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By Richard D. James

Like much of mathematics, the math-
ematical study of materials begins with 
Euler [7], or perhaps with Hooke’s models 
of crystals as periodic arrays of balls ([8], 
Schem. 7). Some readers might know of 
a more recent historical touchstone, the 
N – 6 rule of von Neumann and Mullins 
[11, 16]. Scientists trained on both sides of 
the increasingly blurred line between math-
ematics and materials science have been 
attracted by the striking beauty of micro-
structure, the extreme nonlinearity, non-
convexity, and even nonexistence exhibited 
by theories of materials, and the surprising 
links between the atomic structure of mate-
rials and a host of mathematical subjects, 
including  geometry, calculus of variations, 
partial differential equations, group theo-
ry, graph theory, topology, and harmonic 
analysis. Mathematics is now guiding the 
discovery of materials using principles that 
in some cases run counter to accepted 
beliefs in materials science, and materials 
are inspiring new mathematics. 

One of the most fruitful areas has 
been the study of phase transformations. 
There are a myriad of important phase 
transformations: solid to liquid, crys-
talline to amorphous, the ordering of 
atoms on a lattice, diffusional precipita-
tion, and shape-changing transformations 
between crystalline forms without diffu-
sion. The latter, called martensitic phase 
transformations, are particularly inter-
esting because they can occur quickly. 
Highly ordered structures like crystals are 
famous for their “ferro” properties––fer-
romagnetism, ferroelectricity, ferroelas-
ticity. The strongest materials and super-
conductors are also ordered materials. 
Having a phase transformation between 
two crystals with different ferro (or other) 
properties means that the material can be 
made to switch between these properties: 
in short, multiferroism by phase trans-
formation.  Some of the most interesting 
technological challenges today involve 
the possible application of these phase 
transformations to such fields as micro-
electronics, information storage, energy 
conversion, robotics, and sensing.

In nearly all of these applications, we 
want the material to pass back and forth 
through the phase transformation many 
times, through heating and cooling. (Ferroic 
martensitic materials, by the way, can often 
be made to transform at a fixed tempera-
ture, with the application of an electric or 
magnetic field.) Martensitic materials have 
a higher transformation temperature on 
heating than on cooling, a phenomenon 
known as hysteresis. The loop in a plot 
of phase-fraction vs. temperature is a hys-

teresis loop. To achieve fast switching of 
phases, we want a small hysteresis loop, 
i.e., we do not want to have to heat and cool 
by hundreds of degrees just to get the mate-

rial to transform back and forth. Equally 
problematic for many applications is that 
the area enclosed by the hysteresis loop is 
a measure of the energy dissipated by the 
transformation.

What causes hysteresis? What governs 
the reversibility of phase transformations? 
In the pure element tin (Sn), the marten sitic 
phase transformation that occurs around 
10º C is so disruptive that during the first 
cooling cycle the material tears itself apart, 
yielding a pile of powdered tin. This is often 
attributed to a large volume change. Other 
textbook ideas for the origins of hyster-
esis include the “pinning” of interfaces by 
defects and the thermally activated crossing 
of energy barriers.  

Mathematical theory suggests a quite 
different explanation. To understand this, 
we focus on the ubiquitous microstructure 
known as the austenite/martensite interface 
(Figure 1). During transformation, a lot 
of individual austenite/martensite interfaces 
make up the boundary between phases. 
We can understand its structure in part by 
solving 

            inf
y Ω∫ W(Ñy(x), q) dx,               (1)          

where y : W ® 3 is a deformation that 
describes transformation and elastic distor-
tion, q is the temperature, and the infimum 
is taken over a suitable finite energy space. 
W has energy wells, whose precise form 
comes from careful x-ray diffraction mea-
surements of the crystal structures of the 
two phases. The austenite/martensite inter-
face is explained as a minimizing sequence 
of this energy, with q = qc, the transition 
temperature. Several features, including 
the (finite) number of such interfaces, the 
angles seen in Figure 1, the full 3D struc-
ture, and the volume fraction of the bands 
on the left, are nicely predicted [1, 2].

What is not predicted by this argument 
is the fineness of the bands on the left. 
Here again, though, a better mathematical 
understanding is emerging [4, 5, 10]. The 
essential idea is that the boundary of each 
of these bands supports a small interfacial 
energy per unit area, which is not included 
in (1). Refining the bands drives the elastic 
energy in the transition layer between phas-
es (calculated with (1)) to zero, but at the 
expense of increasing the total interfacial 
energy. Conversely, coarsening the bands 
reduces the interfacial energy but gives a 
big elastic energy. Figure 1 represents the 
compromise between these two energies. 
Their sum is a kind of coexistence energy. 
Whenever both austenite and martensite are 
present, the material has an additional posi-
tive coexistence energy.

But this suggests a reason for hysteresis 
based on metastability. Suppose that we start 

in the high-temperature austenite phase and 
lower the temperature. We reach the tem-
perature at which the two bulk phases have 
the same free energy, then we lower the 

temperature a bit more. If martensite appears, 
we also must accept a (positive) coexistence 
energy. This will disfavor the transformation 
to martensite.  Mathematically, we should 
find an energy barrier [18]. 

The study of this barrier is in its infancy 
[19], but there is a very simple way to 
remove it.  The energy wells of W have the 
form RU, where R is a rotation matrix and 
U is a positive-definite symmetric matrix. 
For the martensite, U Î {U1, . . . Un} 
(determined completely from x-ray mea-
surements*), whereas for austenite, U = 
I, the identity matrix. We could have an 
energy minimizer without either the elastic 
transition layer or the bands on the left of 
Figure 1, if there were a continuous function 
y(x) satisfying 
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for some 3 ´ 3 rotation matrix R. As every 
undergraduate student in both mathematics 
and materials science should know [9], (2) 
holds if and only if  l2 = 1, where l2 is 
the middle eigenvalue of U1. The situation 
is pictured in Figure 2. When l2 = 1, the 
phases fit together perfectly. The reason for 
the complex microstructure in Figure 1 is 
precisely that l2 ¹ 1!

How do we arrange to have l2 = 1? We 
are given the material, and either l2 = 1 or 
it does not. But every material has a com-
position. All its properties, including the 
value of l2, can be modified by composi-
tional changes. This has been done, guided 
by mathematical theory: New alloys were 
made, with the value of l2 systematically 
moved closer and closer to 1. The result-
ing alloy exhibits unprecedented low hys-
teresis [6, 17]. Earlier, people had made 
thousands of alloys, even in the systems 
where l2 = 1 has now been achieved to 
high accuracy. Why did people not, by 
accident, hit the composition for which l2 
= 1? Hysteresis is so sensitive to l2 that, in 
most cases, they jumped over it. There is a 
singularity in the graph of the size of the 
hysteresis vs. l2.

This is one way in which mathemat-
ics can discover materials: Identify special 
conditions on material properties at which 
interesting behavior, particularly singular 
behavior, is expected, then design composi-
tional changes to achieve those conditions. 
This is an inverse problem. It can potentially 
be solved theoretically with first-principles 
methods, but many properties (including 
hysteresis) are not currently predictable by 
those methods. Much remains to be done, 
and multiscale mathematics is expected to 
play a central role. 

Even stronger conditions of compat-
ibility, called the cofactor conditions [3], 
have been achieved through systematic 
compositional changes. This recently led 
[14] to the fascinating alloy Zn45Au30Cu25. 
It shows record low hysteresis for big first-
order phase transformations (as low as 0.2º 
C) and remarkable reversibility. With its 
changing pattern of microstructure [12] 
during cyclic transformation, it is unlike 
any other martensitic material and begs 
for a dynamic analysis. Satisfaction of the 
cofactor, or even stronger, conditions in 
other material systems could lead to revo-
lutionary materials, e.g., a shape-memory 
material that displaces NiTi, the most 
popular one (by far), or an oxide material 
that is able to go back and forth through 
a ferroelectric transformation many times 
without cracking.  

Ferroic transformations suggest intrigu-
ing new applications. Imagine a martensitic 
alloy with one phase a strong magnet and 
the other nonmagnetic, and also with l2 
» 1. If you transform the alloy by, say, 
heating, the magnetization will suddenly 
increase. Wrap a coil around the specimen, 
and, during transformation, a current will 
be induced in the coil. This is the direct 
conversion of heat to electricity (i.e., with-

out a separate electrical generator [15]). 
Mathematically, it involves Maxwell’s eq-
uations, micromagnetics, thermodynamics, 
and the theory of phase transformations 
[13]. Much remains to be understood about 
this method, and its many ferroic analogs, 
but it is a promising candidate for recovery 
of some of the vast heat energy created 
every day by diverse sources, from a data 
center to the sun. 
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