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Abstract

We give a mathematical analysis of a concept of metastability induced by in-
compatibility. The physical setting is a single parent phase, just about to undergo
transformation to a product phase of lower energy density. Under certain conditions
of incompatibility of the energy wells of this energy density, we show that the par-
ent phase is metastable in a strong sense, namely it is a local minimizer of the free
energy in an L1 neighbourhood of its deformation. The reason behind this result is
that, due to the incompatibility of the energy wells, a small nucleus of the product
phase is necessarily accompanied by a stressed transition layer whose energetic
cost exceeds the energy lowering capacity of the nucleus. We define and character-
ize incompatible sets of matrices, in terms of which the transition layer estimate at
the heart of the proof of metastability is expressed. Finally we discuss connections
with experiments and place this concept of metastability in the wider context of
recent theoretical and experimental research on metastability and hysteresis.

1. Introduction

Materials that undergo first order phase transformations without diffusion typ-
ically exhibit hysteresis loops, that is, loops in a plot of a measured property vs.
temperature as the temperature is cycled back and forth through the transformation
temperature. It is the rule rather than the exception that the area within these loops
does not tend to zero as the temperature is cycledmore andmore slowly. Thus, while
there is an issue of the time-scale of such experiments, hysteresis is apparently not
entirely due to viscosity or other thermally activated mechanisms. An alternative
explanation is metastability, as quantified by the presence of local minimizers in a
continuum level elastic energy. This paper is a mathematical analysis of this possi-
bility appropriate to cases in which the two phases are geometrically incompatible
in a certain precise sense.
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To illustrate our analysis in a simple case, let Ω ⊂ R
n be a bounded domain

with sufficiently smooth boundary ∂Ω , and consider the energy functional

I (y) =
∫

Ω

W (Dy(x)) dx, (1.1)

defined for mappings y : Ω → R
m , where Dy(x) = (

∂yi
∂xα

(x)) denotes the gradient
of y, so that Dy(x) belongs to the set Mm×n of real m × n matrices for each
x . Suppose that W : Mm×n → R is a continuous function satisfying W (A) �
C(1+ |A|p) for constants C > 0, p > 1, and having exactly two local minimizers
at matrices A1, A2 withW (A1) > W (A2). Thus, imposing no boundary conditions
on ∂Ω , the global minimizers of I are given by affine mappings ymin(x) = a2 +
A2x, a2 ∈ R

m , having constant gradient A2. Under suitable structural conditions on
W , we prove that if A1, A2 are incompatible in the sense that rank (A1 − A2) > 1,
and if W (A1) − W (A2) is sufficiently small, then y∗(x) = a1 + A1x, a1 ∈ R

m , is
a local minimizer of I in L1, that is there exists σ > 0 such that I (y) � I (y∗) if
‖y − y∗‖1 < σ .

Notice that if ‖y − y∗‖1 < σ then it can happen that Dy(x) belongs to a small
neighbourhood of A2 on a set E ⊂ Ω of positive measure, so that W (Dy(x)) <

W (A1) for x ∈ E . The basic idea underlying the analysis is that, if a nucleus E
of the product phase of arbitrary form is introduced in this way so as to lower the
energy, then, due to the incompatibility between the two phases, this nucleus is
necessarily accompanied by a transition layer that interpolates between the nucleus
and the parent phase A1. This transition layer costs more energy than the lowering
of energy due to the presence of the new phase. The analysis is delicate because the
energy (1.1) contains no contribution from interfacial energy that would dominate
at small scales. Thus, for example, scaling down of the nucleus and transition
layer using geometric similarity preserves the ratio of transition layer and nucleus
energies.

The above result is a special case of the considerablymore general metastability
theorem (Theorem 21) proved in this paper, in which the parent and product phases
are represented by disjoint compact sets of matrices K1 and K2 respectively. Since
the multiwell elastic energies we consider can exhibit nonattainment of the mini-
mum of I , we formulate the problem more generally in terms of gradient Young
measures, so that the metastability theorem applies to microstructures. We assume
that K1, K2 are incompatible in the sense that if an L∞ gradient Young measure
ν = (νx )x∈Ω is such that supp νx ⊂ K1 ∪ K2 for almost every x ∈ Ω , then either
supp νx ⊂ K1 for almost every x ∈ Ω , or supp νx ⊂ K2 for almost every x ∈ Ω .
We can then estimate the energy of a transition layer that must be present if a
gradient Young measure has nontrivial support near both K1 and K2. The delicate
case is when the support of the gradient Young measure near either K1 or K2 is
vanishingly small; to handle this, we find a way of moving and rescaling suitable
convex subsets of Ω so as to get half of the support of the gradient Young measure
in the subset near K1, and half near K2, which enables us to use a version of the
Vitali covering lemma to obtain the desired estimate. This method of varying the
volume fractions of a gradient Young measure has other applications and will be
developed in a forthcoming paper [13]. Using the estimate for the energy of the
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transition layer, we show that a gradient Young measure supported on K1 is a local
minimizer with respect to the L1 norm of the difference between the underlying
deformations, for energy densities that have a well at K1 and a slightly lower well
at K2.

The shape of the domain Ω matters for our analysis. It is possible to de-
feat metastability as discussed here using the “rooms and passages” domain of
Fraenkel [39], which consists of a bounded domain formed from an infinite se-
quence of rooms of vanishingly small diameters, each connected to the two adjacent
rooms by passages of even smaller diameter. For such a domain the parent phase
is not an L1 local minimizer, because one can reduce the energy through defor-
mations that are arbitrarily close in L1, whose gradients lie entirely in the parent
phase except for a nucleus of the product phase occupying a single room, together
with transition layers in the two adjacent passages. To quantify the effect of domain
shape on metastability we introduce a concept of a domain connected with respect
to rigid-body motions of a convex set C (see Section 2), for which the method
outlined in the previous paragraph can be applied, the constants in the transition
layer estimate depending onC . This shape dependence is expected to have physical
implications regarding the size of the hysteresis, for example in more conventional
domains with sharply outward pointing corners. This phenomenon is therefore dif-
ferent from the well-known lowering of hysteresis that occurs in magnetism due
to sharp inward pointing corners, and which is one explanation of the coercivity
paradox.

In applications, K2 usually grows with a parameter, either stress or temperature
(Section 6). As discussed byChu and the authors [11], one can derive upper bounds
to the size of the hysteresis by considering test functions. The easiest upper bound
is found when the stress, say, reaches a point where K2 has grown sufficiently
that there are matrices A ∈ K1 and B ∈ K2 such that rank (B − A) = 1. This
upper bound is directly related to the Schmid Law [66], though the conventional
reasoning behind this law is completely different than the one offered here (see
Section 6.1). In fact, for the problem of variant rearrangement discussed in [11]
and Section 6.1 there is a more complicated test function that implies a loss of
metastability earlier than the simple rank-one connection between A and B [11].
Curiously, these more complicated test functions require ∂Ω to have a sharp corner.
A more careful analysis of Forclaz [38] seems to suggest that this is necessary.

Our differential constraint implying compatibility conditions is curl F = 0,
where F is a gradient. Our framework applies to other constraints in the theory of
compensated compactness, except possibly that, in the case of compact sets K1 and
K2, we use Zhang’s lemma (see [82] and Lemma 1) to show that the definition of
incompatibility is independent of the Sobolev exponent p. The interesting question
of what are the incompatible sets for other important differential constraints seems
not to have been explicitly investigated.

The first metastability result of the type given here is due toKohn and Stern-
berg [51] who used Γ -convergence to prove under quasiconvexity assumptions
the existence of local minimizers for (1.1) with gradient near A1 (see also [50] for
an improved version, in particular showing that y∗ is a local minimizer). Our work
is also related to the important results of Grabovsky and Mengesha [40]. They
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prove, under assumptions of quasiconvexity, quasiconvexity at the boundary, and
nonegativity of the second variation, all imposed locally at the gradients of a C1

solution of the Euler–Lagrange equations, that this solution is an L∞-local mini-
mizer. Our approach differs from theirs in that we assume a multiwell structure of
the energy, but make much weaker assumptions on the eventual local minimizer,
which in our case is allowed to be a gradient Young measure. The idea behind the
concept of metastability that we discuss here was first introduced without proof by
Chu and the authors in [11,15].

The plan of the paper is as follows. In Section 2 we give some necessary tech-
nical background and preliminary results concerning gradient Young measures,
quasiconvexity and quasiconvexifications, and define and discuss C-connected do-
mains. In Section 3 we define incompatible sets, and characterize them in terms
of quasiconvexity, analyzing various examples. The fundamental transition layer
estimate is proved in Section 4, and applied to prove metastability in Section 5. Fi-
nally, in Section 6, we give various applications of the metastability theorem. The
first application is to the experiments of Chu and James on variant rearrangement
in CuAlNi single crystals under biaxial dead loads, which originally motivated this
paper. Then we discuss purely dilatational phase transformations, and the inter-
esting case of Terephthalic acid. Finally, in Section 7, we give a perspective on
metastability and hysteresis, discussing in particular other concepts of metastabil-
ity [23,32,42,48,49,86,87] that have recently appeared in the literature, as well as
experiments that show a dramatic dependence of the size of the hysteresis on con-
ditions of compatibility [28,67,80,86]. These observations answer some questions
and raise others.

2. Technical Preliminaries

2.1. Gradient Young Measures and Quasiconvexity

Let m � 1, n � 1. We denote by Mm×n the set of real m × n matrices, and
by SO(n) the rotation group of matrices R ∈ Mn×n with RT R = 1, det R = 1.
Lebesgue measure in Rn is denoted by Ln . Let Ω ⊂ R

n be a bounded domain. Fix
p with 1 � p � ∞. We consider Rm-valued distributions y in Ω whose gradients
Dy belong to L p(Ω; Mm×n). Without further hypotheses on Ω such distributions
need not in general belong to W 1,p(Ω;Rm), but it is proved in Maz’ya [55, p.
21] that they do so if Ω satisfies the cone condition with respect to a fixed cone
C∗ = {x ∈ R

n : |x | � ρ, x · e1 � |x | cosα}, where ρ > 0, 0 < α < π
2 ; that is,

any point x ∈ Ω is the vertex of a cone congruent to C∗ and contained in Ω , so
that x + QC∗ ⊂ Ω for some Q ∈ SO(n).

Given a sequence y( j) such that Dy( j) is weakly convergent in L p(Ω; Mm×n)

(weak* if p = ∞) there exist (see, for example, [8]) a subsequence y(μ) and a family
of probability measures (νx )x∈Ω on Mm×n , depending measurably on x ∈ Ω , such
that for any continuous function f : Mm×n → R and measurable G ⊂ Ω

f (Dy(μ)) ⇀ 〈νx , f 〉 in L1(G)

whenever this weak limit exists. We call the family ν = (νx )x∈Ω the L p gradient
Young measure generated by the sequence Dy(μ) (alternative names in common
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use are W 1,p gradient Young measure, or p-gradient Young measure). If νx = ν

is independent of x we say that the gradient Young measure is homogeneous.
If 1 < p � ∞ then the weak relative compactness condition is equivalent to
boundedness of Dy( j) in L p(Ω; Mm×n), whereas if p = 1 it is equivalent to equi-
integrability of Dy( j). If K ⊂ Mm×n is closed and Dy(μ) → K in measure, that is

lim
j→∞Ln({x ∈ Ω : dist (Dy(μ)(x), K ) > ε}) = 0 for all ε > 0,

then supp νx ⊂ K for almost everywhere x ∈ Ω .

Definition 1. A function ϕ : Mm×n → R is quasiconvex if

−
∫
G

ϕ(A + Dθ(x)) dx � ϕ(A) (2.1)

for any bounded open set G ⊂ R
n , all A ∈ Mm×n and any θ ∈ W 1,∞

0 (G;Rm),
whenever the integral on the left-hand side exists.

As is well known (see, for example, [29, p. 172]) this definition does not depend
on G. Also any quasiconvex function ϕ : Mm×n → R is rank-one convex and thus
continuous (see [60, Lemma 4.3]).

We recall the characterization of L p gradient Youngmeasures in terms of quasi-
convexity due to Kinderlehrer and Pedregal. In the following statement we combine
together various of their results.

Theorem 1. (Kinderlehrer and Pedregal [43,44]) Let 1 � p � ∞. A family ν =
(νx )x∈Ω of probability measures on Mm×n, depending measurably on x, is an L p

gradient Young measure if and only if

(i) ν̄x := ∫
Mm×n A dνx (A) = Dy(x) for almost everywhere x ∈ Ω and some

R
m-valued distribution y with Dy ∈ L p(Ω; Mm×n)

(ii) for any quasiconvex ϕ : Mm×n → R satisfying |ϕ(A)| � C(1 + |A|p) for
all A ∈ Mm×n, where C > 0 is constant, (no growth condition required if
p = ∞) we have

〈νx , ϕ〉 :=
∫
Mm×n

ϕ(A) dνx (A) � ϕ(ν̄x ) for almost everywhere x ∈ Ω,

(iii) if 1 � p < ∞ then
∫
Ω

∫
Mm×n |A|p dνx (A) dx < ∞; if p = ∞ then supp νx ⊂

G for some compact G ⊂ Mm×n.

Furthermore, if 1 � p < ∞ any L p gradient Young measure (νx )x∈Ω is gener-
ated by some sequence of gradients Dz( j) (possibly different from the generating
sequence Dy( j) in the definition) such that |Dz( j)|p converges weakly in L1(Ω) to
some g ∈ L1(Ω).

Remark 1. In [44] no assumption is stated concerning the bounded domain Ω , but
the proof uses the Sobolev embedding theorem for Ω and thus implicitly makes
some assumption. However, the proof can be easily modified, in Lemma 5.1, by
writingΩ as a disjoint union of scaled copies of a cube, rather than of scaled copies
ofΩ . For an alternative approach to L p gradient Youngmeasures see Sychev [72].
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We will make frequent use of the following version of Zhang’s lemma that is a
consequence of Müller [59, Corollary 3]. The original version is due to Zhang
[82, Lemma 3.1].

Lemma 1. Let K ⊂ Mm×n be compact, and suppose ν = (νx )x∈Ω is an L1

gradient Young measure with supp νx ⊂ K for almost every x ∈ Ω . Then ν is an
L∞ gradient Young measure; that is, it can be generated by a sequence z( j) whose
gradients Dz( j) are bounded in L∞(Ω; Mm×n).

2.2. Quasiconvex Functions Taking the Value +∞
Some care needs to be taken when defining quasiconvexity for functions which

take the value+∞. For example, as pointed out in [19, Example 3.5], the function ϕ

defined by ϕ(0) = ϕ(a ⊗ b) = 0, ϕ(A) = +∞ otherwise, where a ∈ R
m, b ∈ R

n

are nonzero vectors, satisfies (2.1) for any bounded open setG ⊂ R
n , all A ∈ Mm×n

and any θ ∈ W 1,∞
0 (G;Rm), even though ϕ is not rank-one convex and I (y) =∫

Ω
ϕ(Dy) dx is not sequentially weak* lower semicontinuous in W 1,∞(Ω;Rm).

See [10, p. 9] for further discussion, and another example related to Example 6. In
this paper we will define quasiconvexity for functions which take the value +∞
differently from in [19], as follows.

Definition 2. A function ϕ : Mm×n → R ∪ {∞} is quasiconvex if there exists a
nondecreasing sequence ϕ( j) : Mm×n → R of continuous quasiconvex functions
with

ϕ(A) = lim
j→∞ ϕ( j)(A) for all A ∈ Mm×n .

Remark 2. Note that any quasiconvex ϕ : Mm×n → R ∪ {∞} is lower semicon-
tinuous because it is the supremum of continuous functions.

Remark 3. Suppose ϕ : Mm×n → R is quasiconvex according to the above defin-
ition. Let G be a bounded domain, A ∈ Mm×n , θ ∈ W 1,∞

0 (G;Rm). Then for each
j we have

−
∫
G

ϕ(A + Dθ(x)) dx � −
∫
G

ϕ( j)(A + Dθ(x)) dx � ϕ( j)(A),

the left-hand integral being well defined by Remark 2, so that passing to the limit
j → ∞ we deduce that (2.1) holds. Thus ϕ is quasiconvex in the sense of Defini-
tion 1.

Let ϕ : Mm×n → R ∪ {∞} be quasiconvex. Let (νx )x∈Ω be an L∞ gradient

Youngmeasure corresponding to a sequence y(k) withDy(k) ∗
⇀ Dy in L∞(Ω;Rm).

For each j we have
∫

Ω

ϕ( j)(Dy(k)) dx �
∫

Ω

ϕ(Dy(k)) dx .
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Sinceϕ( j) is quasiconvex, letting k → ∞weobtain, using the lower semicontinuity
of

∫
Ω

ϕ( j)(Dz) dx with respect to weak* convergence in W 1,∞(Ω;Rm) (see, for
example, [29, p. 369]),

∫
Ω

ϕ( j)(Dy) dx �
∫

Ω

〈νx , ϕ( j)〉 dx � lim inf
k→∞

∫
Ω

ϕ(Dy(k)) dx .

(In order to apply the lower semicontinuity when we just have Dy(k) ∗
⇀ Dy in L∞,

we can, for example, write Ω as a disjoint union of cubes. In each cube we can fix
y(k) to be zero at the centre of the cube, from which weak* convergence in W 1,∞
follows. Thus we have the desired lower semicontinuity on each cube, from which
that on Ω follows.) Letting j → ∞, noting that ϕ( j)(Dy) � ϕ(1)(Dy), and using
monotone convergence, it follows that

−∞ <

∫
Ω

ϕ(Dy) dx �
∫

Ω

〈νx , ϕ〉 dx � lim inf
k→∞

∫
Ω

ϕ(Dy(k)) dx .

Thus the functional

I (y) =
∫

Ω

ϕ(Dy) dx

is sequentially lower semicontinuous with respect to weak* convergence of the
gradient in L∞. Also, if νx = ν is homogeneous then we obtain

ϕ(ν̄) � 〈ν, ϕ〉.
Lemma 2. Assume that ϕ : Mm×n → R ∪ {+∞} is such that dom ϕ = {A ∈
Mm×n : ϕ(A) < ∞} is bounded. Then ϕ is quasiconvex if and only if ϕ is lower
semicontinuous and 〈μ, ϕ〉 � ϕ(μ̄) for all homogeneous L∞ gradient Young mea-
sures μ.

Proof. The necessity of the conditions has already been proved without the ex-
tra condition on ϕ. Conversely, suppose that ϕ is lower semicontinuous and that
〈μ, ϕ〉 � ϕ(μ̄) for all homogeneous gradient Young measures μ. Since dom ϕ is
bounded and ϕ lower semicontinuous, ϕ is bounded below. Also, the lower semi-
continuity implies (for example by [56, Theorem 3.8, p. 76]) that there is a nonde-
creasing sequence of continuous functionsψ( j) such that lim j→∞ ψ( j)(A) = ϕ(A)

for all A ∈ Mm×n . Since dom ϕ is bounded we may also assume that ψ( j)(A) �
C |A|p − C1 for all A ∈ Mm×n , where C > 0 and C1 are constants and p > 1.
Let ϕ( j) = (ψ( j))qc be the quasiconvexification of ψ( j), that is the supremum
of all continuous real-valued quasiconvex functions less than or equal to ψ( j).
Then ϕ( j) is continuous and quasiconvex [29, p. 271], and it suffices to show that
lim j→∞ ϕ( j)(A) = ϕ(A) for all A. Suppose this is not the case, that there exists
A ∈ Mm×n with ϕ( j)(A) � M < ∞, where M < ϕ(A). By the characterization
[29, p. 271] of quasiconvexifications,

ϕ( j)(A) = inf
θ∈W 1,∞

0 (Q;Rm )

−
∫
Q

ψ( j)(A + Dθ) dx,
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where Q = (0, 1)n . Hence there exist ε > 0 and a sequence θ( j) ∈ W 1,∞
0 (Q;Rm)

such that

−
∫
Q

ψ( j)(A + Dθ( j)) dx � M + ε < ϕ(A).

Thus for any j � k we have

−
∫
Q

ψ̃(k)(A + Dθ( j)) dx � −
∫
Q

ψ(k)(A + Dθ( j)) dx � M + ε,

where ψ̃(k) = min(k, ψ(k)). From the growth condition on ψ( j), a subsequence
(not relabelled) of A + Dθ( j) generates an L p gradient Young measure (νx )x∈Ω .
Passing to the limit j → ∞, noting that ψ̃(k) is bounded, we deduce that

−
∫
Q
〈νx , ψ̃(k)〉 dx � M + ε,

and then letting k → ∞ we obtain by monotone convergence that

−
∫
Q
〈νx , ϕ〉 dx � M + ε.

But then 〈μ, ϕ〉 � M + ε, where μ = −∫Q νx dx , which by [44, Theorem 3.1] is
a homogeneous L p gradient Young measure with centre of mass μ̄ = A. Since
ϕ(A) = ∞ for A �∈ dom ϕ we deduce that suppμ ⊂ dom ϕ. Since dom ϕ is
compact, it follows from Lemma 1 that μ is an L∞ gradient Young measure.
Hence by our assumption we have that ϕ(A) � M + ε < ϕ(A), a contradiction.


�
Remark 4. Lemma 2 is a p = ∞ version of a result of Kristensen [52], who
showed using a similar argument that if ϕ : Mm×n → R ∪ {+∞} satisfies the
growth condition

ϕ(A) � C |A|p − C1 for all A ∈ Mm×n, (2.2)

for someC > 0,C1, p > 1, thenϕ is the supremumof a nondecreasing sequence of
continuous quasiconvex functions ϕ( j) : Mm×n → R satisfying M � ϕ( j)(A) �
α j |A|p + β j for constants α j > 0, β j , M (so that in particular ϕ is quasiconvex
according to Definition 2) if and only if ϕ is lower semicontinuous and

〈μ, ϕ〉 � ϕ(μ̄) (2.3)

for any homogeneous L p gradient Young measure μ (that is, ϕ is closed W 1,p

quasiconvex in the sense of Pedregal [63]).
Note, however, that (2.3) is not in general a necessary condition for such ϕ to be

quasiconvex, as can be seen by takingϕ to be afinite quasiconvex function satisfying
(2.2) that is notW 1,p quasiconvex (see [19] with, for example,m = n = 3, p = 2).

Remark 5. The same proof shows that if ϕ : Mm×n → R ∪ {+∞} is a lower
semicontinuous function with dom ϕ bounded, and if A ∈ Mm×n , then there exists
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a nondecreasing sequence of continuous quasiconvex functions ϕ( j) : Mm×n → R

with ϕ( j)(A) → ϕ(A) if and only if ϕ

〈μ, ϕ〉 � ϕ(A) (2.4)

for all homogeneous gradient Young measures μ with μ̄ = A.

2.3. Quasiconvexification of Sets

A closed set G ⊂ Mm×n is quasiconvex if G = ϕ−1(0) for some nonneg-
ative finite quasiconvex function ϕ. Given H ⊂ Mm×n we can thus define the
quasiconvexification Hqc of H by

Hqc =
⋂

{G ⊃ H : G quasiconvex}.
We recall the following equivalent characterizations of K qc for compact K ⊂
Mm×n :

Proposition 2. If K ⊂ Mm×n is compact then

K qc = {ν̄ : ν a homogeneous gradient Young measure with supp ν ⊂ K }
= {A ∈ Mm×n : ϕ(A) � max

B∈K ϕ(B) for all finite quasiconvex ϕ}
= (distqcK )−1(0),

where distK is the distance function to the set K .

Proof. The equality of the three sets in the proposition is proved in [60, Theorem
4.10, p. 54]. Since (distqcK )−1(0) is quasiconvex and distqcK (A) = 0 for all A ∈ K ,
we have that K qc ⊂ (distqcK )−1(0). But if ϕ(A) � maxB∈K ϕ(B) for all finite
quasiconvex ϕ then A belongs to any quasiconvex set G ⊃ K . Hence K qc ⊂ {A ∈
Mm×n : ϕ(A) � maxB∈K ϕ(B) for all finite quasiconvex ϕ} ⊂ K qc, so that all
three sets in the proposition equal K qc. 
�
Theorem 3. Let K1, . . . , KN be compact subsets of Mm×n whose quasiconvexifi-
cations K qc

r are disjoint. Let ν = (νx )x∈Ω be an L∞ gradient Young measure such
that supp νx ⊂ ⋃N

r=1 K
qc
r for almost every x ∈ Ω . Then there is an L∞ gradi-

ent Young measure ν∗ = (ν∗
x )x∈Ω such that supp ν∗

x ⊂ ⋃N
r=1 Kr , ν̄∗

x = ν̄x and
ν∗
x (Kr ) = νx (K

qc
r ), r = 1, . . . , N , for almost every x ∈ Ω . If ν is homogeneous

then ν∗ can be chosen to be homogeneous.

In order to prove Theorem 3 we will need two technical lemmas. Let P(Mm×n)

denote the set of probability measures on Mm×n . Given a compact set K ⊂ Mm×n

we denote by GYM(K ) the set of homogeneous (L∞) gradient Young measures μ

with suppμ ⊂ K .

Lemma 3. Let K ⊂ Mm×n be compact. For A ∈ K qc define

F(A) = {μ ∈ GYM(K ) : μ̄ = A}.
Then F(A) is a nonempty, sequentially weak* closed subset of P(Mm×n).
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Proof. Let μ j ∈ F(A) with μ j
∗
⇀ μ (that is, 〈μ j , f 〉 → 〈μ, f 〉 for all f ∈

C0(Mm×n), where C0(Mm×n) denotes the space of all continuous functions f :
Mm×n → R such that lim|A|→∞ f (A) = 0). If ψ ∈ C0(Mm×n) with ψ = 0
on K , then 〈μ,ψ〉 = lim j→∞〈μ j , ψ〉 = 0, and so suppμ ⊂ K . Then, choosing
f ∈ C0(Mm×n) with f = 1 on K , and noting that 〈μ j , f 〉 = 1, we have that
〈μ, f 〉 = μ(K ) = 1, and so μ ∈ P(Mm×n). Let h ∈ C0(Mm×n) with h(B) = B
for all B ∈ K . Then A = μ̄ j = 〈μ j , h〉, so that lim j→∞〈μ j , h〉 = 〈μ, h〉 = μ̄ =
A. If g is finite and quasiconvex, we have by Theorem 1 that 〈μ j , g〉 � g(A) for
all j , so that passing to the limit (using suppμ j ⊂ K ) we obtain 〈μ, g〉 � g(A),
so that, again using Theorem 1, we have μ ∈ GYM(K ) as required.

Lemma 4. There is a Borel measurable map A �→ μA from K qc to the setP(K ) of
probability measures on K endowedwith the weak* topology, such thatμA ∈ F(A)

for all A ∈ K qc.

Proof. ByParthasarathy [62, Theorems 6.3, 6.4, 6.5 pp. 44–46]P(K ) endowed
with the weak* topology is a Polish space, that is, separable and completely metriz-
able. We first claim that the multivalued map F : K qc → P(K ) is upper semicon-
tinuous, that is, for every closed G ⊂ P(K ) the set {A ∈ Kqc : F(A) ∩ G �= ∅}
is closed in Mm×n . Indeed if A j ∈ Kqc with μA j ∈ F(A j ) ∩ G and A j → A

then we may assume that μA j

∗
⇀ μ (since μA j is bounded in the dual space of

C0(Mm×n), namely the space of measures). By a similar argument to that of the
proof of Lemma 3 we deduce that μ ∈ F(A) ∩ G as required.

We now apply the measurable selection theorem of Kuratowski and Ryll-
Nardzewski [53], which in the statement by Wagner [75, Theorem 4.1] implies
that a Borel measurable selection μA ∈ F(A) exists whenever F(A) is closed for
all A ∈ K qc and A �→ F(A) is weakly measurable. In our case weak measurability
means that {A ∈ Kqc : F(A) ∩ U �= ∅} is Borel measurable, and it is shown in
[75, Theorem 4.2] that this is implied by upper semicontinuity, giving the required
result since F(A) is closed by Lemma 3. 
�
Proof of Theorem 3. Let K = ∪N

r=1Kr . We apply Lemma 4 to each compact set
Kr , and denote the corresponding Borel measurable selection μr

A, so that for each
r = 1, . . . , N and A ∈ K qc

r we have μr
A ∈ GYM(Kr ) with μ̄r

A = A. We then
define the required gradient Young measure ν∗ = (ν∗

x )x∈Ω by the action of ν∗
x on

functions f ∈ C(K) through the formula

〈ν∗
x , f 〉 =

N∑
r=1

〈νx , 〈μr
A, f 〉〉, (2.5)

that is

〈ν∗
x , f 〉 =

N∑
r=1

∫
K qc
r

∫
Kr

f (B) dμr
A(B) dνx (A). (2.6)

(Note that 〈ν∗
x , f 〉 is well defined because we can extend f outside the compact

set K to a function f ∈ C0(Mm×n) and suppμr
A ⊂ Kr .) Since 〈ν∗

x , f 〉 � 0 for
f � 0, ν∗

x is a positive measure. Choosing f = 1 we see that
∫
Mm×n dνx (A) =
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∫
Mm×n dν∗

x (A) = 1, so that ν∗
x ∈ P(K). Similarly, choosing f (A) = A we deduce

that ν̄∗
x = ∑N

r=1

∫
K qc
r

A dνx (A) = ν̄x . In particular ν̄∗
x = Dy(x) for some Dy ∈

L∞(Ω; Mm×n). If ϕ is finite and quasiconvex, then

〈ν∗
x , ϕ〉 �

N∑
r=1

∫
K qc
r

ϕ(μ̄r
A) dνx (A)

=
N∑

r=1

∫
K qc
r

ϕ(A) dνx (A)

=
∫
Mm×n

ϕ(A) dνx (A) � ϕ(ν̄x ),

where we have used the necessity of condition (ii) of Theorem 1 twice. By con-
struction supp ν∗

x ⊂ K. Hence, by the sufficiency part of Theorem 1, ν∗ is an
L∞ gradient Young measure, which is homogeneous if ν is homogeneous. Finally,
choosing f to be the characteristic function of Ks we see that ν∗

x (Ks) = νx (K
qc
s )

as required. 
�

2.4. Domains Connected with Respect to Rigid Motion of a Convex Set

Let n > 1. We recall that two subsets G1,G2 of Rn are directly congruent if

G1 = ξ + QG2 for some ξ ∈ R
n, Q ∈ SO(n). (2.7)

Let Ω ⊂ R
n be a bounded domain, and let C ⊂ R

n be bounded, open and
convex. We suppose without loss of generality that 0 ∈ C ; this implies in particular
that λC ⊂ C for any λ ∈ [0, 1].

We define the outer radius R(C) by

R(C) = inf{ρ > 0 : B(a, ρ) ⊃ C for some a ∈ R
n}, (2.8)

the inner radius r(C) by

r(C) = sup{ρ > 0 : B(a, ρ) ⊂ C for some a ∈ R
n}, (2.9)

and the eccentricity E(C) by

E(C) =
√
1 − r(C)2

R(C)2
. (2.10)

Note that there exists a unique minimal ball B(a(C), R(C)) containing C , but that
there may be infinitely many maximal balls B(b(C), r(C)) contained in C .

Definition 3. Ω is C-filled if any x ∈ Ω belongs to a subset of Ω that is directly
congruent to C .

Thus Ω is C-filled if and only if

Ω =
⋃

{G ⊂ Ω : G directly congruent to C}. (2.11)
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Definition 4. Let C1,C2 be subsets of Ω directly congruent to C . We say that
C1,C2 are congruently connected, written C1 ∼ C2, if C1 can be moved contin-
uously to C2 as a rigid body while remaining in Ω , that is, there exist continuous
maps ξ : [0, 1] → R

n , Q : [0, 1] → SO(n), such that C1 = ξ(0)+ Q(0)C, C2 =
ξ(1) + Q(1)C and ξ(t) + Q(t)C ⊂ Ω for all t ∈ [0, 1].
Clearly ∼ is an equivalence relation on the family K(C) of subsets of Ω that are
directly congruent to C .

Definition 5. Ω isC-connected if there is an equivalence class ofK(C)with respect
to ∼ that covers Ω . Ω is strongly C-connected if it is C-filled and every pair of
subsets of Ω directly congruent to C are congruently connected.

ThusΩ isC-connected ifΩ is covered by a collection of directly congruent copies
of C any pair of which can be moved from one to the other as a rigid body while
remaining in Ω , while Ω is strongly C-connected if in addition there is a single
equivalence class with respect to∼. Example 2 below shows that C-connectedness
does not imply strong C-connectedness.

Proposition 4. Let 0 < λ � 1, and let Ω be convex. Then the subsets of Ω of
the form a + λΩ , a ∈ R

n, cover Ω and are pairwise congruently connected. In
particular Ω is strongly λΩ-connected.

Proof. Let x ∈ Ω . Since Ω is convex, λ(Ω − x) ⊂ Ω − x , and hence x ∈
(1 − λ)x + λΩ ⊂ Ω . Thus the subsets of Ω of the form a + λΩ cover Ω .

If a1 + λΩ and a2 + λΩ are two such subsets then t �→ (1− t)a1 + ta2 + λΩ ,
t ∈ [0, 1], defines a suitable continuous path of directly congruent subsets of Ω

joining them. 
�
IfΩ isC-connected then obviouslyΩ isC-filled. The following example shows

that if Ω is C-filled then it need not be C-connected.

Example 1. For 0 < α < 1 define Ωα ⊂ R
n by

Ωα = B(0, 1) ∪ B((2 − α)e1, 1).

Then Ωα is B(0, 1)-filled but is only B(0, r)-connected for 0 < r � rα =√
α − 1

4α
2, since the diameter of the opening joining the two balls comprising

Ωα is 2rα .

Proposition 5. If Ω is C-filled, it is λC-connected for all sufficiently small λ > 0.

To prove Proposition 5 we need the following definition and lemma.

Definition 6. If δ > 0, a δ-tube joining x1, x2 ∈ Ω is a continuous path ξ : [0, 1] →
Ω with ξ(0) = x1, ξ(1) = x2 such that ξ(t) + B(0, δ) ⊂ Ω for all t ∈ [0, 1].
Lemma 6. Let Ω be a bounded domain and let ε > 0 be sufficiently small.
Then there exists δ = δ(ε) > 0 such that any pair of points x1, x2 ∈ Ω with
dist (xi , ∂Ω) � ε are joined by a δ-tube.
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Proof. Fix x̄ ∈ Ω with dist (x̄, ∂Ω) � ε. For δ > 0 let Eδ = {x ∈ Ω : there exists
a δ-tube joining x̄ and x}. We claim that Eδ ⊃ {x ∈ Ω : dist (x, ∂Ω) � ε} for δ

sufficiently small. If not there would exist x ( j) ∈ Ω with dist (x ( j), ∂Ω) � ε such
that there is no 1

j -tube joining x̄ to x ( j), j = 1, 2, . . .. But we may assume that

x ( j) → x with dist (x, ∂Ω) � ε. Since Ω is connected there is a δ-tube joining
x̄ to x for some δ > 0, so that this path followed by the straight line from x to
x ( j) defines a 1

j -tube for large j , a contradiction. Hence for δ sufficiently small any
points x1, x2 ∈ Ω with dist (xi , ∂Ω) � ε are joined to x̄ , and hence to each other,
by a δ-tube. 
�
Proof of Proposition 5. Let ε > 0 be such that B(0, ε) ⊂ C , and let δ = δ(ε) be
as in Lemma 6. Pick λ > 0 sufficiently small so that λC ⊂ B(0, δ).

Let Eλ(C) = {b + λQC : b ∈ R
n, Q ∈ SO(n), b + λQC ⊂ a + QC ⊂ Ω for

some a ∈ R
n}. Since Ω is C-filled, K(C) covers Ω , and by Proposition 4 applied

to a + QC , so does Eλ(C).
Suppose that bi +λQiC ∈ Eλ(C), i = 1, 2. Then by Proposition 4, bi +λQiC

is congruently connected to ai + λQiC , where ai + QiC ⊂ Ω , i = 1, 2. But
ai + λQiC ⊂ B(ai , δ) and dist (ai , ∂Ω) � dist (ai , ∂(ai + QiC)) � ε. Hence by
Lemma 6 there exists a δ-tube ξ : [0, 1] → Ω joining a1 and a2. Let Q : [0, 1] →
SO(n) be continuous with Q(0) = Q1, Q(1) = Q2. Then ξ(t) + λQ(t)C ⊂ Ω

for all t ∈ [0, 1], and so a1 +λQ1C , a2 +λQ2C are congruently connected. Hence
b1 + λQ1C , b2 + λQ2C are congruently connected. Hence Ω is λC-connected.


�
The following example shows that Proposition 5 does not hold for strong C-

connectedness. That is, a bounded domain may be C-filled but not strongly λC-
connected for all sufficiently small λ > 0.

Example 2. Let C ⊂ R
2 be the interior of the equilateral triangle of side 1 with

vertices at (0, 0), (
√
3
2 ,± 1

2 ). Let Ω consist of a large ball B(0, R) from which the

origin (0, 0) and the points Ai = ( 2
−i√
3
, 2−i

3 ), Bi = ( 2
−i√
3
,− 2−i

3 ), i = 0, 1, 2, . . . ,

are removed. The points Ai , Bi lie on the half-lines LA and LB defined by {√3x2−
x1 = 0, x1 � 0} and {√3x2 + x1 = 0, x1 � 0} respectively, which meet at the
origin at an angle of 60◦. Then Ω is C-filled. Indeed Ω consists of C together with
points lying outside C which are clearly inside congruent copies of C lying in Ω

(for example, for the points on L A, LB we can use an equilateral triangle of side 1
which lies outside C except for a small region near one of its vertices).

Now consider the open equilateral triangle Δ of side 1 with vertices at ( 2√
3
, 0)

and ( 1
2
√
3
,± 1

2 ), and the corresponding scaled equilateral triangles Δi = 2−iΔ of

side 2−i . Note that Δi ⊂ Ω , and that the edges of Δi intersect L A and LB in the
points Ai , Ai+1 and Bi , Bi+1 respectively.We claim thatΔi cannot be continuously
moved to a position far from the origin while remaining in Ω . This is even true for
a slightly smaller equilateral triangle contained inΔi . A rigorous proof can be con-
structed by noting that the width ofΔi , that is theminimal distance between parallel
lines that encloseΔi , is 2−(i+1)

√
3, which is greater than any of the distances of the
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openings through which it would have to pass, namely |Ai Ai+1| = |Bi Bi+1| = 2−i

3

and |Ai Bi | = 21−i

3 (see Strang [69]). Hence Ω is not strongly λC-connected for
sufficiently small λ > 0.

Proposition 7. The bounded domain Ω is C-connected for some bounded open
convex C if and only if Ω satisfies the cone condition with respect to some cone
C∗.
Proof. Let Ω satisfy the cone condition with respect to C∗. If x ∈ Ω with x +
QC∗ ⊂ Ω then x ∈ x + Q(C∗ − εe1) ⊂ Ω for ε > 0 sufficiently small. Hence Ω

is (intC∗)-filled, and hence, by Proposition 5, λ(intC∗)-connected for sufficiently
small λ > 0.

Conversely, letΩ be C-connected for someC . Since C is convex it is Lipschitz
(see Morrey [58, p. 72]) and hence satisfies the cone condition with respect to
some C∗. Since Ω is C-filled it follows immediately that Ω also satisfies the cone
condition with respect to C∗. 
�

Despite this result, the concept of C-connectedness is of interest since we will
show that the constants in the transition layer estimate of Theorem 13 can be chosen
to depend on Ω through C .

2.5. The Vitali Covering Lemma

The following simpler version [68] of the Vitali covering lemma is used in an
important way in the transition layer estimate.

Lemma 8. Let G be a measurable subset of Rn which is covered by the union of a
family of balls {Bi } of bounded diameter. From this family we can select a countable
or finite disjoint subsequence Bi(k), k = 1, 2, . . . such that∑

k

Ln(Bi(k)) � cnLn(G).

Here, cn > 0 depends only on the dimension n. The choice cn = 5−n suffices.

3. Incompatible Sets

Let Ω ⊂ R
n be a bounded domain. Fix p with 1 � p � ∞.

Definition 7. The closed subsets K1, . . . , KN of Mm×n are L p incompatible if
they are disjoint, and if whenever ν = (νx )x∈Ω is an L p gradient Young measure
satisfying

supp νx ⊂
N⋃

r=1

Kr for almost every x ∈ Ω,

then for some i, 1 � i � N ,

supp νx ⊂ Ki for almost every x ∈ Ω.

Remark 6. a. It is easily seen that the sets K1, . . . , KN are L p incompatible
if and only if for each i = 1, . . . , N the pair of sets Ki ,

⋃
r �=i Kr are L p
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incompatible. The latter condition is obviously necessary, and it is sufficient
since if supp νx ⊂ ⋃N

r=1 Kr for almost every x ∈ Ω then we have for each i
either

supp νx ⊂ Ki for almost every x ∈ Ω

or

supp νx ⊂
⋃
r �=i

Kr ,

and
⋂N

i=1
⋃

r �=i Kr is empty. For this reason we can often restrict attention to
the case N = 2.

b. The definition does not depend on Ω . By the above remark we may assume
that N = 2. So let K1, K2 be L p incompatible with respect to Ω and let
Ω̃ ⊂ R

n be another bounded domain. Let Dỹ( j) be a sequence of gradients
that is relativelyweakly compact in L p(Ω̃; Mm×n)with corresponding gradient
Youngmeasure (ν̃x )x∈Ω̃ satisfying supp ν̃x ⊂ K1∪K2 for almost every x ∈ Ω̃ .
Let G1 = {x ∈ Ω̃ : supp ν̃x ∩ K1 �= ∅}, G2 = {x ∈ Ω̃ : supp ν̃x ∩ K2 �= ∅}
and suppose for contradiction that Ln(G1) > 0,Ln(G2) > 0. By hypothesis
we have that

Ln(Ω̃\(G1 ∪ G2)) = 0. (3.1)

Let x1, x2 be Lebesgue points of G1,G2 respectively. Since Ω̃ is connected
there is a continuous arc x(t), t ∈ [0, 1], with x(0) = x1, x(1) = x2 and
x(t) ∈ Ω̃ for all t ∈ [0, 1]. Then there exists ε1 > 0 such that x(t) + εΩ ⊂ Ω̃

for all t ∈ [0, 1], 0 < ε � ε1. Fix 0 < ε � ε1 sufficiently small so that
Ln((x1 + εΩ) ∩ G1) > 0 and Ln((x2 + εΩ) ∩ G2) > 0, which is possible
since x1, x2 are Lebesgue points. Define for i = 1, 2

fi (t) = Ln((x(t) + εΩ) ∩ Gi )

εnLn(Ω)
.

Then each fi is continuous in t , and by construction f1(0) > 0, f2(1) > 0. But
from (3.1)

f1(t) + f2(t) � 1,

from which it follows easily that there exists t0 ∈ [0, 1] with 0 < fi (t0) � 1
for i = 1, 2, that is,

Ln((x(t0) + εΩ) ∩ G1) > 0, Ln((x(t0) + εΩ) ∩ G2) > 0. (3.2)

Now let y( j)(x) = ε−1 ỹ( j)(x(t0) + εx), which is well defined because ỹ( j) ∈
L1
loc(Ω̃;Rm). Then Dy( j)(x) = Dỹ( j)(x(t0) + εx) and so Dy( j) is relatively

weakly compact in L p(Ω; Mm×n) and has Young measure

νx = ν̃x(t0)+εx , x ∈ Ω. (3.3)

Furthermore supp νx ⊂ K1 ∪ K2 for almost every x ∈ Ω , and so either
supp νx ⊂ K1 for almost every x ∈ Ω or supp νx ⊂ K2 for almost every
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x ∈ Ω . This implies that supp ν̃x ⊂ K1 for almost every x ∈ x(t0) + εΩ or
supp ν̃x ⊂ K2 for almost every x ∈ x(t0) + εΩ , contradicting (3.2).

c. If the sets K1, . . . , KN are compact then the definition is independent of p.
Consequently in this case we say simply that K1, . . . , Kn are incompatible. In
fact suppose that K1, . . . , KN are compact and L∞ incompatible. Let 1 � p <

∞ and let Dy( j) be weakly relatively compact in L p and have Young measure
(νx )x∈Ω with supp νx ⊂ ⋃N

r=1 Kr for almost every x ∈ Ω. Then by Lemma
1 there is a sequence of gradients Dz( j) which is bounded in L∞ and has the
same Young measure, so that K1, . . . , Kn are L p incompatible.

d. The case p = 1. An alternative definition of L1 incompatible sets would have
been to replace the weak relative compactness of Dy( j) by boundedness of
Dy( j) in L1(Ω; Mm×n). But with such a modification no family of disjoint
closed subsets of Mm×n would be L1 incompatible. In fact if K1, K2 were a
pair of L1 incompatible sets in this sense, we could let Ω = [−1, 1]n, A ∈
K1, B ∈ K2, and define

y( j)(x) =

⎧⎪⎨
⎪⎩

Ax if x1 � 0,
j x1Bx + (1 − j x1)Ax if 0 < x1 < 1

j ,

Bx if x1 � 1
j .

Then

Dy( j)(x) = j x1B + (1 − j x1)A + j (B − A)x ⊗ e1

for 0 < x1 < 1
j , so that

∫
[−1,1]n

| Dy( j) | dx � C < ∞.

But the corresponding Young measure (νx )x∈Ω is given by

νx =
{

δA if x1 < 0,
δB if x1 > 0.

Definition 8. The closed subsets K1, . . . , Kn of Mm×n are homogeneously L p

incompatible if they are disjoint, and if whenever ν is a homogeneous L p gradient
Young measure generated by a sequence satisfying

supp ν ⊂
N⋃

r=1

Kr ,

then for some i , 1 � i � N ,

supp ν ⊂ Ki .

The same arguments as in Remark 6 show that this definition too is independent
of Ω and, in the case when the Kr are compact, also of p with 1 � p � ∞ (in
which case we say that the Kr are homogeneously incompatible).
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Definition 9. The closed subsets K1, . . . , KN of Mm×n are L p gradient incompat-
ible if they are disjoint, and if whenever Dy ∈ L p(Ω; Mm×n) with

Dy(x) ∈
N⋃

r=1

Kr for almost every x ∈ Ω

then

Dy(x) ∈ Ki for almost every x ∈ Ω

for some i .

Again the definition is independent of Ω and, in the case when the Kr are
compact, also of p with 1 � p � ∞ (in which case we say that the Kr are gradient
incompatible).

Note that if n = 1 or m = 1 then no pair of disjoint nonempty closed sets
K1, K2 can be homogeneously L p incompatible, since if A1 ∈ K1, A2 ∈ K2
then rank (A1 − A2) = 1, so that 1

2 (δA1 + δA2) is a homogeneous L∞ gradient
Young measure supported nontrivially on K1 ∪ K2; similarly K1 and K2 are not
L∞ gradient incompatible. Thus most of the results of this paper are only relevant
for n � 2 and m � 2.

Of course if K1, . . . , KN are L p incompatible they are also L p gradient in-
compatible. However the converse is false (for other examples see Examples 5,
6).

Example 3. Let m = n = 2, {e1, e2} be an orthonormal basis of R
2, K1 =

{1}, K2 = {0, 2e2 ⊗ e2}. Then K1, K2 are not incompatible. To see this note that
1 = e1 ⊗ e1 + e2 ⊗ e2, so that

1 − e2 ⊗ e2 = e1 ⊗ e1

e2 ⊗ e2 = 1

2
(0 + 2e2 ⊗ e2). (3.4)

Thus a double laminate can be constructed having homogeneous gradient Young
measure

ν = 1

2
δ1 + 1

4
δ0 + 1

4
δ2e2⊗e2 .

However, K1, K2 are gradient incompatible. In fact if Dy(x) ∈ K1 ∪ K2 almost
everywhere in Ω = (0, 1)2, we have

Dy(x) = λ(x)1 + 2μ(x)e2 ⊗ e2,

where λ(x)μ(x) = 0, λ(x) ∈ {0, 1} and μ(x) ∈ {0, 1} almost everywhere. Hence
y,1 = λe1, y,2 = (λ + 2μ)e2 and so

λ,2 = (λ + 2μ),1 = 0

in the sense of distributions. Hence λ = λ(x1), λ + 2μ = f (x2) from which it
follows easily that either λ = 0 almost everywhere or λ = 1 almost everywhere as
required.
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3.1. Characterization of Incompatible Sets

Clearly if K1, . . . , KN are L p incompatible they are homogeneously L p in-
compatible. We do not know if the converse holds, even if the Kr are compact (but
see Remark 7 for the case m = n = 2). It is possible to characterize homoge-
neously incompatible sets in terms of quasiconvex functions. We first prove some
preliminary results relating incompatibility of the sets Kr to that of the sets K

qc
r .

Lemma 5. If K1, . . . , KN are homogeneously L∞ incompatible then (
⋃N

r=1 Kr )
qc

is the disjoint union of the sets K qc
r .

Proof. We first show that K qc
r

⋂
K qc
s is empty if r �= s. Suppose the contrary,

that there exists an A ∈ K qc
r

⋂
K qc
s . Then there exist homogeneous L∞ Young

measures νr and νs with supp νr ⊂ Kr , supp νs ⊂ Ks and ν̄r = ν̄s = A. But the
set of homogeneous L∞ Young measures with a given centre of mass A is convex
(Kinderlehrer and Pedregal [43]), and thus ν = 1

2 (ν
r + νs) is a homogeneous

L∞ Young measure with supp ν ⊂ Kr ∪ Ks and both supp ν ∩ Kr and supp ν ∩ Ks

nonempty. Thus K1, . . . , KN are not homogeneously L∞ incompatible.
Next, let A ∈ (

⋃N
r=1 Kr )

qc. Then A = ν̄ for some homogeneous L∞ Young
measure ν with supp ν ⊂ ⋃N

r=1 Kr , and by hypothesis supp ν ⊂ Ki for some i .
Hence A ∈ K qc

i , completing the proof. 
�
Proposition 9. The compact sets K1, . . . , KN are incompatible (resp. homoge-
neously incompatible) if and only if K qc

1 , . . . , K qc
N are incompatible (resp. homo-

geneously incompatible).

Proof. Suppose that K1, . . . , KN are incompatible. By Lemma 5 the K qc
r are

disjoint. Let ν = (νx )x∈Ω be an L∞ gradient Young measure with supp νx ⊂⋃N
r=1 K

qc
r for almost every x ∈ Ω . Then by Theorem 3 there is an L∞ gradient

Young measure ν∗ = (ν∗
x )x∈Ω with supp ν∗

x ⊂ ⋃N
r=1 Kr and ν∗

x (Kr ) = νx (K
qc
r )

for all r and almost every x ∈ Ω . Since the Kr are incompatible, we have that
ν∗
x (Ki ) = 1 for some i and almost every x ∈ Ω . Hence νx (K

qc
i ) = 1 for almost

every x ∈ Ω and thus K qc
1 , . . . , K qc

N are incompatible. The same argument shows
that if the Kr are homogeneously incompatible then so are the K qc

r . The converse
direction is obvious. 
�
Theorem 10. The compact sets K1, . . . , KN are homogeneously incompatible if
and only if

(i) the sets K qc
r , r = 1, . . . , N, are disjoint,

(ii) for each i = 1, . . . , N the function ϕi : Mm×n −→ [0,∞] defined by

ϕi (A) =
⎧⎨
⎩
1 if A ∈ K qc

i ,

0 if A ∈ ⋃
r �=i K

qc
r ,

+∞ otherwise,

is quasiconvex.
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Proof. Let K1, . . . , KN behomogeneously incompatible. Then (i) holds byLemma
5. To prove (ii), by Lemma 2 with K = ⋃N

r=1 Kr it suffices to show that

〈μ, ϕi 〉 � ϕi (μ̄) (3.5)

for any homogeneous L∞ gradient Young measure μ. Since (3.5) obviously holds
if 〈μ, ϕi 〉 = ∞, we may assume that supp ν ⊂ ⋃N

r=1 K
qc
r . Then it follows from

Proposition 9 that suppμ ⊂ K qc
j for some j , so that also μ̄ ∈ K qc

j . Thus if j �= i
both sides of (3.5) are zero, while if j = i then both sides are one.

Conversely, suppose that (i) and (ii) hold, and let ν be a homogeneous L∞
gradient Young measure with supp ν ⊂ ⋃N

r=1 Kr . Then ν = ∑N
r=1 λrν

r , where
λr � 0,

∑N
r=1 λr = 1 and νr is a probability measure with supp νr ⊂ Kr . For any

k we have (since ϕk is quasiconvex)

ϕk(ν̄) � 〈ν, ϕk〉 = λk .

In particular ϕk(ν̄) < ∞ and so ν̄ ∈ K qc
i for some i . Choosing k = i we obtain

λi � 1 and so ν = νi and supp ν ⊂ Ki . Hence K1, . . . , KN are homogeneously
incompatible. 
�
Theorem 11. The compact sets K1, . . . , KN are incompatible if and only if

(i) The sets K qc
1 , . . . , Kqc

N are gradient incompatible,
(ii) for each i = 1, . . . , N the function ϕi : Mm×n −→ [0,∞] defined by

ϕi (A) =
⎧⎨
⎩
1 if A ∈ K qc

i ,

0 if A ∈ ⋃
r �=i K

qc
r ,

+∞ otherwise,

is quasiconvex.

Proof. Let K = ⋃N
r=1 Kr . Suppose that K1, . . . , KN are incompatible. Then

K1, . . . , KN are homogeneously incompatible, so that by Lemma 5 and Theo-
rem 10 the sets K qc

r are disjoint, K qc = ⋃N
r=1 K

qc
r and (ii) holds. To show that

the K qc
r are gradient incompatible, suppose that Dy ∈ L∞(Ω; Mm×n) satisfies

Dy(x) ∈ K qc almost everywhere. It follows from Theorem 3 applied to the gra-
dient Young measure ν = (δDy(x))x∈Ω that there exists a gradient Young measure
(ν∗

x )x∈Ω with supp ν∗
x ⊂ K and ν̄∗

x = Dy(x) almost everywhere. But then by hy-
pothesis supp ν∗

x ⊂ Ks almost everywhere for some s and so Dy(x) ∈ K qc
s almost

everywhere.
Conversely, let (i) and (ii) hold, and let (νx )x∈Ω be an L∞ gradient Young

measure with supp νx ⊂ ⋃N
r=1 Kr almost everywhere. Then, for almost every

x ∈ Ω , νx is a homogeneous L∞ gradient Young measure, and so by Theorem
10 supp νx ⊂ Kr(x) for some r(x), and hence ν̄x ∈ K qc

r(x). Thus Dy(x) = ν̄x ∈⋃N
r=1 K

qc
r almost everywhere, and so Dy(x) ∈ K qc

s almost everywhere for some
s. Since the K qc

r are disjoint, r(x) = s almost everywhere and hence supp νx ⊂ Ks

almost everywhere. 
�
Corollary 12. The compact sets K1, . . . , KN are incompatible if andonly if K1, . . . ,

KN are homogeneously incompatible and K qc
1 , . . . , K qc

N are gradient incompatible.

Proof. This follows immediately from Theorems 10, 11. 
�
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Remark 7. When m = n = 2, Kirchheim and Székelyhidi [47], using results
from Faraco and Székelyhidi [36], show that two disjoint compact sets K1, K2
are incompatible if and only if (K1 ∪ K2)

rc is the disjoint union of K rc
1 and K rc

2 ,
where K rc denotes the rank-one convexification of a compact set K ⊂ Mm×n

defined by

K rc = {A ∈ Mm×n : ϕ(A) � max
B∈K ϕ(B) for all finite rank-one convex ϕ}.

They also show that K1, K2 are incompatible if and only if they are homoge-
neously incompatible, and if and only if they are incompatible for laminates. Since
Székelyhidi [73] has provided a simple and algorithmically testable criterion for
incompatibility of K1, K2 for laminates, this completely classifies incompatible
compact subsets of M2×2. Using these results, Heinz [41] found necessary and
sufficient conditions for incompatibility for compact sets K1, K2 ⊂ M2×2 that are
left invariant under SO(2) and consist of matrices with positive determinant.

3.2. Examples

A necessary condition that K1, . . . , KN be homogeneously L∞ incompatible
is that there are no rank-one connections between any of the Kr . This follows
from Lemma 5 and the fact that quasiconvex sets are rank-one convex. However
the absence of such rank-one connections is not sufficient (see the well-known
Example 6 below).

Example 4. (Two matrices) If K1 = {A}, K2 = {B}, where A, B ∈ Mm×n with
rank (A − B) > 1, then K1, K2 are L p incompatible for any p > 1. We give two
proofs of this fact.

First proof. Let (νx )x∈Ω be an L p gradient Young measure with supp νx ⊂ {A, B}
for almost every x ∈ Ω , that is, νx = λ(x)δA+(1−λ(x))δB where 0 � λ(x) � 1. In
particular supp νx is contained in a bounded set for almost every x , and so (νx )x∈Ω

is an L∞ gradient Young measure by Lemma 1. Thus by the results in [14], based
on the weak continuity of minors, νx = δA for almost every x ∈ Ω or νx = δB for
almost every x ∈ Ω as required.

Second proof. This was communicated to us by Šverák (see [70] and Müller
[60, Section 2.6]). Without loss of generality we suppose that A = 0 and define
h(D) = (dist (D, L))2 for D ∈ Mm×n , where L = {t B; t ∈ R}. Thus

h(D) = |D|2 − (D · B)2

|B|2 .

h is quadratic and strongly elliptic, since t B is not rank-one for any t . If Dy( j)

is bounded in L p(Ω; Mm×n) with supp νx ⊂ {A, B} then Dh(Dy( j)) → 0 in
measure, and hence Dh(Dy( j)) → 0 strongly in Ls(Ω; Mm×n) if 1 < s < p. So

div Dh(Dy( j)) = div f ( j), x ∈ Ω,
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where f ( j) → 0 strongly in Ls(Ω; Mm×n). By elliptic regularity theory this im-
plies that Dy( j) is relatively compact in Ls

loc(Ω; Mm×n), so that νx = δDy(x) almost
everywhere for some y with Dy(x) ∈ {A, B} almost everywhere. But elliptic reg-
ularity implies that Dy is smooth, so that νx = δA almost everywhere or νx = δB
almost everywhere, as required.

Example 5. (3 matrices) Let K1 = {A1}, K2 = {A2}, K3 = {A3}, where Ar ∈
Mm×n with rank (Ar − As) > 1 for r �= s. Then K1, K2, K3 are incompatible.
This is a consequence of a deep result of Šverák [70,71], which uses in particular
the result of Zhang [81] that K1, K2, K3 are gradient incompatible. See also the
discussion after Corollary 19.

Example 6. (4 matrices) Let Kr = {Ar }, 1 � r � 4, with rank (Ar − As) > 1 for
r �= s. Then K1, . . . , K4 are not in general incompatible. This follows from the
construction of [20] that was motivated by the example of [3] and Tartar [74].
Chlebík and Kirchheim [25] showed that K1, . . . , K4 are nevertheless gradient
incompatible.

Example 7. (5 matrices) Let Kr = {Ar }, 1 � r � 5, with rank (Ar − As) > 1
for r �= s. Then K1, . . . , K5 are not in general gradient incompatible (Kirchheim
and Preiss [45,46]).

Example 8. (Incompatible energywells in M2×2)Let Kr = SO(2)Ur , 1 � r � N ,
where Ur = UT

r > 0 and there are no rank-one connections between the different
Kr . Then K1, . . . , KN are incompatible. This follows from the results of Firoozye
[20,37] and Šverák [71].

Example 9. (Incompatible energy wells in M3×3) Let K1 = SO(3)U1, K2 =
SO(3)U2, where U1 = UT

1 > O , U2 = UT
2 > O , and rank (A1 − A2) > 1

for all A1 ∈ K1, A2 ∈ K2. Then it is not known whether in general K1, K2
are incompatible. However under stronger conditions on U1,U2 incompatibility is
proved by Dolzmann, Kirchheim, Müller and Šverák [34] (see also Matos
[54] andKohn, Lods and Haraux [50]). In this case incompatibility is equivalent
to the two-well rigidity estimate of Chaudhuri and Müller [21], as proved by
De Lellis and Székelyhidi [31] using the transition layer technique from (earlier
expositions of) the present paper.Chaudhuri andMüller [22] used their rigidity
estimate to study the scaling behaviour of thin martensitic films. If K1, K2, K3 are
three such energy wells without rank-one connections then it is shown in [20] that
K1, K2, K3 need not be incompatible, using Example 6.

4. The Transition Layer Estimate

In this section we suppose that K1, . . . , KN are disjoint compact subsets of
Mm×n . Given y ∈ W 1,p(Ω;Rm) and ε > 0 we consider for r = 1, . . . , N the sets

Ωr,ε(y) := {x ∈ Ω : Dy(x) ∈ Nε(Kr )},
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where

Nε(K ) := {A ∈ Mm×n : dist (A, K ) � ε},
and the corresponding ‘transition layer’

Tε(y) :=
{
x ∈ Ω : Dy(x) �∈

N⋃
r=1

Nε(Kr )

}
.

The main result is

Theorem 13. Let 1 < p < ∞ and let Ω be C-connected. Then K1, . . . , KN are
incompatible if and only if there exist constants ε0 > 0 and γ > 0 such that if
0 � ε < ε0 and y ∈ W 1,p(Ω;Rm) then

∫
Tε(y)

(1+|Dy|p) dx�γ max
1�r�N

min

⎛
⎝Ln(Ωr,ε(y)),Ln

⎛
⎝⋃

s �=r

Ωs,ε(y)

⎞
⎠

⎞
⎠ .

(4.1)

The constant ε0 can be chosen to depend only on the eccentricity E(C), the sets
K1, . . . , KN and p, while the constant γ can be chosen to depend only on these
quantities and Ln(C)/Ln(Ω).

Remark 8. An alternative way of writing the right-hand side of (4.1) is

γ min

⎛
⎝Ln(Ωr̄ ,ε(y)),

∑
r �=r̄

Ln(Ωr,ε(y))

⎞
⎠ ,

where r̄ = r̄(ε, y) is such that

Ln(Ωr̄ ,ε(y)) = max
1�r�N

Ln(Ωr,ε(y)).

To see this, fix ε and y and let ar = Ln(Ωr,ε(y)). Suppose without loss of generality
that aN � aN−1 � · · · � a1 and let c = ∑N

r=1 ar . Then we have to show that

max
1�r�N

min(ar , c − ar ) = min(aN , c − aN ).

But this follows from the fact that ar � c − aN if 1 � r < N .

We state the case N = 2 of Theorem 13 separately.

Theorem 14. Let 1 < p < ∞ and let Ω be C-connected. Two disjoint compact
sets K1, K2 are incompatible if and only if there exist constants ε0 > 0 and γ > 0
such that if 0 � ε < ε0 and y ∈ W 1,p(Ω;Rm) then∫

Tε(y)
(1 + |Dy|p) dx � γ min(Ln(Ω1,ε(y)),Ln(Ω2,ε(y))). (4.2)

The constant ε0 can be chosen to depend only on E(C), K1, K2 and p, while the
constant γ can be chosen to depend only on these quantities and Ln(C)/Ln(Ω).
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Note that Theorem 13 follows from Theorem 14 by applying it to the pair of
sets Kr and

⋃
s �=r Ks for each r , remarking that the set Tε(y) is the same for each

r , and applying Remark 6a. It therefore suffices to prove Theorem 14. We use the
following lemma.

Lemma 15. Let 0 � E < 1, and let K1, K2 be incompatible. Then there exist
constants ε0 = ε0(E, K1, K2, p) > 0 and γ0 = γ0(E, K1, K2, p) > 0 such that
if C̃ ⊂ R

n is any bounded open convex set with E(C̃) � E and if 0 � ε < ε0,
y ∈ W 1,p(C̃;Rm), with for some i = 1, 2

3

4
Ln(C̃) � Ln({x ∈ C̃ : Dy(x) ∈ Nε(Ki )}) � 1

4
Ln(C̃),

then ∫
T
ε,C̃ (y)

(1 + |Dy|p) dx � γ0Ln(C̃),

where T
ε,C̃ (y) := {x ∈ C̃ : Dy(x) �∈ Nε(K1) ∪ Nε(K2)}.

Proof. Suppose not. Then for j = 1, 2, . . . there exist ε( j) � 1/j , bounded open
convex sets C ( j) ⊂ R

n with E(C ( j)) � E and mappings y( j) ∈ W 1,p(C ( j);Rm)

with for some i = 1, 2 (independent of j)

3

4
Ln(C ( j)) � Ln({x ∈ C ( j) : Dy( j)(x) ∈ Nε( j) (Ki )}) � 1

4
Ln(C ( j)), (4.3)

and ∫
T
ε( j),C( j) (y( j))

(1 + |Dy( j)|p) dx � 1

j
Ln(C ( j)).

For definiteness we suppose (4.3) holds for i = 1. Let B(a( j), R j ) be the unique
minimal ball containing C ( j), so that R j = R(C ( j)). We normalize C ( j) by setting

C̃ ( j) = 1

R j
(C ( j) − a( j)). (4.4)

Thus R(C̃ ( j)) = 1 and B(0, 1) is the unique minimal ball containing C̃ ( j). Define
z( j) ∈ W 1,p(C̃ ( j);Rm) by

z( j)(x) = 1

R j
y( j)(a( j) + R j x). (4.5)

Then

Dz( j)(x) = Dy( j)(a( j) + R j x) (4.6)

and we have that

3

4
Ln(C̃ ( j)) � Ln({x ∈ C̃ ( j) : Dz( j)(x) ∈ Nε( j) (K1)}) � 1

4
Ln(C̃ ( j)) (4.7)
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and ∫
Tj

(1 + |Dz( j)|p) dx � 1

j
Ln(C̃ ( j)), (4.8)

where Tj := {x ∈ C̃ ( j) : Dz( j)(x) �∈ Nε( j) (K1) ∪ Nε( j) (K2)}. Since the closures
D( j) of C̃ ( j) lie in B(0, 1), a subsequence (which we do not relabel) of the D( j)

converges in the Hausdorff metric to a closed convex set D ⊂ B(0, 1). Since
E(C̃ ( j)) = E(C ( j)) � E , there is a closed ball Bj contained in D( j) with radius
at least

√
1 − E2. We can suppose that these balls also converge to a ball B ⊂ D

of radius at least
√
1 − E2 > 0, and hence D has nonempty interior C̃ . Note that

Ln(C̃ ( j)) → Ln(C̃). Let G be open and convex with Ḡ ⊂ C̃ and Ln(C̃\G) <
1
8Ln(C̃). Then for sufficiently large j we have G ⊂ C̃ ( j). Hence, for sufficiently
large j ,

Ln(C̃ ( j)) <
8

7
Ln(G). (4.9)

Also, by (4.7),

Ln({x ∈ C̃ ( j) : Dz( j)(x) ∈ Nε( j) (K1)})
� Ln({x ∈ G : Dz( j)(x) ∈ Nε( j) (K1)})
� Ln({x ∈ C̃ ( j) : Dz( j)(x) ∈ Nε( j) (K1)}) − Ln(C̃ ( j)\G)

� 1

4
Ln(C̃ ( j)) − Ln(C̃ ( j)\G)

� 1

8
Ln(G). (4.10)

Hence, combining (4.9), (4.10) and the left-hand inequality in (4.7), we have

6

7
Ln(G) � Ln({x ∈ G : Dz( j)(x) ∈ Nε( j) (K1)}) � 1

8
Ln(G). (4.11)

Since K1, K2 are bounded, it follows in particular from (4.8) that Dz( j) is
bounded in L p(G; Mm×n), and so we may assume that Dz( j) generates a Young
measure (νx )x∈G . LetU1,U2 be openneighbourhoods of K1, K2 respectively. Since
{x ∈ G : Dz( j)(x) �∈ U1 ∪ U2} ⊂ Tj for sufficiently large j , and Ln(Tj ) → 0,
we have that Dz( j)(x) → K1 ∪ K2 in measure, and hence supp νx ⊂ K1 ∪ K2 for
almost every x ∈ G. Since K1, K2 are incompatible we thus have either supp νx ⊂
K1 almost everywhere or supp νx ⊂ K2 almost everywhere in G. Now let ϕi :
Mm×n → [0, 1], i = 1, 2, be continuous functions such that ϕi = 1 on Nδ/2(Ki ),

ϕi = 0 outside Nδ(Ki ), where δ > 0 is sufficiently small so that Nδ(K1)∩ Nδ(K2)

is empty. Then from (4.11) we have that∫
G

ϕ1(Dz( j)) dx � 1

8
Ln(G) (4.12)

for all sufficiently large j . Since for sufficiently large j

Ln({x ∈ G : Dz( j)(x) ∈ Nε( j) (K2)})
� Ln(G) − Ln({x ∈ G : Dz( j)(x) ∈ Nε( j) (K1)}) − Ln(Tj ),
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we have from (4.7), (4.8) that for sufficiently large j

Ln({x ∈ G : Dz( j)(x) ∈ Nδ/2(K2)}) � 1

7
Ln(G) − 1

j
Ln(C̃ ( j))

and thus ∫
G

ϕ2(Dz( j)(x)) dx � 1

8
Ln(G). (4.13)

But

lim
j→∞

∫
G

ϕi (Dz( j)) dx =
∫
G
〈νx , ϕi 〉 dx

for i = 1, 2, and one of these integrals is zero, contradicting (4.12), (4.13). 
�
Proof of Theorem 14. Sufficiency. Let Dy( j) be bounded in L∞(Ω; Mm×n) and
have Young measure (νx )x∈Ω with supp νx ⊂ K1∪K2 almost everywhere. Choose
ε ∈ (0, ε0) sufficiently small so that Nε(K1), Nε(K2) are disjoint. Then since
Dy( j) → K1 ∪ K2 in measure we have lim j→∞ Ln(Tε(y( j))) = 0 and hence by
(4.2)

min(Ln(Ω1,ε(y
( j))), Ln(Ω2,ε(y

( j)))) → 0. (4.14)

Let f : Mm×n → [0, 1] be continuous with f = 1 on K1, f = 0 outside Nε(K1).
Then

lim
j→∞ −

∫
Ω

f (Dy( j)) dx = −
∫

Ω

〈νx , f 〉 dx = −
∫

Ω

νx (K1) dx . (4.15)

From (4.14) there exists a subsequence y( jk ) of y( j) such that either
Ln(Ω1,ε(y( jk ))) → 0 or Ln(Ω2,ε(y( jk ))) → 0, and so from (4.15) we have that

−
∫

Ω

νx (K1) dx = 0 or 1,

implying either that supp νx ⊂ K1 almost everywhere or that supp νx ⊂ K2 almost
everywhere as required. 
�
Necessity. Fix ε with 0 � ε < ε0, where ε0 is given by Lemma 15 with E being
the eccentricity of C (so that in particular Nε(K1) and Nε(K2) are disjoint), and
let y ∈ W 1,p(Ω;Rm). First suppose that

Ln(Tε(y)) � 1

4
Ln(C).

Then ∫
Tε(y)

(1 + |Dy|p) dx � 1

4

Ln(C)

Ln(Ω)
Ln(Ω),

so that (4.2) holds with γ = 1
4
Ln(C)
Ln(Ω)

.
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We thus assume that

Ln(Tε(y)) <
1

4
Ln(C). (4.16)

Since Ω is C-connected, there is an equivalence class C of K(C) with respect
to ∼ that covers Ω . Suppose that there exist two sets C1,C2 ∈ C (in particular,
both directly congruent to C) such that

Ln({x ∈ Ci : Dy(x) ∈ Nε(Ki )}) � 1

4
Ln(C) (4.17)

for i = 1, 2. By the definition of ∼ there exist continuous functions ξ : [0, 1] →
Ω, Q : [0, 1] → SO(n), such that ξ(0) + Q(0)C = C1, ξ(1) + Q(1)C = C2, and
C(t) := ξ(t) + Q(t)C ⊂ Ω for all t ∈ [0, 1]. For i = 1, 2 define

θi (t) = Ln({x ∈ C(t) : Dy(x) ∈ Nε(Ki )})
Ln(C)

.

Then by (4.16) θi : [0, 1] → [0, 1] is continuous, θ1(t)+θ2(t) � 3
4 for all t ∈ [0, 1],

and by (4.17) θ1(0) � 1
4 , θ2(1) � 1

4 . Hence there exists τ ∈ [0, 1] with θ1(τ ) � 1
4 ,

θ2(τ ) � 1
4 . Indeed if θ2(0) � 1

4 we can take τ = 0. Otherwise θ2(0) < 1
4 and so

there exists τ ∈ [0, 1] with θ2(τ ) = 1
4 and then θ1(τ ) = θ1(τ ) + θ2(τ ) − 1

4 � 1
2 .

By Lemma 15 applied to C̃ = C(τ ) we deduce that∫
Tε(y)

(1 + |Dy|p) dx � γ0
Ln(C)

Ln(Ω)
Ln(Ω)

so that (4.2) holds with γ = γ0
Ln(C)
Ln(Ω)

.
It therefore remains to consider the case when for some i = 1, 2

Ln({x ∈ D : Dy(x) ∈ Nε(Ki )}) <
1

4
Ln(C) (4.18)

for every D ∈ C.
Let x̃ be any Lebesgue point of Ωi,ε = Ωi,ε(y). Since C covers Ω there exist

ξ(x̃) ∈ R
n , Q̃(x̃) ∈ SO(n) such that C̃(x̃) := ξ(x̃)+ Q̃(x̃)C belongs to C and x̃ ∈

C̃(x̃). For 0 < r � 1 let C̃r (x̃) = rC̃(x̃) + (1− r)x̃ . Note that x̃ ∈ C̃r (x̃) ⊂ C̃(x̃).
Define

f (x̃, r) = Ln(C̃r (x̃) ∩ Ωi,ε)

Ln(C̃r (x̃))
.

Then f (x̃, r) is continuous in r ∈ (0, 1], and since x̃ is a Lebesgue point of Ωi,ε

we have

lim
r→0

f (x̃, r) = 1.

But by (4.18) applied to C̃(x̃), we have f (x̃, 1) < 1
4 , and so there exists r(x̃) ∈

(0, 1] such that

Ln({x ∈ C̃r(x̃)(x̃) : Dy(x) ∈ Nε(Ki )}) = 1

2
Ln(C̃r(x̃)(x̃)).
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Let B(a(C), R(C)) be the minimal ball containing C . Then the balls

Bx̃ = B(r(x̃)[Q̃(x̃)a(C) + ξ(x̃)] + (1 − r(x̃))x̃, r(x̃)R(C))

are such that Cr(x̃)(x̃) ⊂ Bx̃ and in particular they cover the set of Lebesgue points
of Ωi,ε. It follows from Lemma 8 that there exists a finite or countable disjoint
subfamily {Bj }, where Bj = Bx̃ j , such that

∑
j

Ln(Bj ) � cnLn(Ωi,ε).

Hence by Lemma 15, writing C̃ j = C̃r(x̃ j )(x̃ j ),∫
Tε(y)

(1 + |Dy|p) dx �
∑
j

∫
Tε(y)∩C̃ j

(1 + |Dy|p) dx

� γ0
∑
j

Ln(C̃ j )

= γ0
Ln(C)

Ln(B(0, R(C)))

∑
j

Ln(Bj )

� γ0cn
Ln(C)

Ln(B(0, R(C)))
Ln(Ωi,ε)

� γ0cn(1 − E2)
n
2Ln(Ωi,ε). (4.19)

Combining this with the previous cases we deduce that (4.12) holds with

γ = min

[
γ1

Ln(C)

Ln(Ω)
, γ0cn(1 − E2)

n
2

]
, (4.20)

where γ1 = min(γ0, 1
4 ).

The transition layer estimate can be given an equivalent formulation in terms
of gradient Young measures.

Theorem 16. Let 1 < p < ∞ and let Ω be C-connected. Then K1, . . . , KN are
incompatible if and only if there exist constants ε0 > 0 and γ > 0 such that if
0 � ε < ε0 and (νx )x∈Ω is an L p gradient Young measure then

∫
Ω

∫
[⋃N

r=1 Nε(Kr )]c
(1 + |A|p) dνx (A) dx

� γ max
1�r�N

min

⎛
⎝

∫
Ω

νx (Nε(Kr )) dx,
∫

Ω

νx (
⋃
s �=r

Nε(Ks)) dx

⎞
⎠ . (4.21)

The constant ε0 can be chosen to depend only on E(C), K1, . . . , KN and p, while
the constant γ can be chosen to depend only on these quantities andLn(C)/Ln(Ω).

Note that Theorem 13 corresponds to the special case when νx = δDy(x). Again
we need only prove the case N = 2 of Theorem 16, namely
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Theorem 17. Let 1 < p < ∞ and letΩ beC-connected. A pair of disjoint compact
sets K1, K2 are incompatible if and only if there exist constants ε0 > 0 and γ > 0
such that if 0 � ε < ε0 and (νx )x∈Ω is an L p gradient Young measure then

∫
Ω

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx

� γ min

(∫
Ω

νx (Nε(K1)) dx,
∫

Ω

νx (Nε(K2)) dx

)
. (4.22)

The constant ε0 can be chosen to depend only on E(C), K1, K2 and p, while the
constant γ can be chosen to depend only on these quantities and Ln(C)/Ln(Ω).

Proof of Theorem 17. Since Theorem 14 is a special case of Theorem 17 we need
only show that if K1, K2 are incompatible then (4.22) holds. Let ε0, γ be as in
Theorem 14, and let 0 � ε < ε′ < ε0. Let (νx )x∈Ω be an L p gradient Young
measure. By Theorem 1, we may suppose that (νx )x∈Ω is generated by a sequence
Dy( j) of gradients which is such that |Dy( j)|p is weakly convergent in L1(Ω).
Also ∫

Ω

∫
Mm×n

|A|pdνx (A) dx < ∞. (4.23)

For k = 1, 2, . . . let ϕk : Mm×n → [0, 1] be continuous and satisfy

ϕk(A) =
{
1 if A ∈ [Nε′(K1) ∪ Nε′(K2)]c,
0 if A ∈ Nε′− 1

k
(K1) ∪ Nε′− 1

k
(K2),

(4.24)

with ϕk nonincreasing in k. The existence of ϕ̃k satisfying all but the last condition
follows from Urysohn’s lemma, and then we may set ϕk = min j�k ϕ̃ j . Clearly
ϕk → χε′ pointwise, where χε′ is the characteristic function of the closure of
[Nε′(K1)∪Nε′(K2)]c. Similarly, for l = 1, 2 letϕl

k : Mm×n → [0, 1] be continuous
and satisfy

ϕl
k(A) =

{
0 if A ∈ Nε′(Kl)

c,

1 if A ∈ Nε′− 1
k
(Kl),

(4.25)

with ϕl
k nondecreasing in k. Clearly ϕl

k → χ(int Nε′(Kl)) pointwise.
For each j, k we have by Theorem 14 that

∫
Ω

ϕk(Dy( j))(1 + |Dy( j)|p) dx �
∫
Tε′ (y( j))

(1 + |Dy( j)|p) dx

� γ min(Ln(Ω1,ε′(y( j))), Ln(Ω2,ε′(y( j))))

� γ min

(∫
Ω

ϕ1
k (Dy( j)) dx,

∫
Ω

ϕ2
k (Dy( j)) dx

)
.

Since |Dy( j)|p is weakly convergent in L1(Ω), it is equi-integrable, and hence so
is ϕk(Dy( j))(1+|Dy( j)|p), which thus has an L1 weakly convergent subsequence.
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Letting j → ∞ in this subsequence we deduce from the fundamental properties
of Young measures that

∫
Ω

〈νx , ϕk(A)(1 + |A|p)〉 dx � γ min

(∫
Ω

〈νx , ϕ1
k 〉 dx,

∫
Ω

〈νx , ϕ2
k 〉 dx

)
.

(4.26)

Passing to the limit k → ∞, using the everywhere monotone convergence of
ϕk, ϕ

1
k , ϕ

2
k , we obtain

∫
Ω

∫
Mm×n

χε′(A)(1 + |A|p) dνx (A) dx

� γ min

(∫
Ω

νx (int Nε′(K1)) dx,
∫

Ω

νx (int Nε′(K2)) dx

)

� γ min

(∫
Ω

νx (Nε(K1)) dx,
∫

Ω

νx (Nε(K2)) dx

)
.

Letting ε′ → ε+, and noting that χε′ → χ([Nε(K1) ∪ Nε(K2)]c) monotonically,
we deduce by (4.23) and monotone convergence that (4.22) holds. 
�
Corollary 18. Let K1, . . . KN be incompatible. Then there exists ε0 > 0 such that
Nε(K1), . . . , Nε(KN ) are incompatible for 0 � ε < ε0.

Proof. By Remark 6b we may assume thatΩ isC-connected, while by Remark 6a
we need only show that Nε(Kr ) and

⋃
s �=r Nε(Ks) are incompatible. Let supp νx ⊂⋃N

r=1 Nε(Kr ) almost everywhere. Then the left-hand side of (4.21) is zero. Hence
for each r either νx (Nε(Kr )) = 0 almost everywhere or νx (

⋃
s �=r Nε(Ks)) = 0

almost everywhere, and hence either supp νx ⊂ ⋃
s �=r Nε(Ks) almost everywhere

or supp νx ⊂ Nε(Kr ) almost everywhere, giving the result. 
�
Applying the above Corollary 18 to the case when each Kr consists of a single

matrix we immediately obtain

Corollary 19. Forany N the set of points (A1, . . . , AN )∈(Mm×n)N with {A1}, . . . ,
{AN } incompatible is open.

When N = 2 this already gives interesting information. Indeed it implies a
special case of Šverák’s three matrix theorem [70]. In fact if A1, A2 ∈ Mm×n , with
rank (A1−A2) > 1, we have that {A1}, {A2} are incompatible, and so if A3 is taken
sufficiently close to A2 with rank (A2 − A3) > 1 we have that the sets K1 = {A1}
and K2 = {A2, A3} are incompatible. Thus if (νx )x∈Ω is a gradient Young measure
with supp νx ⊂ {A1, A2, A3} almost everywhere then either νx = δA1 almost
everywhere or supp νx ⊂ {A2, A3} almost everywhere. In the latter case, since
{A2}, {A3} are incompatible, we have that either νx = δA2 almost everywhere or
νx = δA3 almost everywhere. Hence νx = δAi almost everywhere for some i ,
which is the statement of Šverák’s theorem in this special case. As remarked to us
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by Šverák, this special case cannot be proved using the minors relations alone. For
example, taking m = n = 2, the probability measure

ν = ε2

4 − ε2
δ0 + 2 − ε2

4 − ε2
(δ1 + δAε ),

where Aε =
(
1 − ε 0
0 1 + ε

)
and ε > 0 is sufficiently small, satisfies the minors

relation det ν̄ = 〈ν, det〉, but by the above {0}, {1}, {Aε} are incompatible. By
Theorem 10, Corollary 18 thus implies the existence of quasiconvex functions that
are not polyconvex. In [13] we give a new proof of the three matrix theorem in the
general case, using similar techniques as in the proof of Theorem13 plus ingredients
from the theory of quasiregular maps. Another proof using results from the theory
of two dimensional quasiregular maps is due to Astala and Faraco [2].

The following simple example shows that Theorems 13, 14, 16, 17 are not true
if 1+ |A|p is replaced by |A|p in the integrals over the transition layer, even when
the volume of the transition layer is arbitrarily small.

Example 10. Letm = n = 2,Ω = (0, 1)2 and let A1 = e2⊗e2, A2 = (e1+e2)⊗
(e1 + e2). Then K1 = {A1}, K2 = {A2} are incompatible, but 0 is compatible with
both A1 and A2. Define for small δ > 0 and for x ∈ Ω ,

yδ(x) =
⎧⎨
⎩
x2e2 if 0 < x2 < 1 − δ,

(1 − δ)e2 if x2 � 1 − δ, x1 + x2 � 2 − δ,

(e1 + e2)(x1 + x2) + (δ − 2)e1 − e2 if x2 � 1 − δ, x1 + x2 > 2 − δ.

Then

Dyδ(x) =
⎧⎨
⎩

A1 if 0 < x2 < 1 − δ,

0 if x2 � 1 − δ, x1 + x2 � 2 − δ,

A2 if x2 � 1 − δ, x1 + x2 > 2 − δ,

and we have for any p > 1
∫
T0(yδ)

|Dyδ|p dx = 0, min{L2(Ω1,0(yδ)),L2(Ω2,0(yδ))} = 1

2
δ2.

We now show that Theorems 13, 14, 16, 17 do not hold for general bounded
domains Ω . Since by Proposition 7 the hypothesis in these theorems that Ω be
C-connected is equivalent to the cone condition, for a counterexample we need a
domain not satisfying the cone condition.

Example 11. We take Ω to be the ‘rooms and passages’ domain of Fraenkel
[39]. For simplicity we let m = n = 2. This domain Ω consists of the union
of a sequence of square rooms Q j = (a j , 0) + h j (−1, 1)2, j = 1, 2, . . ., of
decreasing side 2h j > 0, centred at the points (a j , 0) ∈ R

2 on the x1-axis, where
a1 = 0, a j > 0, together with the rectangular connecting corridors C j = [a j +
h j , a j+1 − h j+1] × (−d j , d j ) of length l j = a j+1 − h j+1 − (a j + h j ) > 0 and
thickness 2d j , where 0 < d j < h j+1. In order for Ω to be bounded, we require
that

∑∞
j=1(2h j + l j ) < ∞.
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Let A1, A2 ∈ M2×2 with rank (A1 − A2) > 1, for example A1 = 0, A2 = 1.
Thus by Example 4 the sets K1 = {A1}, K2 = {A2} are incompatible. We define
y( j) : Ω → R

2 by

y( j)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1x if x ∈ Ω j ,
x1−a j−1−h j−1

l j−1
A2x +

(
1 − x1−a j−1−h j−1

l j−1

)
A1x if x ∈ C j−1,

A2x if x ∈ Q j ,
x1−a j−h j

l j
A1x +

(
1 − x1−a j−h j

l j

)
A2x if x ∈ C j ,

where Ω j = Ω\(C j−1 ∪ Q j ∪ C j ). Thus in the corridor C j−1

|Dy( j)(x)| � c0 + c1
l j−1

,

while in the corridor C j

|Dy( j)(x)| � c0 + c1
l j

,

where c0, c1 are constants independent of j . Thus taking ε = 0, we have∫
T0(y( j))

(1 + |Dy( j)|p) dx =
∫
C j−1∪C j

(1 + |Dy( j)|p) dx

� 2l j−1d j−1

[
1 +

(
c0 + c1

l j−1

)p]

+2l j d j

[
1 +

(
c0 + c1

l j

)p]
,

while

min(L2(Ω1,0(y
( j))),L2(Ω2,0(y

( j))) = L2(Q j ) = 4h2j .

Thus, fixing the sequences h j and l j and letting d j → 0 sufficiently rapidly as
j → ∞, we violate the conclusion (4.2) of Theorem 14 for any choice of γ .

For applications it is important to be able to estimate the constants ε0 and γ in
Theorems 13, 14, 16, 17 and Corollary 18. The proof of Theorem 14 gives a lower
bound on γ (see (4.20)) in terms of the constant γ0 occurring in Lemma 15. This
lemma is proved by contradiction, and thus gives no estimate on ε0 or γ0. However,
Zhang [83–85] has obtained estimates for the constant ε0 in Corollary 18 using
Schauder estimates in BMO and Campanato spaces for linear elliptic systems in the
two cases (a)m and n arbitrary, Kr = {Ar }, r = 1, . . . , N , where the linear span of
the distinct matrices A1, . . . , AN has no rank-one connections, and (b) m = n = 2
and Kr = λr SO(2), r = 1, . . . , N , with 0 < λ1 < · · · < λN .

As regards γ we can obtain upper bounds by considering explicit test functions.
We illustrate this in the next example for the case when m = n, p = 2, Ω is a ball
and K1 = {λ1}, K2 = {μ1} with λ �= μ.

Example 12. Let m = n > 1, Ω = B(0, 1), A1 = λ1, A2 = μ1, λ �= μ. We
consider for k > 1 and sufficiently small ε > 0 the radial mapping
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yε(x) = rε(R)

R
x, (4.27)

where R = |x | and

rε(R) =
{

λR if 0 � R � ε,

μR if kε � R < 1.
(4.28)

For ε < R < kε we choose rε so that it is continuous and minimizes
∫

{ε<|x |<kε}
(1 + |Dy|2) dx . (4.29)

Noting that

|Dy|2 = (n − 1)
( r

R

)2 + (r ′)2, (4.30)

the Euler–Lagrange equation for the functional

∫ kε

ε

Rn−1
(
1 + (n − 1)

( r

R

)2 + (r ′)2
)
dR (4.31)

has linearly independent solutions r = R and r = R1−n . Choosing constants A, B
so that r(R) = AR + BR1−n satisfies r(ε) = λε, r(kε) = μkε, we find that for
the optimal transition layer

rε(R) =
(
knμ − λ

kn − 1

)
R + (λ − μ)(εk)n

kn − 1
R1−n, if ε < R < kε. (4.32)

(In fact by uniqueness of solutions to Laplace’s equation this radial solution is the
minimizer of (4.29) among all (not necessarily radial) maps matching the boundary
conditions at R = ε, kε.) Denoting by T = {ε < |x | < kε} the transition layer, we
calculate using (4.30) that the ratio

ρ =
∫
T (1 + |Dy|2) dx

Ln({x : Dy(x) = λx})
is given by

ρ = 1

εn−1ωn

∫ kε

ε

Rn−1

[
1 + n

(
knμ − λ

kn − 1

)2

+ n(n − 1)

(
λ − μ

kn − 1

)2 (
εk

R

)2n
]
dR

=
∫ k

1
sn−1

[
1 + n

(
knμ − λ

kn − 1

)2

+ n(n − 1)

(
λ − μ

kn − 1

)2 (
k

s

)2n
]
ds

= kn − 1

n
+ (knμ − λ)2

kn − 1
+ (n − 1)

(λ − μ)2kn

kn − 1
.

Here ωn denotes the (n − 1)-dimensional measure of the unit sphere in Rn . To find
the optimal width of the transition layer, we minimize ρ over k > 1. Setting τ = kn
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and minimizing over τ > 1 we find that the minimum value ρmin is achieved when
τ = 1 + n√

1+nμ2
|λ − μ|, and that

ρmin = (n − 1)(λ − μ)2 + 2(
√
1 + nμ2 − sign (λ − μ))|λ − μ|.

Interchanging λ and μ we deduce finally that the constant γ satisfies

γ � (n − 1)(λ − μ)2 + 2h(λ, μ)|λ − μ|, (4.33)

where h(λ, μ) = min(
√
1 + nμ2 − sign (λ − μ),

√
1 + nλ2 − sign (μ − λ)). Of

course this upper bound tends to zero as λ → μ. Note that the upper bound is
proportional to |λ − μ| when both λ and μ are near one.

5. Local Minimizers and Metastability

In this section we apply the transition layer estimate to prove that certain maps
or microstructures (in the parent phase) are local minimizers of the corresponding
energy, the mechanism being that the values of the gradient that could potentially
lower the energy (those of the product phase) are incompatible with those of the
parent phase, so that the gain in energy due to the resulting transition layer is greater
than the loss of energy in using the gradients of the product phase. In applications
to materials undergoing solid phase transformations this provides a mechanism for
incompatibility induced hysteresis.

The basic integral we consider is

I (y) =
∫

Ω

W (Dy(x)) dx, (5.1)

where Ω ⊂ R
n is a bounded domain that is C-connected. We assume that

(H1) W : Mm×n → R ∪ {+∞} is lower semicontinuous,
(H2) There exist constants c0 ∈ R, c1 > 0, p > 1 such that

W (A) � c0 + c1|A|p for all A ∈ Mm×n . (5.2)

More generally we will consider the extension (relaxation) of (5.1) to gradient
Young measures

I (ν) =
∫

Ω

∫
Mm×n

W (A) dνx (A) dx, (5.3)

where ν = (νx )x∈Ω is the Young measure corresponding to a sequence Dy( j) that
is bounded in L p(Ω; Mm×n). The functional (5.1) corresponds to the special case
when νx = δDy(x) for some y ∈ W 1,p(Ω;Rm).

We suppose that the parent and product phases are represented by the compact
sets K1, K2 ⊂ Mm×n respectively, where K1, K2 are incompatible. Let ε0 =
ε0(E(C), K1, K2, p) be as in Theorem 14, and fix ε with 0 < ε < ε0. We assume
that
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(H3) minA∈Nε/2(K1) W (A) = 0, W (A) � 0 for all A ∈ Nε(K1),
(H4) W (A) � −δ for all A ∈ Nε(K2) and some δ > 0,
(H5) W (A) � α for all A ∈ [Nε(K1) ∪ Nε(K2)]c and some α > 0.

ThusW has a local minimizer near the well K1, with minimum value zero, and
a possibly lower local minimizer near the well K2. We will assume later that δ > 0
is sufficiently small, while α > 0 remains fixed. The hypotheses (H1)–(H5) are
satisfied if W is a small perturbation of some W0 which has local minimizers with
equal minimum value zero at the wells K1, K2, as we now show.

Proposition 20. Assume that

(H1)′ Wτ : Mm×n → R ∪ {+∞} is lower semicontinuous in (τ, A) ∈ [0, 1] ×
Mm×n, with Wτ (A) continuous in τ for all A ∈ Mm×n,

(H2)′ W0(A) � 0 for all A ∈ Mm×n, and W−1
0 (0) = K1 ∪ K2,

(H3)′ minA∈Nε(K1) Wτ (A) = 0 for all τ ∈ [0, 1],
(H4)′ Wτ (A) � c0 + c1|A|p for all τ ∈ [0, 1], A ∈ Mm×n.

Then, for sufficiently small τ > 0, Wτ satisfies (H1)–(H5) for some fixed α > 0
and δ = δ(τ ) satisfying

lim
τ→0+ δ(τ ) = 0. (5.4)

Proof. ClearlyWτ satisfies (H1), (H2). To prove (H3) note that by (H3)′ there exists
Aτ ∈ Nε(K1) with Wτ (Aτ ) = 0. We claim that Aτ ∈ Nε/2(K1) for τ sufficiently
small. If not, there would exist τ j → 0 with dist (Aτ j , K1) > ε/2 for all j , and we
can suppose that Aτ j → A �∈ Nε/4(K1). But then by (H1)′

0 = lim inf
j→∞ Wτ j (Aτ j ) � W0(A), (5.5)

and so by (H2)′ A ∈ K1, a contradiction.
To prove (H4) note that by (H1′), (H4′), Wτ attains a minimum on Nε(K2) at

some Bτ , so that Wτ (A) � −δ(τ ) for A ∈ Nε(K2), where

δ(τ ) = max{−Wτ (Bτ ), τ } > 0.

Letting τ → 0+ we have by (H1′) that 0 � W0(B) � lim infτ→0+ Wτ (Bτ ) for
some B ∈ Nε(K2) and so limτ→0+ δ(τ ) = 0.

To prove (H5) note that by (H1′), (H4′),Wτ attains a minimum on the closure of
[Nε(K1) ∪ Nε(K2)]c at some Cτ , where Cτ is bounded for sufficiently small τ . If
(H5) were false then there would exist a sequence τ j → 0+ with Wτ j (Cτ j ) � 1/j
and we may assume that C j → C �∈ K1 ∪ K2. But then (H2′) and (H1′) imply that
0 < W0(C) � lim inf j→∞ Wτ j (C j ) � 0, a contradiction. 
�
Theorem 21. Let Ω be C-connected, and let W satisfy (H1)–(H5) with δ suffi-
ciently small, so that 0 < δ < δ0, where δ0 is a constant depending only on
K1, K2, p, E(C),Ln(C)/Ln(Ω), ε, c0, c1 and α. Let ν∗ = (ν∗

x )x∈Ω be an L p

gradient Young measure with supp ν∗
x ⊂ {A ∈ Nε(K1) : W (A) = 0} and
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ν̄∗
x = Dy∗(x), where y∗ ∈ W 1,p(Ω;Rm). Then there exists σ > 0, depending
on the above quantities and Ln(Ω), such that

I (ν) � I (ν∗) (5.6)

for any L p gradient Young measure ν = (νx )x∈Ω with ν̄x = Dy(x) and

‖y − y∗‖L1(Ω;Rm) < σ. (5.7)

The inequality in (5.6) is strict unless supp νx ⊂ {A ∈ Nε(K1) : W (A) = 0} for
almost everywhere x ∈ Ω .

We will use the following lemmas.

Lemma 22. Let Ω be C-connected. There exist Δ > 0 depending only on K1, K2,

p, E, ε and Ln(C)/Ln(Ω), and β > 0 depending only on the eccentricity E(C)

and Ln(C)/Ln(Ω), such that if ν = (νx )x∈Ω is an L p gradient Young measure
with ν̄x = Dy(x) for y ∈ W 1,p(Ω;Rm) and∫

Ω

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx+
∫

Ω

νx (Nε(K1)) dx < ΔLn(Ω) (5.8)

then

‖y − z‖L1(Ω;Rm ) > βΔLn(Ω)
n+1
n (5.9)

for all z ∈ W 1,p(Ω;Rm) with Dz(x) ∈ Nε(K1)
qc almost everywhere in Ω .

Proof. We first claim that it suffices to prove the existence of Δ in the special case

when Ω is the open ball B = B(0, rn) = B(0, (n/ωn)
1
n ) for which Ln(B) = 1,

with β = 1. Indeed suppose this has been proved with corresponding Δ = ΔB and
let Ω be C-connected with E(C) = E and Ln(C) = κLn(Ω). Then since Ω is
C-filled, Ω contains an open ball of radius 1

2r(C), and since R(C) � (
nLn(C)

ωn
)
1
n =

(
nκLn(Ω)

ωn
)
1
n , Ω contains an open ball Bρ = a + ρB(0, 1) of radius

ρ = 1

2

(
nκLn(Ω)

ωn

) 1
n

(1 − E2)
1
2 .

Therefore if (5.8) holds with Δ given by Δ(E, κ) = 2−nκ(1 − E2)
n
2 ΔB then∫

Bρ

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx

+
∫
Bρ

νx (Nε(K1)) dx < 2−nκ(1 − E2)
n
2 ΔBLn(Ω). (5.10)

Define μ = (μx )x∈B by μx = νa+ ρ
rn

x and ỹ(x) = rn
ρ
y(a + ρ

rn
x). Then Dỹ(x) =

μ̄x . Hence∫
B

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dμx (A) dx +
∫
B

μx (Nε(K1)) dx < ΔB . (5.11)
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If z ∈ W 1,p(Ω;Rm) with Dz(x) ∈ Nε(K1)
qc almost everywhere and z̃(x) =

rn
ρ
z(a + ρ

rn
x) we have that Dz̃(x) = Dz(a + ρ

rn
x) ∈ Nε(K1)

qc for almost every
x ∈ B. Since we are assuming the result holds for Ω = B and β = 1 we deduce
that

‖ỹ − z̃‖L1(B;Rm ) > ΔB,

which implies that

‖y − z‖L1(Ω;Rm ) � ‖y − z‖L1(Bρ ;Rm ) > β(κ, E)Δ(κ, E)Ln(Ω)
n+1
n ,

where β(κ, E) = 1
2κ

1
n (1 − E2)

1
2 , proving the claim.

Suppose then that the result is false for Ω = B and β = 1, so that it is false for
Δ = 1

j for every j . Then there exist a sequence of L p gradient Young measures

ν( j) = (ν
( j)
x )x∈B , and mappings y( j) ∈ W 1,p(B;Rm) with ν̄

( j)
x = Dy( j)(x),

z( j) ∈ W 1,p(B;Rm)with Dz( j)(x) ∈ Nε(K1)
qc almost everywhere in B, such that

∫
B

∫
[Nε(K1)∪Nε(K2)]c

(1+|A|p)dν( j)
x (A) dx+

∫
B

ν
( j)
x (Nε(K1)) dx < j−1 (5.12)

and

‖y( j) − z( j)‖L1(B;Rm ) � j−1. (5.13)

It follows from (5.12) and the boundedness of Nε(K1), Nε(K2) that∫
B

∫
Mm×n

(1 + |A|p)dν( j)
x (A) dx � M < ∞ (5.14)

for all j . We may suppose without loss of generality that
∫
B y( j)(x) dx = 0. We

use the inequality (seeMorrey [58, p. 82] for similar results and proofs)
∫
B

|u|p dx�C

(∫
B

|Du|p dx +
∣∣∣∣
∫
B
u dx

∣∣∣∣
p)

for all u∈W 1,p(B;Rm), (5.15)

whereC is a constant. Applying (5.15) to y( j), using ν̄
( j)
x = Dy( j)(x) and Hölder’s

inequality, we deduce that y( j) is bounded in W 1,p(B;Rm). Extracting a subse-

quence (not relabelled) if necessary, we may assume that ν( j) ∗
⇀ ν in L∞

w (B;C0
(Mm×n)∗), and hence by Sychev [72, Proposition 4.5] ν = (νx )x∈B is an L p

gradient Young measure. Thus ν̄x = Dy(x) almost everywhere for some y ∈
W 1,p(B;Rm) with

∫
B y dx = 0. We claim that y( j) ⇀ y in W 1,p(B;Rm). To

this end let θk : [0,∞) → [0, 1] satisfy θk(s) = 1 for s ∈ [0, k], θk(s) = 0 for
s ∈ [k + 1,∞). Then if ψ ∈ C∞

0 (Ω) we have that

lim sup
j→∞

∣∣∣∣
∫
B

ψ(x)(Dy( j)(x) − Dy(x)) dx

∣∣∣∣
= lim sup

j→∞

∣∣∣∣
∫
B

ψ(x)
∫
Mm×n

A d(ν( j)
x − νx )(A) dx

∣∣∣∣
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� lim sup
j→∞

∣∣∣∣
∫
B

ψ(x)
∫
Mm×n

θk(|A|)A d(ν( j)
x − νx )(A) dx

∣∣∣∣

+ lim sup
j→∞

∣∣∣∣∣
∫
B

ψ(x)
∫

|A|�k
(1 − θk(|A|))A d(ν( j)

x − νx )(A) dx

∣∣∣∣∣
� lim sup

j→∞

∣∣∣∣∣
∫
B

|ψ(x)|
(∫

|A|�k
|A| d(ν( j)

x + νx )(A)

)∣∣∣∣∣ ,

� C

k p−1 ,

for some constantC , where we have used ν( j) ∗
⇀ ν in L∞

w (B;C0(Mm×n)∗), (5.14)
and relation (iii) of Theorem 1. Letting k → ∞ we deduce that Dy( j) ⇀ Dy in
L p(B; Mm×n), from which the claim follows since

∫
B y( j) dx = ∫

B y dx = 0. By
the compactness of the embedding we have that y( j) → y strongly in L p(B;Rm).

Note that by (5.12) we have that∫
B
(1 − ν

( j)
x (Nε(K2))) dx � 1

j
. (5.16)

Letϕk ∈ C0(Mm×n),with 0 � ϕk(A) � 1,ϕk+1(A) � ϕk(A) and limk→∞ ϕk(A) =
χNε(K2)(A) for all A ∈ Mm×n , where χNε(K2) is the characteristic function of
Nε(K2). Then by (5.16) we have that

lim
j→∞

∫
B

∫
Mm×n

(1 − ϕk(A)) dν( j)
x (A) dx = 0,

and so by the weak* convergence of ν( j) we deduce that∫
B

∫
Mm×n

(1 − ϕk(A))dνx (A) dx = 0.

Passing to the limit k → ∞ using monotone convergence we obtain∫
B
[1 − νx (Nε(K2))] dx = 0.

Thus supp νx ⊂ Nε(K2) almost everywhere inΩ . In particular Dy(x) ∈ Nε(K2)
qc

almost everywhere in B.
But from (5.13) we deduce that z( j) → y in L1(B;Rm). Since Dz( j) ∈

Nε(K1)
qc it follows that Dz( j)

∗
⇀ Dy in L∞(B; Mm×n) and thus Dy(x) ∈

Nε(K1)
qc. But Nε(K1)

qc and Nε(K2)
qc are disjoint by Corollary 9, giving the

desired contradiction. 
�
Lemma 23. Let W satisfy (H2) and (H5). Then

W (A) � K (1 + |A|p) for all A ∈ [Nε(K1) ∪ Nε(K2)]c, (5.17)

where

K =
⎧⎨
⎩
c1 if c0 � c1,
c0 if α � c0 < c1,

αc1
α+c1−c0

if α > c0, c1 > c0.
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Proof. This is elementary. 
�
Proof of Theorem 21. With Δ,β, K chosen as in Lemmas 22, 23 respectively,
and γ > 0 the constant in the transition layer estimate (4.22), choose δ > 0 with

δ <
K

2
min (γ,Δmin(1, γ )) , (5.18)

and let σ = βΔLn(Ω)
n+1
n .

For ν, ν∗ as in the statement of the theorem we have that

I (ν) − I (ν∗) = I (ν) − 0

=
∫

Ω

∫
Nε(K1)

W (A) dνx (A) dx +
∫

Ω

∫
Nε(K2)

W (A) dνx (A) dx

+
∫

Ω

∫
[Nε(K1)∪Nε(K2)]c

W (A) dνx (A) dx

� 0 − δ

∫
Ω

νx (Nε(K2)) dx

+K
∫

Ω

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx

� −δ

∫
Ω

νx (Nε(K2)) dx

+K

2

∫
Ω

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx

+K

2
γ min

(∫
Ω

νx (Nε(K1)) dx,
∫

Ω

νx (Nε(K2)) dx

)
. (5.19)

If
∫
Ω

νx (Nε(K1)) dx �
∫
Ω

νx (Nε(K2)) dx then, since Dy∗(x) ∈ Nε(K1)
qc, by

Lemma 22 we have that∫
Ω

∫
[Nε(K1)∪Nε(K2]c

(1 + |A|p)dνx (A) dx +
∫

Ω

νx (Nε(K1)) dx � ΔLn(Ω),

and hence by (5.18), (5.19)

I (ν) − I (ν∗) � −δ

∫
Ω

νx (Nε(K2)) dx + K

2
min(1, γ )ΔLn(Ω) > 0. (5.20)

On the other hand if
∫
Ω

νx (Nε(K2)) dx �
∫
Ω

νx (Nε(K1)) dx then

I (ν) − I (ν∗) �
(
K

2
γ − δ

) ∫
Ω

νx (Nε(K2) dx

+K

2

∫
Ω

∫
[Nε(K1)∪Nε(K2)]c

(1 + |A|p) dνx (A) dx � 0. (5.21)

From (5.20), (5.21) we see that I (ν) = I (ν∗) if and only if supp νx ⊂ {A ∈
Nε(K1) : W (A) = 0}, completing the proof. 
�
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6. Applications

In this section we discuss the application of the results given above to materi-
als that undergo diffusionless phase transformations involving a change of shape,
usually called martensitic phase transformations.

6.1. Variant Rearrangement Under Biaxial Stress

The original motivation for this paper were experiments of Chu and James on
the response of single crystal plates of martensitic material to biaxial stress. The
experimental details are presented elsewhere [26,27]. In the design of these exper-
iments attention was paid to the design of the loading device so as to correspond to
the total free energy

E(y) =
∫

Ω

ϕ(Dy(x), θ) − T · Dy(x) dx, (6.1)

where y : Ω → R
3, Ω is a thin rectangular plate-like domain in R

3, θ > 0 is the
temperature, and T = σ1e1⊗e1+σ2e2⊗e2, σ1 > 0, σ2 > 0 with e1, e2 ∈ R

3 (the
orthonormal “machine basis”). The first term in (6.1) represents the free energy of
the transforming material, and the second term is the loading device energy.

In the experiments described here the temperature was held fixed at a value θ0
below the phase transformation temperature. For this reason we henceforth drop
θ from the notation. The assigned σ1 > 0, σ2 > 0 are interpreted as the tractions
(per unit reference area) applied to the edges of the specimen in the directions
e1, e2, respectively. These were varied either incrementally or continuously during
the tests. The material was the alloy Cu-14wt.%Al-4.0wt.%Ni having a cubic-to-
orthorhombic phase transformation, leading to six variants of martensite at the test
temperature. These are modeled as energy wells of ϕ of the form

ϕ(A) � 0, ϕ(A) = 0 ⇐⇒ A ∈ M = SO(3)U1 ∪ · · · ∪ SO(3)U6. (6.2)

with

U1 =
⎛
⎝

α+γ
2

α−γ
2 0

α−γ
2

α+γ
2 0

0 0 β

⎞
⎠ , U2 =

⎛
⎝

α+γ
2

γ−α
2 0

γ−α
2

α+γ
2 0

0 0 β

⎞
⎠ ,

U3 =
⎛
⎝

α+γ
2 0 α−γ

2
0 β 0

α−γ
2 0 α+γ

2

⎞
⎠ , U4 =

⎛
⎝

α+γ
2 0 γ−α

2
0 β 0

γ−α
2 0 α+γ

2

⎞
⎠ ,

U5 =
⎛
⎝β 0 0

0 α+γ
2

α−γ
2

0 α−γ
2

α+γ
2

⎞
⎠ , U6 =

⎛
⎝β 0 0

0 α+γ
2

γ−α
2

0 γ−α
2

α+γ
2

⎞
⎠ , (6.3)

all expressed in an orthonormal basis ê1, ê2, ê3 (the “material basis”). Themeasured
values of α, β, γ for this alloy are α = 1.0619, β = 0.9178 and γ = 1.0230
(Duggin and Rachinger [35], Otsuka and Shimizu [61]). The deviation of the
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material basis from the machine basis measures the orientation of the specimen.
Several orientations were tested.

For many purposes, including the design of the orientations of crystals used
in the tests, a simpler constrained theory was used, valid in the regime that |T |/κ
is small1, κ being the minimum eigenvalue of the linearized elasticity tensor, lin-
earized about U1. The constrained theory is based on the total free energy

E(ν) =
{− ∫

Ω

∫
M T · A dνx (A)dx if supp νx ⊂M for almost every x ∈Ω,

+∞ otherwise,

(6.4)

defined on the set of L∞ gradient Young measures ν = (νx )x∈Ω . The constrained
theory has been justified as a limiting theory for Young measures of low energy
sequences by Forclaz [38] using Γ -convergence, but under assumptions not al-
lowing W (A) → ∞ as det A → 0+; the proof is based on replacing ϕ by kϕ
in (6.1) and letting k → ∞ (a similar procedure to letting |T |/κ → 0 but which
does not require additional smoothness assumptions on ϕ). A more general Γ -
convergence analysis including the austenite energywell and allowingW (A) → ∞
as det A → 0+ is given by [16, Proposition 1].

The design of orientations was based on the minimization of (6.4), which can
be done in the following way by minimizing its integrand (see Chu [26], Chu and
James [27]). The machine basis was chosen in all cases such that, for all values of
σ1 > 0, σ2 > 0,

min
A∈SO(3)U1∪SO(3)U2

−T · A < min
A∈SO(3)U3∪···∪SO(3)U6

−T · A. (6.5)

In fact, the minimizer is unique for all points in this open quadrant, except those on
a smooth, strictly monotonically increasing curve C : σ2 = f (σ1), f ∈ C∞(0,∞),
which is nearly a straight line in the range of σ1, σ2 tested. In fact, there exist func-
tions Ri ∈ C∞((0,∞)×(0,∞); SO(3)), i = 1, 2, such that A = R1(σ1, σ2)U1 is
the unique minimizer of −T · A, A ∈ M, for σ2 < f (σ1) and A = R2(σ1, σ2)U2
is its unique minimizer on M for σ2 > f (σ1). The functions R1, R2 can and
will be taken as the unique minimizers of −T · A on their respective energy wells
SO(3)U1, SO(3)U2 on the full quadrant σ1 > 0, σ2 > 0. There are precisely
two equi-minimizers of −T · A, A ∈ M, on C given by R1(σ1, f (σ1))U1 and
R2(σ1, f (σ1))U2. The tests consisted of crossing the curve σ2 = f (σ1) by various
loading programs (σ1(t), σ2(t)), t > 0, and measuring the volume fractions of the
subregions on the specimen where Dy ∈ SO(3)U1 (variant 1) vs. Dy ∈ SO(3)U2
(variant 2).

The key point for this paper is that, by direct calculation of the functions R1, R2,

rank(R2(σ1, f (σ1))U2 − R1(σ1, f (σ1))U1) > 1 (6.6)

1 Using measured moduli of Yasunaga et al. [78,79], for this alloy gives κ ∼ 15 GPa.
A typical maximum value of |T | in the tests was 15 MPa, yielding |T |/κ ∼ 15 MPa/15 GPa
= 10−3.
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for all σ1 > 0 and all orientations tested. Thus, fixing σ1 = σ ◦
1 ∈ (0,∞), we let

K1 = {R1(σ
◦
1 , f (σ ◦

1 ))U1}, and K2 = {R2(σ
◦
1 , f (σ ◦

1 ))U2}. By Example 4, K1 and
K2 are L p incompatible for p > 1. Letting Tτ = σ ◦

1 e1⊗e1+(c2τ + f (σ ◦
1 ))e2⊗e2

and Rτ
1 = R1(σ

◦
1 , c2τ + f (σ ◦

1 )) for some c2 > 0, a suitable functionWτ satisfying
the hypotheses of Proposition 20 for m = n = 3 can be defined as follows:

Wτ (A) =
{−Tτ · (A − Rτ

1U1) if A ∈ M,

∞ if A ∈ Mc.
(6.7)

Wτ clearly satisfies (H1)′, (H2)′ and (H4)′, while (H3)′ is satisfied by choosing
c2 > 0 sufficiently small that Rτ

1U1 ∈ Nε(K1) for 0 � τ � 1. The region occupied
by the specimen was approximately a thin rectangular plate, so we assume Ω is a
rectangular solid. In particular Ω is Ω-connected. The energy density Wτ differs
from that of the constrained theory by a trivial additive constant. Theorem 21 then
implies that the Young measure ν∗

τ = δRτ
1U1 is metastable for sufficiently small

τ > 0 in the sense given there.
In this formulation we have used σ2 as the parameter that moves the wells up

and down. One could equally well use a parameterization of any other curve that
crosses C transversally.

Experimentally, transformation occurred by a sudden avalanche of transforma-
tion from variant 1 to variant 2 or vice-versa. The transformation was sufficiently
abrupt that a point in the σ1, σ2 plane could be associated with the transforma-
tion. The series of points obtained in this way from diverse monotonic loading
programmes, including those for which σ1(t) = const., or σ2(t) = const., or
σ1(t) + σ2(t) = const., all starting from a point σ1(0), σ2(0) satisfying σ2(0) �
f (σ1(0)), at which the specimen was observed to be in variant 1, gave abrupt
transformation to variant 2 at points lying very near a line C+ : σ2 = f +(σ1) >

f (σ1), 0 < a < σ1 < b. Similarly, the same kinds of loading programmes but
run backwards, beginning from variant 2, led to transformation to variant 1 near a
line C− : σ2 = f −(σ1) < f (σ1), 0 < a < σ1 < b. For all orientations tested,
the three curves C, C+, C− were nearly parallel, but the “width of the hysteresis”,
dist (C+, C−), varied significantly with orientation.

The concept developed in this paper is consistent with the behaviour described
above. We can examine this further by seeking an upper bound on the value of τ

in (6.7) beyond which ν∗
τ = δRτ

1U1 ceases to be metastable in the sense of Theorem
21. As τ > 0 increases, there are more and more matrices A ∈ SO(3)U2 with a
negative value of the integrand Wτ (A). Suppose a value τ+ is reached such that
for τ � τ+, that is τ � τ+ with τ − τ+ sufficiently small, there is a matrix
B ∈ SO(3)U2 with rank(B − Rτ

1U1) = 1, such that Wτ (B) < Wτ (Rτ
1U1). Then

ν∗
τ = δRτ

1U1 ceases to be metastable in the sense of Theorem 21. In fact, it fails to be

metastable even if L1 in (5.7) is replaced by L∞. In the case that B−Rτ1
1 U1 = a⊗n,

τ1 � τ+, the counterexample is the family of competitors νx = δDyξ (x), ξ > 0,
defined for x0 ∈ Ω by the W 1,∞(Ω,R3) mapping

yξ (x) =
⎧⎨
⎩

Rτ1
1 U1(x − x0) if (x − x0) · n < 0,

B(x − x0) if 0 � (x − x0) · n � ξ,

Rτ1
1 U1(x − x0) + ξa if (x − x0) · n > ξ.
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Since ‖yξ − Rτ1
1 U1(x − x0)‖L1(Ω,R3) � Cξ |a| for a constant C = C(Ω), then ν

can be made to fall into any preassigned neighbourhood of ν∗
τ in the sense of (5.7)

of Theorem 21 by making ξ sufficiently small, and this competitor also works in
the L∞ case. But clearly, since Wτ (B) < Wτ (Rτ

1U1) we have that E(ν) < E(ν∗
τ ),

so ν∗
τ is not metastable for τ � τ+.
This qualitative argument for the sequence stable–metastable–unstable as τ in-

creases, in the sense discussed here, is complete if we can show that there exists B
with the properties given above. This is true by direct calculation for all the orien-
tations tested. This is done by first calculating explicitly Rτ

1U1, and then noticing
that the wells SO(3)U1 and SO(3)U2 are compatible. That is, even though (6.6)
holds, there are precisely two matrices R̂τ

aU2, R̂τ
bU2 ∈ SO(3)U2 that differ from

Rτ
1U1 by a matrix of rank 1 for τ > 0, and there exists a smallest value τ+ > 0

such that for τ > τ+, Wτ (B) < Wτ (Rτ
1U1) where B is either R̂τ

aU2 or R̂τ
bU2.

Unless the orientation is special, the two matrices R̂τ
aU2 or R̂τ

bU2 do not give
the same value of Wτ , suggesting a preference for one of them, assuming that
these examples deliver the point of first loss of metastability. Let us suppose for
definiteness that the preference is for R̂τ

aU2, so R̂τ
aU2 − Rτ

1U1 = aτ ⊗ nτ and
Wτ (R̂τ

aU2) � Wτ (Rτ
1U1) for τ � τ+ with equality precisely at τ = τ+. Combin-

ing these two conditions, we have

aτ+ · Tτ+nτ+ = 0. (6.8)

This is formally equivalent to the well-known Schmid law (with Schmid constant 0)
[66]. The left-hand side of (6.8) is usually interpreted as the “critical resolved stress
on the twin plane”, but in that case Tn is interpreted as the actual Piola-Kirchhoff
traction on a pre-existing twin planewith unit normal n anda = (F+−F−)n, where
F± are local limiting values of the deformation gradient. The Schmid lawprescribes
a critical value of a · Tn at which this plane begins to move. The emergence of
(6.8) here has apparently nothing to do with stress in the specimen at all, which is
expected to be extremely complicated once bands of the second variant appear, but
rather concerns the loading device energy.

In fact, as discussed in [11,38], for a suitable C-connected domain Ω with
corners, these simple counterexamples to metastability do not deliver the points of
first loss of metastability. More complicated microstructures still in an L∞ local
neighbourhood, which are not simply Dirac masses, serve as counterexamples to
metastability at values of τ ∈ (τ+

1 , τ+) for some 0 < τ+
1 < τ+. The experimentally

observed microstructure at transition (that is, near C+) is still somewhat more
complicated than these, and is clearly not a simple laminate. If we accept that the
basis of the Schmid law is metastability as noted above, these more complicated
examples call into question the validity of that law in this context and also indicate
a dependence of hysteresis on the shape of the domain. The latter is also expected
based on Example 11.

A detailed comparison of these upper bounds, either the one associated to τ+
or to τ+

1 , with the experimentally measured width of the hysteresis is difficult.
Experimentally, it is easiest to identify C+ with a possible loss of metastability, but
the shoulder of the hysteresis loop is not perfectly sharp, and some bands appear
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before reaching C+, as τ is increased. Because of this ambiguity, it is unclear where
one should declare that the homogeneous variant has begun to transform. However,
the overall impression one gets when attempting this comparison is that the upper
bounds associated to both τ+ or to τ+

1 underestimate the size of the hysteresis.
Nevertheless there is rather good qualitative agreement, in the sense that, for two
specimens of different orientation having widths of the hysteresis dist (C+, C−)

differing by a factor of 2, the corresponding upper bounds for the two cases also
differ by a factor of about 2.

6.2. Dilatational Transformation Strain

Martensitic transformations having a pure dilatational transformation strain are
rare, but some examples are known in diffusional transformations, which involve
shape change and short or long range diffusion, depending on the overall compo-
sition of the alloy. The best known example is perhaps the ordering transformation
from a disordered FCC phase to an L21 phase in Ni3Al [76], for which the ideas
given above may be relevant.

As a general treatment of dilatational transformation strains, consider two com-
pact disjoint subsets k1, k2 of (0,∞), and corresponding energy wells K1 =
k1SO(3) and K2 = k2SO(3), where ki SO(3) = {kSO(3) : k ∈ ki }. That K1
and K2 are incompatible follows from [9, Theorem 4.4] and Lemma 1, and also
follows from the construction below, as we will indicate.

We will construct a polyconvex function W0 that vanishes exactly on K1 ∪ K2.
This construction will enable us to embedW0 in a familyWτ , 0 � τ � 1, for which
we will prove metastability in the sense of Theorem 21.

Following an observation of [17] (see also [5,7]), let 1 < α < 3 and let
h̄ : R → [0,∞] be continuous with h̄ = ∞ on (−∞, 0], h̄ ∈ C2(0,∞) and
h̄−1(0) = {k3 : k ∈ k1 ∪ k2}. We assume that h̄ is convex outside a compact subset
[a, b] ⊂ (0,∞) containing h̄−1(0), so that there exists γ > 0 such that h̄′′ � −γ

on (0,∞). Let a convex function h̃ ∈ C2(R) satisfy

h̃(t) =
{−3c1tα/3 if a < t < b,

−3c1(b + 1)α/3 if t > b + 1.
(6.9)

Such a convex function exists because the tangent at t = b to −3c1tα/3 lies below
the constant function −3c1(b + 1)α/3 at t = b + 1.

Define h(t) = h̄(t)+ h̃(t). Since h̄′′ � −γ , 1 < α < 3, and h̄ is convex outside
[a, b], there is c1 > 0 such that

h′′(t) = h̄′′(t) + 1

3
c1α(3 − α)t−2+α/3 > 0 (6.10)

on [a, b] and so h is convex on R and bounded below by c0 = −3c1(b + 1)α/3.
Define an energy density for an isotropic elastic material by

W0(A) = c1(λ
α
1 + λα

2 + λα
3 ) + h(λ1λ2λ3), (6.11)

whereλ1, λ2, λ3 are the eigenvalues of
√
AT A. Because h is convex and 1 < α < 3,

W0 is polyconvex by [6, Theorem 5.1].
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Now we observe that W0 has strict minima on K1 ∪ K2. Indeed, since h is
bounded below and h(0) = ∞, the function

∑
i c1λ

α
i + h(λ1λ2λ3) attains a mini-

mum for λ1 > 0, λ2 > 0, λ3 > 0, where

c1αλα
i = −h′(λ1λ2λ3)λ1λ2λ3. (6.12)

Hence λ1 = λ2 = λ3 = t1/3, where c1αtα/3 = −h′(t)t . These values of t are
critical points of the function h̄(t) = 3c1tα/3 + h(t) = W0(t1/3 I ), which has mini-
mizers precisely on the set h̄−1(0) by construction. Hence, W0(A) has minimizers
precisely on K1 ∪ K2, where W0(A) = 0.

Since h is bounded below by c0, the energy density W0 satisfies the growth
condition

W0(A) = c1(λ
α
1 + λα

2 + λα
3 ) + h(λ1λ2λ3) � c0 + c1|A|α, (6.13)

so that W0 satisfies conditions (H1) and (H2) of Section 5 for p = α.
To show that K1, K2 are incompatible we can consider the special case α = 2,

when

W0(A) = c1|A|2 + h(det A).

If ν = (νx )x∈Ω is an L∞ gradient Young measure with supp νx ⊂ K1 ∪ K2 almost
everywhere, we have that

0 = 〈νx ,W0〉 = c1〈νx , |A|2〉 + 〈νx , h(det A)〉.
Applying Jensen’s inequality for the quasiconvex functions |A|2 and h(det A), we
have that

〈νx , |A|2〉 � |ν̄x |2, 〈νx , h(det A)〉 � h(det ν̄x ).

But c1|ν̄x |2+h(det ν̄x ) = W0(ν̄x ) � 0. Hence 〈νx , |A|2〉 = |ν̄x |2, so that 〈νx , |A−
ν̄x |2〉 = 0 and hence νx = δDy(x) with ν̄x = Dy(x). But Dy(x) ∈ K1 ∪ K2 almost
everywhere, so that y is a W 1,∞ conformal mapping in 3 dimensions. By classic
results ofReshetnyak [64] all suchmappings are smooth and therefore Dy cannot
be supported nontrivially on disjoint closed sets. Thus, K1, K2 are incompatible.

The energy density W0 can easily be extended to a family Wτ satisfying the
hypotheses (H1)′–(H4)′ of Proposition 20. Let ε0, γ be as in the transition layer
estimate (Theorem 17) and let 0 < ε < ε0 be fixed. Since Nε(K1) and Nε(K2) are
disjoint, we can let

Wτ (A) = W0(A) − τH(det A), (6.14)

where H : R → [0, 1] is a smooth function satisfying

H(t) =
{
1 if t ∈ {k3 : k ∈ k2} := N2,

0 if dist (t, N2) > ρ(ε),

where ρ(ε) > 0 is sufficiently small. Clearly, Wτ satisfies the hypotheses (H1)′-
(H4)′ with p = α. Therefore, any L p gradient Young measure ν∗ = (ν∗

x )x∈Ω

satisfying supp ν∗
x ⊂ {A ∈ Nε(K1) : W (A) = 0} is metastable in the sense of
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Theorem 21 for sufficiently small τ > 0, even though Wτ (A) = 0 for A ∈ K1 and
Wτ (A) = −τ for A ∈ K2. In [17, Theorem 3.5] it is shown that such a result for
free-energy functions of the form (6.11) is not valid if the second energy well is
arbitrarily deep.

Depending on the structure of K1 the form of these metastable Young measures
is strongly restricted by Reshetnyak’s theorem, but ν∗

x = δDy∗(x), where y∗ is a
conformal mapping, is a possibility.

Although it is interesting that pure dilatational phase transformations can be
described bypolyconvex free-energy functions, the functionsWτ also serve as lower
bounds for free-energy functions for which metastability in the sense of Theorem
21 also holds. For example, by multiplying through the metastability estimate by
a sufficiently small positive constant, Wτ can be a lower bound for a variety of
non-polyconvex energy densities, with various choices of positive-definite linear
elastic moduli. Of course, this modification also decreases γ , including the largest
value of γ for which there is an ε0 > 0 satisfying the metastability theorem. In this
sense, softening a material, but keeping the wells the same, lowers the barrier for
metastability.

6.3. Terephthalic Acid

Terephthalic acid [4,30] is an interesting example in this context, since, among
all reversible structural transformations, it has an exceptionally large transformation
strain. It is the largest strain in a nominally reversible transformation in terms of
dist (K1, K2) of which we are aware in a material that has no rank-one connections
between K1 and K2, that is, no solutions A, B ∈ M3×3 of rank(B − A) = 1,
A ∈ K1, B ∈ K2. The clearly visible large change-of-shape shown by Davey et
al. [30] is remarkable.

Terephthalic acid undergoes the transformation from Form I to Form II between
80 and 100 ◦C [30]. The transformation is reversible upon cooling to 30 ◦C, at
least for a subset of crystallites; the application of a slight stress aids the reverse
transformation. The crystal structure and lattice parameter measurements of the
I–II transformation have been determined by Bailey et al. [4]. Knowledge of
these two structures and lattice parameters does not imply a unique transformation
stretch matrix due to the existence of infinitely many linear transformations that
take a lattice to itself. The transformation stretch matrix

U =
⎛
⎝ 0.970 0.038 −0.121

0.038 0.835 −0.017
−0.121 −0.017 1.298

⎞
⎠ , (6.15)

is the one delivered by an algorithm [24] designed to give the smallest distortion
measured by an appropriate norm. The associated lattice correspondence of the
two phases (that is, which vector is transformed to which vector) agrees with de-
scriptions of the transformation [4] and, semi-quantitatively, with photographs of
crystals of the two phases [30]. The eigenvalues of U are 1.339, 0.939, 0.825.
Nominally, there are two wells K1 = SO(3), K2 = SO(3)U . In fact twinning
is observed in the Form I, but this appears to be growth twinning [30], and not
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produced during transformation. (Both phases are triclinic, so there is no lowering
of symmetry during transformation.) Since the middle eigenvalue of U is not 1,
there are no rank-one connections between K1 and K2 [14].

The best sufficient conditions known that two wells K1 and K2 of this form
are incompatible are due to Dolzmann, Kirchheim, Müller and Šverák [34].
Condition (ii) of their Theorem 1.2 is satisfied by U . Therefore, K1 and K2 are
incompatible, and our metastability theorem applies to this case.

7. Perspective on Metastability and Hysteresis

In recent years different but related concepts of metastability have appeared in
the literature [23,28,32,42,48,49,86,87], motivated by some experimental results
on a dramatic lattice parameter dependence of the sizes of hysteresis loops. These
observations call for newmathematical concepts of metastability whose form is not
at all clear.

Typical martensitic materials have energy wells of the form K1 = SO(3) and
K2 = SO(3)U1 ∪ · · · ∪ SO(3)Un , with n � 1, and positive-definite, symmetric
matrices U1, . . . ,Un ∈ M3×3 satisfying {U1, . . . ,Un} = {QU1QT : Q ∈ G},
where G is a finite group of orthogonal matrices [cf., (6.3)]. Modulo the comments
in Section 6.3 on the difficulties of determining the transformation stretch matrix,
U1 for a particular material can be inferred from X-ray measurements. All first
order martensitic phase transformations have some amount of thermal hysteresis,
which refers to the fact that the transformation path on cooling differs from that
on heating. A measurement of the fraction of the sample that has transformed vs.
temperature during a heating/cooling cycle gives a loop, called the hysteresis loop,
whose width is a typical measure of the hysteresis. While indicative of dissipation,
the hysteresis loop does not collapse to zero as the loop is traversed more and more
slowly, and so is apparently not due to thermally activated processes, or dissipative
mechanisms like viscosity or viscoelasticity.

The matrix U1 can be changed by changing the composition of the material.
Suppose the ordered eigenvalues of U1 are λ1 � λ2 � λ3. The main experimental
observation underlying the analysis of hysteresis in the papers listed above is that,
if a family of alloys is prepared having a sequence of values of λ2 approaching 1,
the hysteresis gets dramatically small. Experimental graphs [28] of hysteresis vs.
λ2 show an apparent cusp-like singularity at λ2 = 1, that is, an extreme sensitivity
of the size of the hysteresis to |λ2 − 1|. Very careful changes of composition in
increments of 1/4% lead to alloys with exceptionally low hysteresis of 2–3 ◦C in a
variety of systems [23,80]. Since λ2 = 1 is a necessary and sufficient condition that
there is a rank-one connection between K1 and K2, these results indicate that the
removal of stressed transition layers by strengthening conditions of compatibility
is relevant to hysteresis.

A strict application of the ideas in this paper does not explain this behaviour.
That is because, in all of these cases that have been studied experimentally, K1
and K2 are compatible even in the starting alloys for which λ2 is relatively far
from 1. In fact, all of these cases support solutions of the crystallographic theory
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of martensite [14,77], implying that there exist A, B ∈ K2 and C ∈ K1, such that
rank (B − A) = 1 and rank (λB + (1 − λ)A − C) = 1 for some 0 < λ < 1. This
series of rank one connections implies the existence of a Young measure (νx )x∈Ω

supported nontrivially on K1, K2, consisting of a laminate of two martensite vari-
ants . . . A/B/A/B . . . meeting the austenite C phase across a vanishingly small
planar transition layer. In fact, the laminated martensite can be confined between
two such parallel planeswhich can be arbitrarily close together (see [12] for details).
This family of test measures then provide a counterexample to the metastability of
say ν∗ = δC in the sense of Theorem 21, even if L1 in (5.7) is replaced by L∞.

A special family of test functions yε of the type just described—a laminate
. . . A/B/A/B . . . confinedbetweenparallel planes at the distance ε and interpolated
with C in a layer near these planes—can be constructed explicitly. Its energy can
then be calculated by using a bulk energy of the type studied in this paper with
a suitable elastic energy density Wτ , together with a interfacial energy per unit
area (taken as constant) on the A/B boundaries. In this case −τ is interpreted as
the temperature and τ = 0 is the transformation temperature. This has been done
in [86] and improved by Zwicknagl [87]. A graph of total energy vs. ε gives a
barrier whose height is very sensitive to |λ2 − 1|, and decreases with decreasing
temperature −τ . If a critical value ε = εcrit is introduced (modelling a pre-existing
martensite nucleus of this type), and the temperature θc = −τ is calculated at which
ε = εcrit , then the resulting graph of 0 − θc vs. λ2, all else fixed, has a singularity
at λ2 = 1 and a shape similar to the experimental graph of hysteresis vs. λ2.

A related idea for a geometrically linear theory of the cubic-to-tetragonal
transformation and a sharp interface model of interfacial energy is presented by
Knüpfer, Kohn and Otto [49] (see also [48]). They show that the minimal bulk
+ interfacial energy of an inclusion of martensite of volume V scales as the maxi-
mum of V 2/3, V 9/11. Minimal assumptions are made on the shape of the inclusion.
If a bulk term is added to this energy of the form−cτV , c > 0,modelling a lowering
of the martensite wells as the temperature −τ is decreased below transformation
temperature, then their result gives an energy barrier of the type described above.
They note that it would be interesting to do a similar analysis of an austenite in-
clusion in martensite, and they conjecture a higher energy barrier for the reverse
transformation. This is open, as is a similar analysis for the cubic-to-orthorhombic
case, where it would be interesting to investigate the dependence of the predicted
barrier on λ2.

Recently, even stronger conditions of compatibility called the cofactor condi-
tions [23,42] have been closely satisfied in the ZnCuAu system by compositional
changes, leading to the alloy Zn45Au30Cu25. The cofactor conditions imply not
only λ2 = 1 but also a variety of other microstructures with zero elastic energy.
The alloy Zn45Au30Cu25 has a transformation strain |U − I | comparable to that of
the alloys tuned to satisfy only λ2 = 1, but shows still smaller hysteresis than the
lowest achieved by the λ2 = 1 alloys, and also exceptional reversibility [67]. This
example may indicate that metastability in phase transformations is not only sensi-
tive to the wells being gradient compatible, but also to the presence of a variety of
different functions whose gradients are nontrivially supported on K1, K2. Another
possibly relevant hypothesis is that metastability is influenced by a possible sudden
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increase of the size of the quasiconvex hull of the energy wells when the cofactor
conditions are satisfied.

An apparently obvious reconciliation of these concepts is to retain the idea of
metastability, quantified by local minimization, but to include a contribution for
interfacial energy. Accepted models of this type fall into two classes: sharp inter-
face models and gradient models. However, when combined with accepted notions
of local minimization, neither of these models give the behaviour described above.
Before commenting on these two cases, we first note that concepts of linearized
stability are not relevant: most measured values of linearized elastic moduli do
soften as temperature is lowered to the phase transformation temperature, but the
limiting value of the minimum eigenvalue of the elasticity tensor is clearly posi-
tive at transition in most cases, and this is the rule for strongly first order phase
transformations.

A typical sharp interface model assigns an energy per unit area to the jump set
of Dy. A comparative discussion of the energy minimisation problem for several
versions of these models is discussed in [18]. Consider the simple but relevant case
of deciding whether a linear deformation y∗(x) = Ax, x ∈ Ω, is metastable in
some sense, where A ∈ K1, Wτ (A) = 0 and Wτ (K2) = −τ , with K1 and K2
independent of τ . Suppose we have favoured the low hysteresis situation by tuning
thematerial as described above so that there exists B ∈ K2 such that B−A = a⊗n.
Putting aside linearized stability, relevant concepts of local minimizer have the
property that competitors can have gradients on or near K2, at least on sufficiently
small sets. Trivially, if the underlying function space allows us to smooth jumps of
Dy, then a mollified version of the continuous function given for x0 ∈ Ω by

yε(x) =
{
B(x − x0) if 0 < (x − x0) · n < ε,

A(x − x0) otherwise,
(7.1)

defeats metastability in L∞ as soon as τ > 0, predicting zero hysteresis. Thus, of
course, we have to prevent smoothing. This is easily done by forcing a jump, by
restricting the domain of Wτ to, say, Nε(K1) ∪ Nε(K2) with ε sufficiently small.
However, in that case, the prototypical test function (7.1) for ε sufficiently small
has positive energy regardless how big is the value of τ . Thus, apparently for any
of the accepted notions of local minimizer, infinite hysteresis is predicted.

This dominance of interfacial energy at small scales, which overstabilizes linear
deformations, also occurs when gradient models of interfacial energy are combined
with the bulk energies studied here, as shown in [12]. Consider a frame-indifferent
energy density Wτ ∈ C2(M3×3+ ), continuous in τ and satisfying Wτ (A) → ∞ as
det A → 0, and having positive-definite linearized elasticity tensor at I . Sup-
pose Wτ (K1) = 0 and Wτ (K2) = −τ , for disjoint sets K1 = SO(3) and
K2 = SO(3)U1 ∪ · · · ∪ SO(3)Un , and assume a total energy of the form

I (y) =
∫

Ω

Wτ (Dy) + α|D2y|2 dx (7.2)

with α > 0. In [12] it is shown that y∗(x) = Rx + c, R ∈ SO(3), c ∈ R
3 is a

local minimizer of I in L1 for every τ > 0. Again, infinite hysteresis is predicted.
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Note that there may or may not be rank-one connections between K1 and K2. It is
probable that the themodel introduced in [18], that includes contributions fromboth
sharp and diffuse interfacial energies, also leads to a metastability result similar to
that in [12], though this has not been checked.

This inevitability of either zero hysteresis or infinite hysteresis, or, in the case of
linearized stability, predicted hysteresis that is too large, is avoided in models with
interfacial energy if, instead of using the standard approach to local minimization,
one uses a fixed neighbourhood of the proposed metastable deformation y∗, for
example, ‖ y−y∗ ‖L1� εcrit . This is similar in spirit to the introduction of the critical
nucleus size above (also called εcrit). While this ultimately requires the formulation
of an additional theory to predict εcrit , it would nevertheless be interesting to know
whether this approach is consistent with the observed lattice parameter dependence
of hysteresis, as mentioned above.

Exotic models of interfacial energy that decrease the interfacial energy contri-
bution when two interfaces get close together could also restore finite hysteresis.
These are not widely accepted.

A better accepted idea, that is related to the introduction of the fixed neigh-
bourhood using εcrit , is that, above transformation temperature, there are a variety
of small nuclei of martensite, stabilized by defects, waiting to grow, and there are
similar islands of austenite below transformation temperature.While this consistent
with the (usually mild) dependence of hysteresis on preliminary processing, it is
puzzling how this could yield hysteresis that is observed to be quite reproducible
from alloy to alloy, given similar processing. However, such thinking is based on
the idea of a single “most dangerous” nucleus determining transformation. If, on the
other hand, macroscopic transformation arises from a collective interaction among
many defects, so that something like the law of large numbers is applicable, then
one can imagine a reproducible size of the hysteresis. This kind of collective nu-
cleation around defects, modelled by a position dependent dissipation rate, can be
seen in the recent numerical simulations of DeSimone and Kružík [33].

Once metastability is lost, complex dissipative dynamic processes take place,
involving interfacemotion, microstructural evolution, and creation and annihilation
of microstructure. There is currently insufficient information to formulate such dy-
namic laws, and the mathematical theory in general of the dynamics of microstruc-
ture is primitive. There are a number of known possible approaches, including con-
stitutive modelling, the sharp interface kinetics ofAbeyaratne and Knowles [1]
and the method of quasistatic evolution of Mielke and Theil [57]. All of these
are reasonable based on general principles, but the latter seems to be the only one
at present that can deal with sufficient complexity of microstructure to begin to
contemplate faithful dynamic predictions [33]. It is not yet known if these would
be consistent with the sensitivity to conditions of compatibility mentioned above.

The surprising influence of conditions likeλ2 = 1 suggest that simple kinematic
approaches are valuable. Their simplicity lies in the observation that the conditions
for loss ofmetastability seem to bemuch simpler than the description of the dynamic
process that takes place oncemetastability is lost. From the perspective of this paper,
and the apparent success of the cofactor conditions, it would be interesting to have
methods of quantifying the possibility of having many functions whose gradients
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are supported nontrivially on K1 and K2, especially those having finite area of the
jump set of the gradient. A step in this direction is taken in the recent work of
Rüland [65].
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