψ
)
(γ, a′)

⎛⎜⎝δa′+
(
1
0

)

δ
a′−

(
1
0

)

δa′

⎞⎟⎠ (−α,Z − β).

Note that the delta functions in (8.13) are centered on shifted copies of the reciprocal
lattice. Also, we claim that the Fourier–Hankel transform of ψ which appears in (8.13)
equals that of the electron density (8.5) in the unit cell, i.e., H−a′

1
F
S1×R

ψ(γ, a′) =

H−a′
1
F
S1×R

ρU(γ, a′) for all a′ ∈ H′
0. This is because, for any ψ satisfying (8.4), in-

cluding ψ = ρU , the Fourier transform (F
S1×R

ψ)(r′, a′) is independent of ψ when a′ is
a reciprocal lattice vector; indeed,

(F
S1×R

ψ)(R′, a′) =
∫
S1×R

e
ia′·

(
ϕ′
z′

)
ψ(r′, ϕ′, z′)dϕ′dz′

=
∑
a∈L

∫
U
e
−ia′·(

(
ϕ′
z′

)
−a)

ψ(r′, ϕ′ − a1 mod 2π, z′ − a2) dϕ
′dz′,

and the factors eia
′·a above equal 1, allowing one to eliminate ψ via (8.4).

The outgoing electric field can now be read off immediately from (2.5), (2.6),
(2.12), (8.13), and the fact that we may take ψ = ρU . Note in particular that the
third field component vanishes, since the projection matrix in (2.5) annihilates the
third component of the structure factor when the outgoing wavevector k′ points in
axial direction ±e3. See (8.14) below.

When taking absolute values to obtain the intensity, it may happen that the two
remaining shifted copies H′

0+(1, 0) and H′
0− (1, 0) of the reciprocal lattice appearing

in (8.13) overlap, which would lead to interference. These two copies overlap if and
only if (2, 0) is a reciprocal helical lattice vector. The following result, which is
elementary to check, shows that this does not happen except in a degenerate case
which we propose to denote flat helical groups.
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Lemma 8.2 (flat helical groups). The following three statements about a discrete
helical group (7.2) are equivalent:

(1) The vector (2, 0) belongs to the reciprocal helical lattice, (7.4).
(2) The parameters of the helical group satisfy θ0 = 0 or π, and n = 1 or 2.
(3) The structure generated by applying the helical group to any single point lies

in a plane.

We summarize our findings as a theorem.

Theorem 8.3 (twisted Von Laue condition). Consider an infinitely long helical
structure with electron density ρ : R3 → R, assumed to be smooth, H0-periodic with
respect to some discrete helical group H0 (see (7.2)), and rapidly decaying in the
direction perpendicular to the helical axis. Assume that the axis is e = e3, and let
the incoming electric field be a twisted wave with same axis and parameter vector
(α, β, γ) ∈ Z×R× (0,∞) (see (6.4)–(6.6)). Then the diffracted electric field (2.5) at
any point (0, 0, z) on the axis is

Eout(0, 0, z, t) = −ce�
ei(

ω
c |z|−ωt)

|z|
(2π)3

| detA|
∑

a′∈H′
0

(H−a′
1
F
S1×R

ρU)(γ, a′)(8.14)

·

⎛⎝n1+in2

2
n1−in2

2 0
n2−in1

2
n2+in1

2 0
0 0 0

⎞⎠
⎛⎜⎝δa′+

(
1
0

)

δ
a′−

(
1
0

)

0

⎞⎟⎠ (−α, ωc sign z − β).

Here Hα is the Hankel transform of order α with respect to the radial variable (see
(8.12)), F

S1×R
is the Fourier series/transform with respect to the angular and axial

variables (see (8.7)), ρU is the restriction of the electron density ρ to the unit cell (see
(8.5)), and H′

0 is the reciprocal helical lattice (see (7.4)).
Moreover, when H0 is not a flat helical group (see Lemma 8.2), the square root

of the outgoing intensity is

(
I(0, 0, z; α, β, γ)

)1/2
= c0

(2π)3

| detA|
1

|z|
∑

a′∈H′
0

∣∣∣(H−a′
1
F
S1×R

ρU)(γ, a′)
∣∣∣

(8.15)

·
(
|n1 + in2|√

2
δ
a′+

(
1
0

) +
|n1 − in2|√

2
δ
a′−

(
1
0

)
)
(−α, ω

c sign z − β),

where c0 = ( cε02 )1/2ce�. In particular, constructive interference occurs if and only if
the difference between the angular/axial part (0, ωc sign z) of the outgoing wavevector
and the angular/axial parameters (α, β) of the incoming twisted wave belongs to the
reciprocal helical lattice shifted left or right by precisely one angular wavenumber,
H′

0 ±
(
1
0

)
, or equivalently, if and only if

(8.16)(
α+ σ

β − 2π/λ

)
= i′

(
n

−nθ0/τ0

)
+ j′

(
0

2π/τ0

)
for some integers i′, j′ and σ = ±1.

Formulae (8.14), (8.15), (8.16) are the main result of this paper and were an-
nounced in [JFJ16]. They say that the signal of a helical structure under co-axial
twisted X-rays, recorded along the axis, consists of sharp peaks with respect to the
angular and axial radiation parameters. The peaks are double-peaks with a distance
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of precisely two angular wavenumbers, centered at the reciprocal lattice vectors of the
helical structure. In particular, at the reciprocal lattice vectors themselves the signal
vanishes. The structural parameters τ0, θ0 in (7.2), or equivalently the pitch and the
number of subunits per turn, can be immediately read off from the peak locations, as
can the order n of any rotational symmetry.

Moreover, the above result makes it in principle possible to determine the electron
density ρ, i.e., the detailed atomic structure, from intensity measurements in the far
field at a specific point on the axis, provided the scalar phase problem associated with
the Fourier–Hankel transform HαFS1×R

can be solved. Note that the values of this

transform on the reciprocal helical lattice points which appear in (8.15) completely
determine the electron density; see section 9 for details.

Next, we report an important invariance property of the axial signal of a helical
structure. Suppose the structure is translated by an amount Δz along the helical
axis and rotated by an amount Δϕ around the axis. (In other words, we apply an
arbitrary element of the continuous helical group (6.1) to the structure.) This modifies
the original electron density ρU to

(8.17) ρU ′(r, ϕ, z) = ρU (r, ϕ−Δϕ, z −Δz).

From the definition of the angular/axial Fourier transform, (8.7), and the Hankel
transform, (8.12), it is clear that
(8.18)(
H−αFS1×R

ρ′U
)
(γ,Φ, Z) = e−i(ΦΔϕ+Z Δz)

(
H−αFS1×R

ρU
)
(γ,Φ, Z) for all γ, Φ, Z.

Thus the outgoing intensity (8.15), which only depends on the absolute value of the
expression (8.18), is invariant under axial translations and rotations of the structure.
This is not a fortuitous accident, but stems from the fact that the design equations,
(4.9), require the incoming wave to be an eigenfunction of each element of the contin-
uous helical group (6.1). From this one easily sees that the invariance remains true
for helical structures of finite length.

By comparison, the signal produced by fiber diffraction, i.e., by sending plane
wave X-rays towards a helical structure from a perpendicular direction, is only invari-
ant under axial translation but not under axial rotation; the latter is a well-known
major problem in the interpretation of fiber diffraction images.

9. Synthesis of electron density. As shown in the previous section, subjecting
a helical structure to twisted X-rays and recording the intensity of the scattered
radiation in axial direction yields the data set

(9.1)
{
|G(γ, α, β)|2 : γ ∈ (0,∞), (α, β) ∈ H′

0

}
,

where G is the Fourier–Hankel transform of the unit cell electron density ρU ,

G(γ, α, β) =
(
H−αFS1×R

ρU
)
(γ, α, β)

=
1

2π

∫ ∞

0

∫∫
U
e−i(αϕ+βz)J−α(γr) ρU (r, ϕ, z) r dr dϕ dz,(9.2)
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and H′
0 is the reciprocal helical lattice of the structure. Assume that the phases of

the Fourier–Hankel coefficients G in (9.1) can be retrieved. Then the electron density
in the unit cell is recovered by

(9.3) ρU(r, ϕ, z) =
1

2π

∑
(
α
β

)
∈H′

0

(−1)α
∫ ∞

0

Jα(γr)G(γ, α, β) γ dγ e
i(αϕ+βz).

When indexing the reciprocal helical lattice points in H′
0 by pairs of integers (i′, j′)

according to the representation (α, β) = i′b1 + j′b2, where b1 = (n,−nθ0/τ0), b2 =
(0, 2π/τ0) are the basis vectors of the reciprocal helical lattice (7.4), and denoting
1
2π (−1)αG(γ, α, β) = Gi′j′(γ), equation (9.3) acquires the form announced in [JFJ16],

(9.4) ρU(r, ϕ, z) =
∑
i′,j′

∫ ∞

0

γ dγ Gi′j′ (γ)Ji′n(γr)e
i(i′b1+j′b2)·

(
ϕ
z

)
.

To establish (9.3), one first notes that the Fourier–Hankel transform in (9.2) is a
combination of a Fourier series in the angle, a Fourier transform in the axial variable,
and a Hankel transform in the radial variable, and it is thus invertible. One then
exploits formula (8.10) with ψ = ρU , and uses that J−α = (−1)αJα and that the
inverse of the Hankel transform (8.12) is given by (H−1

α f̃)(r) =
∫∞
0
f̃(γ)Jα(γr) γ dγ.

The overall situation is thus the same as in standard X-ray crystallography: the
electron density can be reconstructed provided we can solve a scalar phase problem.
The only difference is that we have to deal with the following new phase problem:

New phase problem. Reconstruct a function ρU given the absolute value of its
Fourier–Hankel transform G defined by (9.2).

Numerical investigations which are reported elsewhere [JFJ16] indicate that stan-
dard phase retrieval algorithms for the Fourier transform can be adapted without
difficulty to the Fourier–Hankel case.

10. Simulated diffraction pattern of carbon nanotube and tobacco mo-
saic virus. Here we present simulated diffraction patterns of helical structures sub-
jected to twisted waves. The set-up is as in Figure 2 of the introduction; that is,
incoming waves, structure, and detector are axially aligned.

We consider two examples, a (6,5)-Carbon nanotube and TMV virus. The pa-
rameters are as in Example 1 (respectively, Example 2) of section 7, with the TMV
atomic positions taken from the Protein Data Bank, PDB ID 3J06 [GZ11]. We use
the electromagnetic model (2.5), (2.6), (2.10) to calculate the signal from structures
of finite length:

• C nanotube: 255 unit cells, corresponding to 510 atoms.
• TMV: 147 proteins, corresponding to three helical repeats and 188 748 atoms.

The results in Figure 5 show that already relatively short pieces of a helical
structure exhibit the theoretically predicted patterns. In particular, one sees double-
peaks centered at the reciprocal helical lattice points which would be difficult to
interpret correctly in terms of scalar models of the incoming wave and the diffraction
pattern. Moreover, very high contrast between peaks and background is observed;
note that in fiber diffraction the contrast in the direction perpendicular to the fiber
is limited for theoretical reasons [CCV52].
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(a) Diffraction pattern of C nanotube
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(b) Diffraction pattern of TMV virus

Fig. 5. Twisted X-ray pattern of (a) a (6,5)-carbon nanotube with 510 atoms, (b) three helical
repeats of TMV ( 147 proteins, 188 748 atoms). The electron density of each atom was modeled by
a Gaussian. (a) and (b), right: Isosurface of electron density. (a) and (b), top: Log intensity of
diffracted radiation as a function of angular wavenumber α and axial wavenumber β of the incoming
wave. In (b), for simplicity atomic form factors were ignored and the electron density of each atom
was approximated by a delta function. (a) and (b), bottom: Theoretical peak locations, (8.15), (8.16).
Incoming twisted X-ray wavelength: λ = 1.54 Ao (Cu Kα line).

11. Conclusions and outlook. We have shown on the level of modeling and
simulation that twisted X-ray waves would be a very promising tool for structure
analysis.

Numerous theoretical challenges remain. For helical structures, a better under-
standing of the outgoing radiation in nonaxial direction would be desirable. A related
issue is to develop a general mathematical theory of the “radiation transform,” (2.12),
which takes the role of the Fourier transform when the incoming radiation is not given
by plane waves. Robust phase retrieval algorithms need to be developed for structure
reconstruction from twisted X-ray data. And for structures generated by non-abelian
symmetry groups such as buckyballs, the right incoming waveforms are not clear; for
reasons discussed at the end of section 4, in this case the design equations may not
be the right approach.

Challenges for the experimental realization include: generation of tunable co-
herent twisted X-ray waves with a broad spectrum of angular wavenumbers; axial
alignment of incoming wave and structure; and achieving a sufficiently strong outgo-
ing signal.

Acknowledgments. GF and RDJ thank Dominik Schryvers for helpful discus-
sions on vortex beams. GF thanks John Ockendon for helpful discussions which led
to the spectral interpretation of twisted waves and Robin Santra for providing advice
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and reference [Sa09] on the derivation of X-ray diffraction intensities from quantum
electrodynamics.
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