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1 Symmetry and invariance

Physicists and mathematicians have long tried to understand the structure of matter from
a deductive viewpoint. Early examples are Hooke’s Micrographia [28] and, inspired in part
by microscopic observations, Euler’s “Physical investigations on the nature of the smallest
parts of matter” [16]. As the incredible difficulty of achieving rigorous results in this direction
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became better appreciated, the problem was narrowed to the “crystallization problem”: that
is, prove for the simplest models of atomic forces that the Face-Centered Cubic lattice (FCC,
defined below) minimizes the potential energy. Inspired by the seminal work of Radin [25] and
also relying on recent advances in the calculus of variations, research on the crystallization
problem has achieved significant advances [23, 40, 19]. In these works the symmetry of the
FCC lattice and the invariance of the underlying equations play a dominant role.

Our purpose is not to survey these advances, but rather to broaden the discussion by
collecting a list of examples in which structure and invariance are intimately related. There
are three benefits: 1) a treasure trove of interesting mathematical problems is revealed, 2)
modern research on nanoscience is given a mathematical perspective, and 2) one realizes that
the subject is more about invariance than structure.

2 The Periodic Table

We start at the most basic level: the Periodic Table of the elements. Most people think of
the crystal structures of the elements in terms of Bravais lattices, and the standard databases
are organized on this basis. A Bravais lattice is the infinite set of points L(e1, e2, e3) =
{ν1e1 + ν2e2 + ν3e3 : (ν1, ν2, ν3) ∈ Z3}, where e1, e2, e3 are linearly independent vectors in R3

called lattice vectors.
For example, consider lattice vectors e1 = αê1, e2 = αê2 and e3 = α(ê1 + ê2 + γê3)/2

where ê1, ê2, ê3 = ê1 × ê2 are orthonormal and α, γ > 0. The constants α, γ that quantify
the distances between atoms are called lattice parameters. The value γ = 1 gives the Body-
Centered Cubic (BCC) lattice. A famous observation of Bain [1] is that there is exactly one
other choice of γ > 0 in which the associated Bravais lattice has cubic symmetry, that being
γ =

√
2, which in fact gives the FCC lattice. About half of the Periodic Table consists of

elements whose normal crystal structure at room temperature is either BCC or FCC. In fact,
Bain theorized that best represented phase transformation in the Periodic Table, BCC→FCC,
is achieved by passing γ from 1 to

√
2.

How about the other half? To discuss this more precisely, let us remove the last row of
the Periodic Table, atomic numbers 87-118, which are typically radioactive and often highly
unstable, and also number 85 (Astatine), for which there exists much less than 1 gram in the
earth’s crust at any one time and cannot be considered to have a bulk crystal structure. For
definiteness, we take the accepted most common crystal structure at room temperature, unless
the material is not solid at room temperature, in which case we take the accepted structure
at zero temperature. Many (but not all) of the other half are 2-lattices, i.e., the union of two
displaced Bravais lattices made with the same lattice vectors:

{a+ L(e1, e2, e3)} ∪ {b+ L(e1, e2, e3)}, (1)

where a 6= b ∈ R3, or equivalently, the periodic extension of two atomic positions a, b using the
periodicity e1, e2, e3. For example, the third most prominent structure in the Periodic Table
is the Hexagonal Close Packed (HCP) lattice for which we can choose e1 =

√
3αê1, e2 =√

3α
(

(1/2)ê1 + (
√

3/2)ê2

)
, e3 = 2α

√
2ê3 and, for example, a = 0, b = αê2 +

√
2αê3. Clearly,

HCP is not a Bravais lattice, since a + 2(b − a) = 2b does not belong to (1). HCP accounts
for about 1/5 of the Periodic Table. Silicon and germanium (and carbon) adopt the diamond

2



structure under ordinary conditions, which is also a 2-lattice. Many layered compounds such as
the halogens, carbon (as graphite), oxygen and nitrogen are also 2-lattices, either as individual
layers or as their accepted layered structures. Altogether, about 1/4 of the elements in the
Periodic Table are 2-lattices. There are also examples that are not crystals at all under
ordinary conditions, such as sulfur (a double ring) and boron (icosahedra, sometimes weakly
bonded).

Even if they are not common, we also should mention the celebrated structures of nan-
otechnology: graphene, carbon nanotubes, the fullerines, phosphorene, and the many other
2D materials now under study.

We will explore an alternative way of looking at the Periodic Table, and structure in
general, via the concept of objective strutures [31]. In fact the examples mentioned above have
a common mathematical structure not based on Bravais lattices. An objective atomic structure
(briefly, a 1-OS) has the defining property that each atom “sees the same environment”.
Imagine Maxwell’s demon, sitting on an atom, and looking at the environment (out to infinity).
The demon hops to another atom, reorients itself in a certain way, and sees exactly the same
environment. Mathematically, a set of points in R3 is given, S = {x1, x2, . . . , xN} ∈ (R3)N ,
N ≤ ∞ (most of the structures mentioned above are infinite). S is a 1-OS if there are
orthogonal transformations Q1, . . . , QN such that

{xi +Qi(xj − x1) : j = 1, . . . , N} = S for i = 1, . . . , N. (2)

Again, in words, the structure as viewed from atom 1, xj − x1, undergoes an orthogonal
transformation Qi(xj −x1) depending on i, is added back to atom i, xi +Qi(xj −x1), and the
structure is restored. The surprising fact is that nearly all of the structures mentioned above,
including the 2-lattices and those workhorse structures of nanotechnology, are examples of
1-OS.

It is indeed surprising. One would expect that identical environments would require some
kind of isotropy of atomistic forces (for example, pair potentials, with force between a pair
depending only on the distance). But some of the examples above are covalently bonded
with complex electronic structure [3]. Evidently, the property of identical environments is
not coincidental. Unsurprisingly, many useful necessary conditions about equilibrium and
stability follow from the definition [31]. However, the basic reason why these structures are
so common can be considered one of the fundamental open questions of atomic structure.

There is a glaring counter-example: atomic number 25, Manganese. In fact, this “most
complex of all metallic elements”[27] is (at room temperature and pressure) a 4-lattice. Ac-
cording to Hobbs et al. [27], due to nearly degenerate spin configurations, the observed struc-
ture should be considered as containing four different magnetic atoms MnI, MnII, MnIII,
MnIV. Briefly, Mn should be considered an alloy, rather than an element. There are a few
other cases that could be considered equivocal: Is the structure of boron icosahedral (a 1-OS)
or the weakly bonded lattice of icosahedra (not a 1-OS) that is sometimes given as its struc-
ture? But, overwhelmingly, the assertion made above about the prevalence of 1-OS on both
the Periodic Table, and also for nanostructures made with one type of atom, is accurate.

Intuitively, one can easily imagine why such structures are interesting. If a property can be
assigned to each atom, depending on its environment, it is frame-indifferent (independent of
the Qi), and one can superpose it by summing over atoms, then an appreciable bulk property
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could result. This property, and fact that the patterns of bonding that in nanostructures differ
appreciably those from bulk crystals, underlies significant research in nanoscience.

The idea of objective structures was articulated by Crick and Watson [10], Caspar and Klug
[5] and in the less well-known work of Crane [9]. Caspar and Klug used the term equivalence
to denote structures in which each subunit is “situated in the same environment”. The
fundamental paper of Dolbilin, Lagarias and Senechal [13] proposed the concept of regular
point systems, which adds to the idea of identical environments the hypotheses of uniform
discreteness and relative denseness.

3 Objective structures

Structures containing only one element are interesting, but very special. There is a more gen-
eral concept [31] applicable to the structures of many alloys and many molecular structures.
Consider a structure consisting of N “molecules”, each consisting of M atoms. The termi-
nology is for convenience – they may not be actual molecules. We say that a structure is an
objective molecular structure (briefly, an M-OS) if one can set up a one-to-one correspondence
between atoms in each molecule such that equivalent atoms see that same environment. So,
in this case we use a double-index notation S = {xi,k ∈ R3 : i = 1, . . . , N, k = 1, . . . ,M},
where xi,k is the position of atom k in molecule i. Here, with N ≤ ∞ and M < ∞.
S is an M-OS if x1,1, . . . x1,M are distinct and there are NM orthogonal transformations
Qi,k, i = 1, . . . , N, k = 1, . . . ,M such that

{xi,k +Qi,k(xj,` − x1,k) : j = 1, . . . , N, ` = 1, . . . ,M} = S for i = 1, . . . , N, k = 1, . . . ,M.
(3)

Note that the reorientation Qi,k ∈ O(3) is allowed to depend on both i and k. Briefly, xi,k sees
the same environment as x1,k. This definition is the direct analog of multiregular point systems
of Dolbilin, Lagarias and Senechal [13], but excluding the conditions of uniform discreteness
and relative denseness. The author was led to it in a study with Falk [17] of the helical tail
sheath of Bacteriophage T-4, while writing a formula for the positions and orientations of its
molecules consistent with measured electron density maps. An M-OS|M=1 is a 1-OS.

The definition of an M-OS can be written using a permutation Π on two indices (p, q) =
Π(j, `):

xi,k +Qi,k(xj,` − x1,k) = xΠ(j,`). (4)

It is not reflected by the notation here, but Π depends on the choice of (i, k). We can also
assign a species to each (j, `). In most applications it would be required that atom (j, `) is
the same species as atom (j′, `). Also, it would be required that Π preserve species, so that
the environment of atom (i, k) matches the environment of atom (1, k) in both placement
and species of atoms. The most interesting dimensions for the structure of matter are 3 and
2, but the definition is meaningful in any number of dimensions. Finally, in applications to
atomic structure we are only interested in discrete M-OS. Of course, if one point of a 1-OS is
an accumulation point, then every point is an accumulation point, since each point sees the
same environment.

The assertions about 1-OS made in the preceding section are easily proved using the
definitions above, but an even easier method is to note the following relation between objec-
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tive structures and isometry groups. An isometry group is a group of elements of the form
(Q|c), Q ∈ O(n), c ∈ Rn based on the product (Q1|c1)(Q2|c2) = (Q1Q2|c1 + Q1c2), the iden-
tity (I|0), and inverses (Q|c)−1 = (QT | − QT c). Isometries can act on Rn in the obvious
way: g(x) = Qx + c where g = (Q|c). The product is designed to agree with composition of
mappings: g1g2(x) = g1(g2(x)). As above, in view of the applications, we will put n = 3.

Let S = {xi,k ∈ R3 : i = 1, . . . , N, k = 1, . . . ,M} be a discrete M-OS. Any such structure
has an isometry group G:

G = {(Q|c), Q ∈ O(3), c ∈ R3 : Qxi,k + c = xΠ(i,k) for a permutation Π}. (5)

Let M1 = {x1,k : k = 1, . . . ,M} be “molecule 1”. We wish to show that S is the orbit of
molecule 1 under a discrete group of isometries. To see this, rearrange the definition of an
M-OS as

Ri,kxj,` + xi,k −Ri,kx1,k = xΠ(j,`). (6)

Hence, gi,k := (Ri,k |xi,k−Ri,kx1,k) ∈ G. However, trivially, gi,k(x1,k) = xi,k, and this holds for
all i = 1, . . . , N, k = 1, . . . ,M . Hence, S is contained in the orbit ofM1 under G. Conversely,
putting i = 1 in (5) we have that the orbit of M1 under G is contained in S.

This simple argument apparently has two flaws. First, the group G that one gets may
not be discrete. That would be a serious flaw, since evidently we know very little about the
nondiscrete groups of isometries, even in R3. (However, see remarks below for why these
groups might be important to the structure of matter.) We should mention that discreteness
is not merely a technical condition that rules out some special cases, but rather it plays a
dominant role in the derivation of the groups, particularly in the subperiodic case appropriate
to nanostructures. Second, in this argument there is nothing that prevents the images ofM1

from overlapping. The latter is consistent with the definitions, and also advantageous from
the physical viewpoint. That is, while we have imposed the condition that the points in M1

are distinct, the definition of M-OS allows xi,j = xi′,j for i 6= i′. This is advantageous as it
saves the result above. Also, it allows a structure such as ethane C2H6 to be a 2-OS, which
is certainly reasonable: M1 is C-H, each H sees the same environment, each C sees the same
environment, and the image of C-H has overlapping Cs.

The geometric concept of identical environments allows Qi,k to depend on both i, k. How-
ever, if S is the orbit of x1,k, k = 1, . . . ,M , under an isometry group g1 = (Q1|c1), . . . , gN =
(QN |cN), i.e., xi,k = Qix1,k + cc, then Qi,k in (3) can be chosen as Qi, and thus is independent
of k. This is seen by direct substitution of Qi,k = Qi into (3).

The nondiscreteness turns out not to be a problem. It is easily proved that if a nondiscrete
group of isometries in 3-D generates a discrete structure when applied to a point x1, it gives
a single point, a 1-D Bravais lattice, or a 1-D 2-lattice.

Now we can revisit some of the assertions make in Section 2 concerning examples of 1-OS.

Buckminsterfullerine (C60) Let G = {R1, . . . , RN} be a finite subgroup of O(3) and
x1 6= 0. (For C60 choose the icosahedral group, N = 60) and let xi = Rix1, i = 1, . . . , N .
One can also see directly that (2) is satisfied with Qi = Ri. In case that x1 is fixed by some
elements of R1, . . . , RN , then in this case one can replace G by G/Gx1 to obtain a free action
(i.e., avoid duplication).
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Figure 1: Buckminsterfullerine.
Pentagons added for clarity.

Single-walled carbon nanotubes (of any chirality)
The formulas below can be found by rolling up a graphene
sheet isometrically and seamlessly (see, e.g., [14]) and then
noticing the group structure. The positive integers (n,m)
define the chirality. Letting ê1, ê2, ê3 be an orthonormal ba-
sis and Rθ ∈ SO(3) a rotation with counterclockwise angle
θ and axis ê3, carbon nanotubes are given by the formula

gν11 g
ν2
2 g

ν3
3 (x1), ν1, ν2, ν3 ∈ Z, (7)

with g1 = (Rθ1|t1), g2 = (Rθ2|t2) and g3 = (−I + 2e⊗ e |0),

t1 = τ1ê3, t2 = τ2ê3, e = cos(πξ)ê1 + sin(πξ)ê2, x1 = ρê1 − ηê3, (8)

and

θ1 =
π(2n+m)

n2 +m2 + nm
, θ2 =

π(2m+ n)

n2 +m2 + nm
, τ1 =

3m`C−C

2
√
n2 +m2 + nm

, τ2 =
−3n`C−C

2
√
n2 +m2 + nm

,

ξ =
(2n+m) + (2m+ n)

6(n2 +m2 + nm)
, ρ =

`C−C
2π

√
3(n2 +m2 + nm), η =

`C−C(m− n)

4
√
n2 +m2 + nm

. (9)

The fixed integers n,m define the chirality of the nanotube and `C−C is the carbon-carbon bond
length before rolling (To account for additional relaxation of the bond lengths after rolling
one can simply omit the formula for the radius ρ and treat ρ as an independent parameter).

Figure 2: Car-
bon nanotube (a 1-
OS) with chirality
n = 3, m = 8,
`C−C = 1.42, col-
ored according to
the value of ν3 ∈
{1, 2}.

We see that g1g2 = g2g1 and gig3 = g3g
−1
i , i = 1, 2, so

gν11 g
ν2
2 g

ν3
3 , ν1, ν2, ν3 ∈ Z is a (discrete) group. Therefore the orbit (7)

describes a 1-OS. To obtain a free action, confine ν3 ∈ {1, 2}, ν1 ∈ Z
and ν2 ∈ {1, . . . , ν?}, where ν? is the smallest positive integer such that
gν1g

ν?
2 = id is solvable for ν ∈ Z.

Any 2-lattice Of course any Bravais lattice is a 1-OS: use a suitable
indexing in terms of triples of integers ν = (ν1, ν2, ν3), write xν = ν1e1 +
ν2e2 + ν3e3 and choose Qν = I in (2). As noted above and represented
prominently in the Periodic Table, any 2-lattice is also a 1-OS. To see this,
choose g1 = (I |e1), g2 = (I |e2), g3 = (I |e3) and g4 = (−I |0). Then, for
s = 1, 2,

gν11 g
ν2
2 g

ν3
3 g

s
4(x1) = ν1e1 + ν2e2 + ν3e3 ± x1. (10)

Referring to (1) we can choose x1 = (b−a)/2 and modify these isometries
to translate the whole structure1 by (a+b)/2 to get exactly (1). Of course,
{gν11 g

ν2
2 g

ν3
3 g

s
4 : ν1, ν2, ν3 ∈ Z3, s = 1, 2} is a (discrete) group, because

g1, g2, g3 commute and gig4 = g4g
−1
i , i = 1, 2, 3.

This kind of argument works in any number of dimensions and there-
fore covers two-dimensional 2-lattices, such as graphene.

1Change each gi to tgit
−1 where t = (I|c), c = (a+ b)/2.
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HCP The hexagonal close packed lattice is a 2-lattice, as proved above,
and therefore is a 1-OS by the result just above. However, it is useful to express it by a different
group to expose an important issue. Beginning from the description HCP above, i.e.,

e1 =
√

3αê1, e2 =
√

3α
(

(1/2)ê1 + (
√

3/2)ê2

)
, e3 = 2α

√
2ê3, (11)

and with Rθ ∈ SO(3) a counterclockwise rotation of θ about ê3, define

h = (Rπ/3 | (1/2)e3), t1 = (I |e1) t2 = (I |e2). (12)

The set {higj1gk2 : i, j, k ∈ Z} is a group (t1t2 = t2t1, t2h = ht1, t1h = ht1t
−1
2 ), and the

orbit of (2/3)e2 − (1/3)e1 is HCP. This illustrates that we can have two groups, this one and
the one of the preceding paragraph, not related by an affine transformation G → aGa−1,
a = (A|c), detA 6= 0, that generate the same structure when the orbits of suitable points are
taken.

For the purpose of this article we do not care about multiplication tables (we need the
actual isometries with their parameter dependence), affine equivalence (example of HCP) or
whether the closure of the fundamental domain is compact (not true for nanostructures).
Embarrassingly, we do not even care much about symmetry. If we have a set of generators,
depending smoothly on parameters, and the symmetry suddenly jumps up at values of the
parameters – such as at γ = 1,

√
2 in the example of Bain above – it makes no difference for

any of the results given below. On the other hand, the analytical structure of the generators
is critically important. For the purposes here it would be very useful to have a short lists of
formulas for generators giving all objective structures, not further broken down according to
their abstract groups.

4 An invariant manifold of molecular dynamics

Structure and invariance come together when we assign a set of differential equations having an
invariance group that matches the group used to make the structure. Isometries are expected
to play an important role because of the frame-indifference of atomic forces. Examples of
exploiting symmetries in continuum theory [15] might suggest that a differential structure (i.e,
a Lie group) is essential, but, in fact, the matching of discrete group and discrete structure is
also possible.

Molecular dynamics is an interesting example. The basic invariance of the equations of
molecular dynamics is frame-indifference and permutation invariance. Let us use the indexing
of M-OS to describe these invariances, but without any assumptions about the structure. So
we assume a collection of atomic positions S = {xi,k ∈ R3 : i = 1, . . . , N, k = 1, . . . ,M} with
N ≤ ∞ and M <∞, and suppose that the force on atom (i, k) is given by

fi,k(. . . , xj,1, xj,2, . . . , xj,M , xj+1,1, xj+1,2, . . . , xj+1,M , . . . ). (13)

As indicated, the force on atom (i, k) depends on the positions of all the atoms. We have
NM such forces. They are subject to two fundamental invariances: frame-indifference and
permutation invariance.
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Frame-indifference. For Q ∈ O(3), c ∈ R3,

fi,k(. . . , Qxj,1 + c, . . . , Qxj,M + c,Qxj+1,1 + c, . . . , Qxj+1,M + c, . . . ) (14)

= Qfi,k(. . . , xj,1, . . . , xj,M , xj+1,1, . . . , xj+1,M , . . . ),

for all Q ∈ O(3), c ∈ R3 and xj,` ∈ (R3)NM .

Permutation invariance. For all permutations Π and xj,` ∈ (R3)NM ,

fi,k(. . . , xΠ(j,1) . . . , xΠ(j,M), xΠ(j+1,1), . . . , xΠ(j+1,M), . . . ) (15)

= fΠ(i,k)(. . . , xj,1, . . . , xj,M , xj+1,1, . . . , xj+1,M , . . . ),

If we introduce species as described above, then Π is also required to preserve species: if atom
i, k has species A and (p, q) = Π(i, k) then the species of atom p, q is A.

Typically, NM =∞, in which case one cannot speak of a potential energy, but, in the finite
case, if fi,k = −∂ϕ/∂xi,k then the conditions (15), (16) follow from the familiar invariances
ϕ(. . . , Qxj,` + c, . . . ) = ϕ(. . . , xj,`, . . . ) and ϕ(. . . , xΠ(j,`), . . . ) = ϕ(. . . , xj,`, . . . ), respectively.

As one can see from the examples (7)-(12), the formulas for objective structures con-
tain lots of parameters. Eventually, we are going to solve the equations of molecular dy-
namics for functions depending on time, t > 0. To use the invariance as completely as
possible without unduly restricting the number of atoms or their motions, we could allow
these group parameters to depend on time. In general suppose we have an isometry group
g1 = (Q1(t)| c1(t)), . . . , gN = (QN(t)| cN(t)) smoothly depending on t. The property we will
need is

d2

dt2
gi(y(t)) =

d2

dt2
(
Qi(t)y(t) + ci(t)

)
= Qi(t)

d2y(t)

dt2
, (16)

but we will know very little a priori about y(t), t > 0, beyond some smoothness. Letting a
superimposed dot indicate the time derivative and using Q̇i = QiWi, where W T

i = −Wi, the
condition (16) is

c̈i = −Qi

(
W 2
i y + Ẇiy + 2Wiẏ

)
. (17)

The only way this holds for any reasonable class2 of smooth motions y(t) is

Qi = const. ∈ O(3) and ci = ait+ bi, (18)

where ai, bi ∈ R3, i = 1, . . . , N . While the latter may appear to be merely a Galilean
transformation, the dependence on i gives many nontrivial cases. Of course, one has to check
that the (18) is consistent with the group properties at each t > 0.

We say that the group G = {g1, . . . , gN}, gi = (Qi | ait + bi), is a time-dependent discrete
group of isometries if (18) is satisfied, and we use the notation gi(y, t) = Qiy + ait + bi. We
also assign a mass mk > 0 to each atom (1, 1), . . . (1,M), and we assume that atom i, k also
has mass mk, consistent with the remarks about species above. Now, instead of thinking
of atoms (1, 1), . . . (1,M) as molecule 1, we think in terms of a numerical method, and call
atoms (1, 1), . . . (1,M) the simulated atoms. In many cases they will not behave at all like a

2It is not sufficient for our purposes to satisfy (17) in a statistical sense.
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molecule. We will also have nonsimulated atoms and their positions will be given (as in an
M-OS) by the group:

yi,k(t) = gi(y1,k(t), t), i = 1, . . . , N, k = 1, . . . ,M (19)

Obviously we have assigned g1 = id.
Let G = {g1, . . . , gN} be a time-dependent discrete group of isometries. Let initial positions

y◦k ∈ R3 and initial velocities v◦k, k = 1, . . . ,M , be given and suppose the simulated atoms
y1,k(t), t > 0, satisfy the equations of molecular dynamics for forces that are frame-indifferent
and permutation invariant:

mkÿ1,k = f1,k(. . . , yj,1, yj,2, . . . , yj,M , yj+1,1, yj+1,2, . . . , yj+1,M , . . . )

= f1,k(. . . , gj(y1,1, t), . . . , gj(y1,M , t), gj+1(y1,1, t), . . . , gj+1(y1,M , t), . . . ), (20)

subject to the initial conditions

y1,k(0) = y◦k, ẏ1,k(0) = v◦k, k = 1, . . . ,M. (21)

Then, the nonsimulated atoms also satisfy the equations of molecular dynamics:

mkÿi,k = f1,k(. . . , yj,1, yj,2, . . . , yj,M , yj+1,1, yj+1,2, . . . , yj+1,M , . . . ). (22)

Note that (20),(21) is a (nonautonomous) system of ODEs in standard form for the sim-
ulated atoms. We have not stated this as a theorem because we have not spelled out the
(straightforward) conditions on f1,k that would allow us to invoke one of the standard ex-
istence theorems of ODE theory. Another (also straightforward to handle) technical issue
is that a standard atomic forces blow up repulsively when two atoms approach each other.
Aside from these issues, the proof is a simple calculation that uses both frame-indifference and
permutation invariance. To see this, fix i, k and suppose we want to prove that yi,k(t) satisfies
(22) as written. Write gi = (Qi | ci), ci = ait + bi, so that g−1

i = (QT | − QT ci). There is a
permutation Π (depending on i) such that yΠ(j,`)(t) = g−1

i (yj,`, t). This permutation satisfies
Π(i, k) = (1, k). Now use (16), permutation invariance, and frame-indifference (in that order):

mkÿi,k = mkQiÿ1,k = Qif1,k(. . . , yj,1, . . . , yj,m, yj+1,1, . . . , yj+1,M , . . . )

= QifΠ(i,k)(. . . , yj,1, . . . , yj,m, yj+1,1, . . . , yj+1,M , . . . )

= Qifi,k(. . . , yΠ(j,1), . . . , yΠ(j,m), yΠ(j+1,1), . . . , yΠ(j+1,M), . . . )

= Qifi,k(. . . , g
−1
i (yj,1), . . . , g−1

i (yj,m), g−1
i (yj+1,1), . . . , g−1

i (yj+1,M), . . . )

= Qifi,k(. . . , Q
T
i (yj,1 − ci), . . . , QT

i (yj,m − ci), QT
i (yj+1,1 − ci),

. . . , QT
i (yj+1,M − ci), . . . )

= fi,k(. . . , yj,1, . . . , yj,m, yj+1,1, . . . , yj+1,M , . . . ). (23)

This result can be rephrased as the existence of a (time-dependent) invariant manifold
of molecular dynamics. Given the many isometry groups and their time dependences, this
provides a multitude of mainly unstudied invariant manifolds of the equations of molecular
dynamics. Their stability of course is also unknown.
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We can describe these invariant manifolds in terms of the isometry groups. The conven-
tional description is in phase space, using momenta pi,k = mkẏi,k and positions qi,k = yi,k.
Using our notation for time-dependent discrete isometry groups, G = {g1, . . . , gN}, gi =
(Qi | ait+ bi), we observe that

pi,k = Qip1,k +mkai, qi,k = Qiq1,k + ait+ bi, (24)

which describes an affine manifold in phase space with a simple affine time dependence. Ex-
cept for the trivial mk dependence in the first of (24), this family of invariant manifolds is
independent of the material. That is, this large set of invariant manifolds is present whether
one is simulating steel, water or air. (Of course, there is a large number, typically 3NM =∞,
of dimensions too!). More importantly, this becomes a powerful simulation tool if the atomic
forces have a cut-off. One can simulate certain large-scale flows, or the failure of nanostruc-
tures, by a small simulation [11, 12]. One solves (20)-(21) merely for the simulated atoms,
with forces given by all the atoms. Of course, this requires a good method for tracking some
of the nonsimulated atoms, i.e., those within the cut-off. As a numerical method, this is called
objective molecular dynamics [11].

Let us take a simple example, the translation group. Using a convenient indexing in terms
of triples of integers ν = (ν1, ν2, ν3), we write gν = (I |aνt+ bν). We see that to satisfy closure
with this time-dependence, we must have

aνt+ bν = ν1(b̂1 + â1t) + ν2(b̂1 + â1t) + ν3(b̂1 + â1t) =
3∑
`=1

ν`(I + tA)e`, (25)

where e` = b̂` and the 3 × 3 matrix A is chosen so that â` = Ae`. Tacitly, we have assumed
that the e` = b̂` are linearly independent, so that, initially, the atoms are not confined to
a layer. The simulated atom positions are say y1(t), . . . , yM(t) and the nonsimulated atoms,
yν,k(t) = gν(yk(t)) = yk(t) + ν`(I + tA)e`, ν = (ν1, ν2, ν3) ∈ Z3, k = 1, . . . ,M .

In this method atoms are moving around, filling space roughly uniformly. During com-
putations, the simulated atoms quickly diffuse into the nonsimulated atoms. What is the
macroscopic motion? We could spatially average the velocity, but that would be wrong: the
velocity of continuum mechanics is not the average velocity of the particles! (For a simple
explanation see [32].) To get the velocity of continuum mechanics we should average the mo-
mentum, and divide by the average density. Briefly, a suitable method in the present case is
to prove that the center of mass of the simulated atoms moves with constant velocity which,
by adding an overall Galilean transformation, we take to be zero3. Then the centers of mass
of the images of the simulated atoms gν(yk(t)) then lie on a grid deforming according to the
motion4

y(x, t) = (I + tA)x, or, in Eulerian form, v(y, t) = A(I + tA)−1y (26)

3This requires an additional assumption on the forces fi,k that the resultant force on large volume, divided
by the volume, tends to zero as the volume (at constant shape) goes to infinity [?]. This effectively rules out
body forces, such as those due to gravity. It is easily proved directly for many accepted models of atomic
forces.

4The Eulerian and Lagrangian forms are related by the parameterized ODE, ∂y/∂t = v(y(x, t), t), y(0) =
x ∈ Ω ⊂ R3.
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Here, v(y, t) is the velocity field. Note that by looking at the motions of centers of mass,
we are precisely doing a spatial average of the momentum and then dividing by the average
density. Given that we get to choose A, we get quite a few interesting motions. They can be
very far-from-equilibrium, have nonzero vorticity (in fact, vortex stretching), and there are
quite a few of both isochoric and non-isochoric examples.

Another interesting example is based on the (largest) Abelian helical group. In [11] it was
used to study the failure of carbon nanotubes when stretched at constant strain rate.

5 Continuum and structural mechanics

Let’s take the translation group, leading to (26). We have a macroscopic velocity field v(y, t) =
A(I + tA)−1y arising from molecular dynamics simulation. For what choices of A, if any, does
v(y, t) satisfy some accepted equations of continuum mechanics? We can try the Navier-Stokes
equations in the incompressible case. First we check that there are choices of A such that
div v = 0. It is easily5 seen that div v = 0 for t > 0 if and only if detA = trA = trA2 = 0,
which, in turn implies that there is an orthonormal basis in which A has the form

A =

 0 0 κ
γ1 0 γ3

0 0 0

 . (27)

(So, even for isochoric motions we can have a time-dependent vorticity, curl v = (γ3 −
κγ1t,−κ, γ1) in this basis.) Now substitute v(y, t) = A(I + tA)−1y into the Navier-Stokes
equations

ρ

(
∂v

∂t
+∇v v

)
= −∇p+ ∆v,

i.e., ρ(−A(I + tA)−1A(I + tA)−1y + A(I + tA)−1A(I + tA)−1y) = −∇p+ 0, (28)

so, with p = const., the Navier-Stokes equations are identically satisfied.
The key properties being exploited in this case is that the left hand side of the balance of

linear momentum is identically zero, and, for the right hand side, the stress is only a function
of time when evaluated for the velocity field v(y, t) = A(I + tA)−1y. So its divergence is zero.
In fact, v(y, t) = A(I+ tA)−1y identically satisfies the equations of all accepted models of fluid
mechanics, including exotic models of non-Newtonian fluids and liquid crystals. The same is
true of all accepted models of solid mechanics6. It is fascinating to observe that, despite the
fact that molecular dynamics is time-reversible7 and much of continuum mechanics is not
time-reversible, this invariant manifold is inherited, in this sense, exactly.

Perhaps the most important feature of this family of solutions is that its form does not
depend on the material. This is expected: as already noted, the invariant manifold of molecular
dynamics (24) is also independent of the species of atoms being simulated. This feature

5Even easier, use the equivalent det(I + tA) = 1 and write out the characteristic equation.
6It was advocated in [11] that a a fundamental requirement on models should be that v(y, t) = A(I+tA)−1y

is a solution, i.e., that all continuum models inherit the invariant manifold.
7The function yi,k(−t) is a solution of (20) for initial conditions y◦i,k,−v◦i,k.
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strikes to the heart of experimental science, especially experimental mechanics. If you want
to learn about a material by testing it, you should impose boundary conditions that are at
least consistent with a possible solution of the governing equations. But one does not know
the coefficients of the governing equations ahead-of-time8, because one has not yet measured
the material properties! This fundamental dichotomy of experimental science is overcome
by solutions of the type discussed here. Design the testing machine to produce boundary
conditions consistent with a possible solution, and learn about the material by measuring the
forces.

In fact, if one looks at the Couette viscometer in fluid mechanics or tension-torsion ma-
chine in solid mechanics, they do in fact, have a relation to these groups and their invariant
manifolds. On the other hand these ideas could be more widely exploited in experimental
science (e.g., [12]).

These were all purely mechanical cases. What happens when one adds thermodynamics?
Let’s return to the invariant manifold (24). In atomistic theory temperature is usually inter-
preted as mean kinetic energy based on the velocity obtained, importantly, after subtracting
off the mean velocity. The temperature is then the mean kinetic energy of the simulated
atoms, assuming, as we have done above, that the center of mass of the simulated atoms
moves with zero velocity. But, unlike the velocity, there is nothing about a simulation based
on (20) that would determine this temperature, beyond the expectation that it depends on
A and the initial conditions (21) and, of course, the atomic forces. In simulations it can be
rapidly changing, and, in fact, it is expected in some situations to go to infinity in finite time9.
In summary, the temperature θ(t) is expected to be a function of time only, and not universal.
The agrees with continuum theory, for which in most cases the energy equation reduces to an
ODE for the temperature, when v(y, t) = A(I + tA)−1y. In short, temperature is a function
of time and its evolution is material dependent.

Experimental design is one of many subareas in continuum mechanics in which objective
structures play an interesting role. Another is the blossoming area of structural mechanics
called “origami structures”10. Fundamentally, frame-indifference is again being used: isome-
tries take stress-free states to stress-free states.

Kawasaki’s theorem in piecewise rigid origami concerns the 2n-fold intersection. For ex-
ample, in the ubiquitous case 2n = 4, draw four lines on a piece of paper and fold along
the lines11. This structure can be folded flat if and only if the sum of opposite angles is π.
Without loss of generality ê1, ê2, ê3 are orthonormal, the paper is the ê1, ê2-plane and consider
fold-lines coming out of the origin in directions

t1 = ê1, t2 = cosαê1 + sinαê2, t3 = cos(α + β)ê1 + sin(α + β)ê2,

t4 = cos(π + β)ê1 + sin(π + β)ê2, (29)

corresponding to successive (sectors : angles) (S1 : α), (S2 : β), (S3 : π − α), (S4 : π − β) with

8In cases on the cutting edge, one does not even know the form of the equations.
9See Section 6. Note that (I + tA) can lose invertibility in finite time.

10Already, the link between architecture and molecular structure was articulated by Caspar and Klug [5].
See also [8]

11Or, simply crush a piece of paper and push down onto the table so it is flat. Upon unfolding, you will see
numerous four-fold intersections with the sum of opposite angles equal to π. Even better, check many of the
delightful folding arrangements discovered by Robert J. Lang and others [38].

12



0 < α, β < π. Letting t⊥i = Q3ti, i = 1, . . . , 4, where Q3 is a counter-clockwise rotation of π/2
with axis ê3, it is easy to write down the folding deformation y : Ω→ R3, with 0 ∈ Ω ⊂ R2:

y(x) =


x, x · ê3 = 0, x · t⊥2 < 0, x · t⊥1 ≥ 0,
R2(η)x, x · ê3 = 0, x · t⊥3 < 0, x · t⊥2 ≥ 0,
R2(η)R3(ξ)x, x · ê3 = 0, x · t⊥4 < 0, x · t⊥3 ≥ 0,
R2(η)R3(ξ)R4(ω)x, x · ê3 = 0, x · t⊥1 < 0, x · t⊥4 ≥ 0,

(30)

where η = ±ω and

tan ξ =


(cosα−cosβ) sinω

cosω−cosα cosβ cosω+sinα sinβ
, η = ω,

(cosα+cosβ) sinω
cosω+cosα cosβ cosω−sinα sinβ

, η = −ω.
(31)

Here Ri(θ) ∈ SO(3) has axis ti and counter-clockwise angle θ, and 0 ≤ ω < π can be considered

Figure 3: Helical origami structures generated by two com-
muting isometries whose powers give a discrete group. Bot-
tom: the parallelogram is partly folded, as seen at left. Top:
the same parallelogram is folded a little more. These solu-
tions are isolated: for intermediate values of the homotopy
parameter ω the associated group is not discrete.

the homotopy parameter. We
have fixed the overall rotation by
putting y(x) = x in S1

12

Now we make a special choice
of Ω: we choose it to be a general
parallelogram, so that the fold-
lines go from the origin to the cor-
ners. We have some freedom to
assign angles and side lengths, as
well as on the placement of the
origin, but these restrictions can
be easily organized. Now par-
tially fold it, i.e., choose ± and
a value of 0 < ω < π in (30),
(31). In the partly folded state let
`1, `2, `3, `4 be consecutive edges on
the boundary of the deformed par-
allelogram, so that |`1| = |`3| and
|`2| = |`4|. Choose two isometries
g1 = (Q1|c1), and g2 = (Q2|c2) out
of the air, arrange that they com-
mute, and arrange that g1(`1) = `3 and g2(`2) = `4. Of course, the latter is possible because
g1, g2 are isometries, and there is obviously some freedom. This freedom is quantifiable without
much difficulty. The underlying Abelian group is {gi1g

j
2 : i, j ∈ Z}.

Now we are done. The beauty of Abelian groups is that, not only does gi1(y(Ω)), i = 1, 2, . . .
produce a perfectly fitting helical origami chain, and gj2(y(Ω)), j = 1, 2, . . . another such chain,

12In fact, this pair of homotopies, parameterized by 0 ≤ ω < π and ±, are the only piecewise rigid defor-
mations of Ω (with these fold lines) if y(x) = x in S1 and α 6= β, α+ β 6= π. If the latter holds there are some
additional ones. The foldability of general arrays of 4-fold intersections, and a corresponding algorithm for
folding them in terms of formulas like (30), is given in [39].
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but also gi1g
j
2(y(Ω)), i, j = 1, 2, . . . fills in the space between the chains perfectly with no gaps.

See Figure 3.
However, Figure 3 is not the generic case. More typically, as i, j get large, the structure

gets more and more complicated and begins to intersect itself. Of course, we knew that could
happen because nothing above prevents self-intersections. But it is worse than that: there are
accumulation points. The issue is: if we choose two commuting isometries “out of the air”,
invariably we will get a non-discrete group. Discreteness is a highly restrictive condition for
isometry groups, and is the main force behind the structure of the crystallographic groups of

Figure 4: Orbit of a single blue ball under a subset of a nondiscrete Abelian group with two
generators. The coloring is according to powers of one of these generators. Note that subsets of this
structure coincide with structures that are locally 1-OS, 2-OS, etc.

the International Tables. It is nevertheless worth illustrating the appearance of the structure
one gets. This is done in Figure 4 with balls instead of origami, for clarity. If one cuts off
the powers i, j early enough, one gets a perfectly nice structure that in fact, at least with two
generators, exhibits locally identical environments for most of the atoms. For that reason,
these non-discrete groups – or more accurately, their generators – about which evidently we
know nothing, are in fact quite interesting.

Moreover, orbits of non-discrete groups (with restricted powers) are seen in biology. Per-
haps the most obvious example is the biologically important microtubule. Its structure is
closely given by the construction above with two generators and carefully restricted powers13.
Another interesting example is from the work of Reidun Twarock and collaborators [36, 29].
To understand the placement of receptors on the surface of a viral capsid, she takes the orbit
of a certain non-discrete group with carefully restricted powers14. What are the nondiscrete
isometry groups, and how do we restrict the powers of their generators in a rational way,
perhaps guided by the concept of identical local environments?

In fact, one can satisfy all the matching conditions stated above using two commuting
isometries that do generate a discrete group, and there are many choices. Figure 3 is an
example. General theorems about these structures can be found in [18]. Beautiful origami
structures that approximate an arbitrary Lipschitz map that shortens distances are given by
Conti and Maggi [7].

Before moving on, it is worth highlighting the fundamental problem of self-intersection in
origami structures, since it so often prevents foldability and there are no good methods to
decide this ahead-of-time15. For mappings y : Ω → Rm, Ω ∈ Rn, with n = m a lot is known

13Its seam can be considered a consequence of non-discreteness and carefully restricted powers.
14To see that the generated group is not discrete in their simplest example (Figure 2 of [36]), let g1 =

(I | t), g2 = (R | 0) be the generators considered, where R ∈ SO(2) is a rotation of π/5 and 0 6= t ∈ R2.
Then g3 := g2g1g

−2
2 g1g2 = (I | (2 cos(π/5)) t). Thus g1 and g3 generate a nondiscrete subgroup because

2 cos(π/5) = (1/2)(1 +
√

5) is irrational.
15Writing deformations in the form (30) – the continuum mechanics approach to origami structures – is a
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that relates invertibility to invertibility on the boundary or to bounded measures of distortion
[2, 6, 30]. The concept of global radius of curvature [26] has also been used for this purpose
in knotted rods (n = 1,m = 3). Both of these approaches seem relevant, but neither seems
ideally suited.

6 Boltzmann equation

We return to the family of invariant manifolds of the equations of molecular dynamics, which
was seen to be inherited in a perfect way by continuum mechanics. We now consider statistical
theories intermediate between molecular dynamics and continuum mechanics. Of greatest
interest, in view of its remarkable predictive power in the far-from-equilibrium case, is the
Boltzmann equation.

The Boltzmann equation [37, 43] is an evolution law for the molecular density function
f(t, y, v), t > 0, y ∈ R3, v ∈ R3, the probability density of finding an atom at time t, in small
neighborhood of position y, with velocity v. It satisfies the Boltzmann equation:

∂f

∂t
+ v

∂f

∂x
= Cf (v) :=

∫
R3

∫
S2

B (n · ω, |v − v∗|) [f ′f ′∗ − f∗f ] dω dv∗, (32)

where S2 is the unit sphere in R3, n = n (v, v∗) = (v−v∗)
|v−v∗| , (v, v∗) is a pair of velocities associated

to the incoming collision of molecules and (v′, v′∗) are outgoing velocities defined by collision
rule

v′ = v + ((v∗ − v) · ω)ω, (33)

v′∗ = v∗ − ((v∗ − v) · ω)ω. (34)

The form of the collision kernel B (n · ω, |v − v∗|) is obtained from the solution of the two-body
problem of dynamics with the given force law between molecules. We use the conventional
notation in kinetic theory, f = f (t, x, v) , f∗ = f (t, x, v∗) , f

′ = f (t, x, v′) , f ′∗ = f (t, x, v′∗).
Let A be any 3 × 3 matrix. We consider the translation group and the time-dependent

invariant manifold specified by (24) with isometry group (25), macroscopic velocity v(y, t) =
A(I+tA)−1y, and a corresponding molecular dynamics simulation with atom positions yν,k(t),
ν ∈ Z3, k = 1, . . . ,M . At time t consider a ball Br(0) of any radius r > 0 centered at
the origin, and another ball Br(yν) of the same radius centered at yν = (I + tA)xν , where
xν = ν1e1 +ν2e2 +ν3e3. Both balls may contain some simulated atoms and some nonsimulated
atoms. However, no matter how irregular the simulation, if I am given the velocities of atoms
in Br(0) at time t, then I immediately know the velocities of atoms in Br(yν) at time t.
Specifically, if v1, . . . , vp are the velocities of atoms in Br(0), then v1 +Axν , . . . , vp +Axν are
the velocities in Br(yν). Or, in the Eulerian form appropriate to the Boltzmann equation, the
velocities in Br(yν) are

v1 + A(I + tA)−1yν , . . . , vp + A(I + tA)−1yν . (35)

reasonable step 1.
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But f(t, y, v) is supposed to represent the probability density of finding a velocity v in a small
neighborhood of y. Therefore, we expect that this simulation corresponds to a molecular
density function satisfying

f(t, 0, v) = f(t, y, v + A(I + tA)−1y), (36)

or, rearranging,
f(t, y, v) = g(t, v − A(I + tA)−1y). (37)

Substitution of (37) into the Boltzmann equation formally gives an immediate reduction:
g(t, w) satisfies

∂g

∂t
−
(
A(I + tA)−1w

)
· ∂g
∂w

= Cg (w) , (38)

where the collision operator C is defined as in (32). Once, again, despite the Boltzmann
equation being time-irreversible, the invariant manifold of molecular dynamics is inherited
in the most obvious way. Note that at the level of the Boltzmann equation, periodicity has
disappeared.

Equation (38) was originally found without reference to molecular dynamics, but rather by
noticing similarities between special solutions of equations of fluid mechanics and the moment
equations16 of the kinetic theory [24, 41]. Recently, an existence theorem for (38) has been
given [33], with surprising implications for the invariant manifold.

The most explicit results are for Maxwellian molecules. These are molecules that attract
with a force proportional to the inverse 5th power of their separation. For the collision kernel
B appropriate to these molecules the invariance of the left and right hand sides of (32) or (38)
match. We focus on the entropy (minus the H-function) given by

η(t) = −
∫
R3

g(t, w) log g(t, w) dw. (39)

The asymptotic analysis of self-similar solutions [33] gives, for a large class of choices of A,

η(t) = ρ(t) log

(
e(t)3/2

ρ(t)

)
+ Cg, (40)

where the density ρ and temperature e are given by explicit formulas:

ρ(t) =

∫
R3

g(t, w) dw, e(t) =

∫
R3

1

2
w2g(w, t) dw, (41)

and Cg is constant. In these far-from-equilibrium solutions the temperature and density
can be rapidly changing, and the entropy rapidly increasing. Nevertheless, the relation (40)
between entropy, density and temperature expressed by (40) is the same as for the equilibrium
Maxwellian distribution. That’s true except for one small but interesting point: the constant
Cg is strictly less than that of the Maxwellian distribution. From an information theoretic
viewpoint, the uncertainty of positions and velocities of atoms on the invariant manifold differs
from those of an equilibrium state at the same temperature and density by a constant, even
as the temperature evolves rapidly to infinity.

16Multiply (38) by polynomials in w and integrate over R3. The study of the solutions of the moment
equations has an extensive history beginning with Galkin [24] and Truesdell [41] and reviewed in [42]
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7 Maxwell’s equations

Maxwell’s equations have a bigger invariance group, the Lorentz group17 of special relativity.
It would be interesting to have a look at this full group, but we shall confine attention to
its Euclidean subgroup of isometries. The solutions of Maxwell’s equations do not describe
matter itself, but they interact with matter. In fact, almost everything we know about the
structure of matter comes by interpreting this interaction. This interpretation is not straight-
forward because, at the relevant wavelengths, we cannot measure the scattered electric or
magnetic fields directly, but only the time average of the magnitude of their cross product18.
Nevertheless, increasingly, such as in quasicrystals, the classification of atomic structures is
defined in terms of this interaction.

Even in the case of the now accepted definition of quasicrystals, the incoming radiation is
plane waves. That is, we assign electric and magnetic fields, respectively,

E(y, t) = nei(k·y−ωt) and B(y, t) =
1

ω
(k × n)ei(k·y−ωt), (42)

where n ∈ C3, k ∈ R3, k · n = 0, ω = c|k| and c is the speed of light. These plane waves
exert a force e(E + v × B) on each electron of the structure, which vibrates with velocity
v. Moving charges generate electromagnetic fields and so, the vibrating electrons, each with
charge e, send out spherical waves which in the far-field are again approximately plane waves.
The rigorous asymptotics of this process is delicate [22] and involves several small parameters
in addition to the Fresnel number dia(Ω)2|k|/d � 1. Here Ω ⊂ R3 is the illuminated region,
and d is the distance to the detector. The results are formulas in terms of E0(y) = neik·y for
the electric and magnetic fields in the far-field:

Eout(y, t) = − ce`
ei(k

′(y)·y−ωt)

|y − yc|

(
I − k′(y)

|k′(y)|
⊗ k′(y)

|k′(y)|

)∫
Ω

E0(z)ρ(z) e−ik
′(y)·zdz,

Bout(y, t) =
1

ω
k′(y) × Eout(y, t), (43)

where ρ : R3 → R≥ is the electronic density, xc ∈ Ω is a typical point of the illuminated
region, cel is a universal constant depending on the charge and mass of an electron, and

k′(y) =
ω

c

y − yc
|y − yc|

. (44)

With a simple idealized example we can begin to understand plane wave X-ray methods.
In the notation of Section 2, we assume that the electronic density is a sum of Dirac masses
at the points of a Bravais lattice generated by the linearly independing vectors e1, e2, e3,

ρ(y) =
∑

z∈L(e1,e2,e3)∩Ω

δz(y). (45)

With this choice the integral in (43) is∫
Ω

neik·zρ(z) e−ik
′(y)·zdz =

∑
z∈L(e1,e2,e3)∩Ω

n e−i((k
′(y)−k)·z. (46)

17in fact, the conformal Lorentz group, which includes dilatations as well as Lorentz transformations [4].
18that is, the time average of the Poynting vector (see [21], p. 1196).
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Therefore, if k′(y) − k belongs to the reciprocal lattice L(e1, e2, e3), ei · ej = 2πδij, then the
exponential factor contributes 1 to the (complex19) magnitude of (46) for every lattice point:
that is, constructive interference.

How much of this constructive interference is a consequence of choosing the electronic
density to be a sum of Dirac masses? Almost nothing [21, 20]: Suppose instead we assume

ρr(y) =
∑

z∈L(e1,e2,e3), |z|<r

ϕ(y − z) (47)

for a smooth function ϕ : R3 → R≥ with compact support, or, more generally, in the Schwartz
class S(R3). Here we have chosen Ω = Br(0) as the illuminated region. Then, the limit in the
sense of distributions of the complex magnitude of the integral in the expression (43) for Eout
is

lim
r→∞

∣∣∣∣∫
Br(0)

E0(z)ρ(z) e−ik
′(y)·zdz

∣∣∣∣ =
∑

z′∈L(e1,e2,e3)

|ϕ̂(z′)| δz′(k′(y)− k). (48)

From this result we not only see constructive interference but also strong destructive interfer-
ence: the sum in (48) is zero when k′(y) − k does not belong to the reciprocal lattice. It is
this result that underlies the 2 to 4 order-of-magnitude difference between peak heights and
background, and the sharpness of the peaks, in X-ray methods. This in turn is what makes
this method so accurate for structure determination. Discovery, improvement and application
of the method has led to no less than 14 Nobel prizes.

All this works because of matching symmetries. In the calculation (46) it is the ability
to combine the phase factors, or more precisely, that the translation group acting on plane
waves gives a phase factor times the plane wave back again. For more general choices of ρ,
we can use translation invariance (up to the multiplicative phase factor) of ρ(z) on the left
hand side of (46) to condense the integral to a lattice sum of an integral over the unit cell, to
see constructive interference. A more powerful method is the italicized theorem just above,
which is proved by a direct application of the Poisson summation formula [21]. The property
of plane waves being used is, for the translation gc = (I | c),

gc(ne
ik·y) := neik·(y+c) = eik·c(neik·y), (49)

i.e., with the group action indicated on the left of (49), the plane wave neik·y is an eigenfunction
of the translation group. The eigenvalues eik·c are the characters of this Abelian group. The
two key mathematical properties of plane waves are that, with the natural action (49), (i) they
are eigenfunctions of the translation group and (ii) they are solutions of Maxwell’s equations.

So much for plane waves. In principle, everything should work in the same way for any
other Abelian isometry group G. As seen in Section 2 and elsewhere, many of the most
studied structures today are not crystals, and it would be good to have an accurate method
of structure determination for them. Perhaps the most interesting mathematically are helical
structures like single-walled carbon nanotubes20. For one, the helical groups do not fit the

19Ibid. The time average of the Poynting vector for time-harmonic radiation is, up to a constant factor, the
complex magnitude of the electric field in the time harmonic case.

20Due to the issues discussed here and the typical presence of mixed chiralities in samples, the lattice
parameters of carbon nanotubes are not accurately known.
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classification scheme of the International Tables of Crystallography – there are infinitely many
helical groups according to that scheme. For another, helical (as well as many other) structures
tend to resist crystallization. Third, even if helical structures can be crystallized, it is quite
unclear that the structure will be close to the native structure.

We shall consider time harmonic solutions of Maxwell’s equations: E(y, t) = E0(y)e−iωt,
B(y, t) = B0(y)e−iωt, E0 : R3 → C3, B0 : R3 → C3. In this case Maxwell’s equations become

∆E0 = −ω
2

c2
E0, divE0 = 0, B0 = − i

ω
curlE0. (50)

For time-harmonic radiation the electric and magnetic fields in the far-field are still given by
(43), but now for a solution E0(y) of (50).

A critical part is choosing the action so that (i) is nontrivial and (ii) exploits the invariance
of Maxwell’s equations. The right action is

for g = (Q | c) ∈ G, g[E](y, t) = QE(g−1(y), t) = QE(QT (y − c), t). (51)

Here we use the bracket notation [...] to distinguish the action from that already introduced,
g(y) = Qy + c. Summarizing, we have design equations:

(i) for all g ∈ G, g[E0] = χgE0, and (ii) E0 satisfies Maxwell′s equations (50). (52)

Of course, plane waves satisfy the design equations.
The largest (discrete) Abelian helical group is

{higj : i ∈ Z, j = 1, . . . , n} where h = (Rθ | τe), g = (R2π/n | 0). (53)

with Rψ ∈ SO(3) having angle ψ and axis through e, |e| = 1, 0 < θ < 2π and21 n ∈ N.
Exploiting (52) for the helical group (53) is quite easy if we begin with (i). First, the

eigenvalue χg, g ∈ G, is seen to be a bounded continuous homomorphism from G to C \ 0
under multiplication in C, and therefore a character of G. The characters are χg = χ(θ, τ) =
ei(αθ+βτ), α ∈ Z, β ∈ R. Then, one can easily find the general form of E0 satisfying (i): in
cylindrical coordinates (r, ϕ, z) this is E0(r, ϕ, z) = ei(αϕ+βz)RϕE0(r, 0, 0). Finally, substitution
of the latter into Maxwell’s equations reduces them to a solvable system of ODEs. A general
form of the result are twisted waves22:

E(y, t) =
1

2π
e−iωt

∫ π

−π
eiαψRψn e

i y·Rψkdψ, k = (0, γ, β). (54)

Here, n ∈ C3 satisfies n · k = 0. A picture of a twisted wave is shown in Figure 5.
Theoretically, twisted waves can be used for structure determination of helical structures

similar to the way plane waves are used on periodic structures. A complete scheme for
theoretical structure determination is proposed in [21, 35]. The key parameters that are varied
are α and β. We cannot describe this in detail here, but one can get a glimpse of the idea
from Figure 6. Suppose we have an helical objective structure as shown in 6a. We are looking

21Strictly speaking, to be a helical group, θ is an irrational multiple of 2π but we will not need this restriction.
22For the form given here, see [34]; for alternative expressions see [35].
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Figure 5: A twisted wave showing electric field vectors plotted along an integral curve (blue) of the
Poynting vector.

down the axis. Each yellow atom sees the same environment; each red atom sees the same
environment; each green atom sees the same environment. In 6b we have superposed on this
structure a twisted wave whose values of α, β, n are tuned to give constructive interference, and
we have plotted just the electric field vectors at the atoms. As one can see, all the red vectors
are parallel, all the green vectors are parallel, and all the yellow vectors are parallel in this

(a) A 3-OS (b) 3-OS with twisted wave
Figure 6: (a) A 3-OS with green, yellow and red atoms, viewed down the axis. (b) The same
structure with a superimposed twisted wave highlighted at the atom positions.

projection. One can imagine that, if the phases are properly tuned one can get constructive
interference, measured at a detector on the axis. Moreover, the different length vectors should
in fact give information about what is in the unit cell.

These pictures illustrate constructive interference. Destructive interference that occurs
when the parameters or structure is tuned slightly off resonance relies on a far reaching
generalization of the Poisson summation formula [44] which in turn requires that the group be
extendable to a continuous symmetry group. In the case of the helical group this generalization
can also be seen in a simpler way [21].

8 Perspective

Clearly the subject of structure and invariance has a ragged boundary! Some questions that
could have been considered a century ago seem not to have been asked, and simple questions
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posed then seem to be excruciatingly difficult. But the subject has a vibrant connection with
materials science and technology today, with links to nanoscience, quasicrystals, origami,
structure determination and multiscale mathematics. In this section we make a selection of
what are (to the author) intriguing mathematical problems related to this line of thinking.

The most fundamental question seems to us to be: why do elements in the Periodic Table,
and nanostructures made with one element, having widely differing atomic forces and bonding
patterns, choose to crystallize as objective structures? Can that be proved in some framework,
while initially avoiding the question of what is the detailed structure?

There is an intriguing link between subsets of nondiscrete groups of isometries, objective
structures and quasicrystals. What are these groups, and how does one rationally choose the
subsets. Does this lead to a more physically-based approach to quasicrystalline structures
than the projection method?

Seeking some kind of general nonequilibrium statistical mechanics, that has something like
the simplicity of equilibrium statistical mechanics, is in the author’s view hopeless. After all,
even the Boltzmann equation treats only the more rudimentary kind of material, and it has all
the complexity of a general initial-value problem of a nonlinear integro-differential equation for
a function of 7 variables. A classic approach is to try to simplify by looking near equilibrium.
A fresh approach could be the following. We have followed a far-from-equilibrium invariant
manifold from molecular dynamics to the Boltzmann equation to continuum mechanics. There
seem to be many coincidences, such as an explicit relationship between density, temperature
and entropy that holds far from equilibrium. These are highly suggestive that there may be a
relatively simple statistical mechanics on this manifold. There the only gradient is the velocity
gradient. Of course, any such statistical mechanics cannot be based on Hamiltonian = const..

The method of objective molecular dynamics presented in Section 4 could be more widely
used. There are also fundamental mathematical questions (stability) and subtle numerical
issues (efficiency). Note that in a general continuum flow, a piecewise constant spatial ap-
proximation of the Lagrangian velocity field nominally gives a set of elements each with a
constant A. Is there a general multiscale method here?

What is the scope of the interaction light with matter? For example, even though the
structure in Figure 4 is not the orbit of a discrete group of isometries, it seems likely that,
with the right radiation, we could get a pretty strong constructive interference from it.

And finally, like a lot of mathematics, the key to understanding origami seems to be rigidity.
But, established lines of thinking about rigidity in differential geometry or elasticity seem not
to be fruitful. On the other hand, the link between martensitic phase transformations and
origami, already pioneered by Conti and Maggi [7], seems to be highly suggestive.
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