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Abstract: We complete the analysis initiated in [5] on the micromagnetics of cubic fer-
romagnets in which the role of magnetostriction is significant. We prove ansatz-free
lower bounds for the scaling of the total micromagnetic energy including magnetostric-
tion contribution, for a two-dimensional sample. This corresponds to the micromagnetic
energy-per-unit-length of an infinitely thick sample. A consequence of our analysis is an
explanation of the multi-scale zig-zag Landau state patterns recently reported in single
crystal Galfenol disks from an energetic viewpoint. A second corollary of our analysis
is a variational justification of the branched microstructure seen in Iron; this answers
a question raised by Choksi, Kohn and Otto in [3]. Our proofs use a number of well-
developed techniques in energy-driven pattern formation, along with the use of tools
from Fourier analysis for the magnetostriction term.

1 Introduction and setup of the problem

We are interested in deriving optimal energy scaling laws for a ferromagnetic sample
with cubic anisotropy. Important examples of cubic ferromagnets include Iron [14],

∗rvenkatr@andrew.cmu.edu
†vivekanand.dabade@polytechnique.edu
‡james@umn.edu

1

ar
X

iv
:1

90
6.

05
72

2v
1 

 [
m

at
h.

A
P]

  1
3 

Ju
n 

20
19



Permalloy [8], Tefenol-D [6], and Galfenol [4]. These ferromagnets, when magne-
tized, undergo spontaneous elastic deformation; this is known as magnetostriction. Iron
and Permalloy are low magnetostrictive materials, whereas Terfenol-D and Galfenol are
large magnetostrictive materials. Materials with large magnetostriction exhibit a fasci-
nating interplay of elasticity and magnetism. Inspired by recent experiments on Galfenol
reported in [4], we initiated a variational study of cubic ferromagnets with magnetostric-
tion in [5]. In [5], we first analyzed Young measures arising as limits of minimizing
sequences for the so-called no-exchange relaxation and applied this analysis to derive
macroscopic properties of Galfenol. Restoring the exchange energy term, defined be-
low, we then derived rigorous upper bounds for the scaling of the optimal energy for
the full micromagnetic energy functional in the presence of magnetostriction. Our upper
bounds required fairly complex multi-scale constructions inspired by the micrographs
in [4]. The goal of the present paper is to supplement this upper bound with an ansatz-
free lower bound, within a two dimensional setting that is motivated by the geometry of
the sample in [4]. This lower bound demonstrates that within the parameter regime of
Galfenol, one can not do energetically better than our constructions from [5].

Towards describing the functional that is at the core of our paper, we first set some
notation. We let G ⊂ R2 denote the unit cube

(
− 1

2 ,
1
2

)2
. We define the functions ϕ :

R2 → R and ε0 : R2 → R2×2 by the formulas

ϕ(z) = ϕ(z1, z2) :=
(
z2

1 − z2
2

)2
, (1.1)

ε0(z) = z ⊗ z −
1
2

I2 =

(
z2

1 z1z2
z2z1 z2

2

)
−

1
2

(
1 0
0 1

)
. (1.2)

Finally, for a function u ∈ H1(G;R2), we define

ε(u) :=
∇u + (∇u)T

2
. (1.3)

Let v ∈ H1(G;R2) and let ṽ denote the extension of v to R2 by zero outside of G. For
fixed positive numbers µ, β we consider the sequence of (fully non-dimensionalized)
variational problems indexed by η > 0 that will be the subject of this paper, given by

Fη(v) = µη

∫
G
|∇v|2 dx +

µ

η

∫
G

(
(|v|2 − 1)2 + ϕ(v)

)
dx + β‖div ṽ‖2H−1(R2) (1.4)

+ inf
u∈H1(G;R2)

∫
G
‖ε(u) − ε0(v)‖2 dx,

where β > 0. The motivation for this scaling and the derivation of this model will be
made clear in Sec. 1.1 below; for now, let us simply remark that in this scaling, the
energies Fη(v) are bounded as η→ 0. Our main theorem is
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(a)

(c)

Figure 1: Experimental Micrographs. (a) Normal Landau state seen in Permalloy, [11].
(b) and (c) Zig-zag Lanadau state seen in Galfenol, [4].
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Theorem 1.1. There exists universal constants 0 < c1 < 1, c2, c3 > 0 such that the
following holds: for any µ ∈ (0, c1), and β < c2, we have

1
c3
µ2/3β1/3 > lim inf

η→0
inf

v∈H1(G;R2)
Fη(v) > c3µ

2/3β1/3. (1.5)

Remark 1.2. The constants appearing in the statement of the theorem are universal; we
have not made an effort to optimize them.

The proof of the upper bound inequality is essentially contained in [5], and is recalled
briefly in Section 3. In that section, we also recall other constructions detailed in [2] that
are based on domain branching. The proof of the lower bound inequality is the content
of Section 4. The rest of this introduction is devoted to deriving the energy (1.4) from
the micromagnetic functional.

1.1 Derivation of the energy (1.4) from micromagnetics

Geometry and motivation for the two-dimensional reduction:

The geometry of the sample we have in mind is cylindrical with axis along the z−axis,
whose characteristic dimension L in the x−y plane is significantly smaller than its thick-
ness along the z−axis. This geometry is motivated by experimental values of L ∼ 10−5m
and sample thickness along the z−axis ∼ 10−3m; see Extended Data Figure 4 in [4].
It permits us to work with a two-dimensional energy, that we think of as the energy
per unit length of an infinitely long sample; we however do not attempt to derive this
energy from the full three-dimensional model via a rigorous limiting procedure. The
two-dimensional nature of our model is, however, crucial to our analysis of the magne-
tostriction and the magnetostatic energies. Indeed, the analysis of the magnetostriction
energy relies on the Fourier analysis of a certain nonlinear function of the magnetization:
this is made tractable by the nonconvex constraint that the magnetization is S 1-valued,
yielding (somewhat surprising) cancellations. We point out that the micrographs for
Galfenol, which were the original motivation of our project, have essentially in-plane
magnetization. Furthermore, our two-dimensional constructions in [5] accurately pre-
dict the (macroscopic) average strain as measured in experiments on Galfenol.

Setup from micromagnetics

Let Ω ⊂ R2 denote an open bounded domain that represents the cross-section of the fer-
romagnetic sample. Within the variational theory of micromagnetics, the magnetization

4



of the sample is described by a vector field m : Ω → R3 that satisfies |m| = 1 almost
everywhere in Ω. The magnetization m is extended by zero outside of Ω. With an eye of
working within a two-dimensional theory, we limit ourselves to competitors of the form
m(x, y) = (m1(x, y),m2(x, y), 0). Our starting point towards formally deriving (1.4) is the
full micromagnetic energy including magnetostriction, and in the absence of an external
magnetic field, given by

F(m) = A
∫

Ω

|∇m|2 dx︸           ︷︷           ︸
wall energy

+ Ka

∫
Ω

ϕ(m) dx︸            ︷︷            ︸
anisotropy energy

+ c44λ
2
111ẽmag(m)︸             ︷︷             ︸

magnetostriction energy

+ Kd

∫
R2
|hm|

2 dx︸            ︷︷            ︸
magnetostatic energy

. (1.6)

where ẽmag(m) = inf
Ẽ(u) compatible

∫
Ω

(
Ẽ(u) − Ẽ0(m)

)
· C̃

(
Ẽ(u) − Ẽ0(m)

)
dx. (1.7)

Here, A,Ka, c44,C,Kd, c44λ
2
111 are all material parameters that we describe below. The

magnetostriction energy defined in (1.7) corresponds to the least linear elastic energy as-
sociated to a preferred non-dimensional strain tensor Ẽ0(m). The last term in the energy
(1.6) is the magnetostatic energy associated to a magnetization m : it is derived from
Maxwell’s equations, and in short, penalizes the divergence of the field m in a negative
Sobolev norm. We will explain both these energies in greater detail in the paragraphs
to come. We point out that in our formulation above, the total micromagnetic energy
F(m) represents the three-dimensional energy per unit length along the z-direction and
has dimensions [energy/length].

Exchange and magnetocrystalline anisotropy energies

The exchange constant is denoted by A and typically satisfies 0 < A � 1. In the
literature on energy-driven pattern formation, it is also common (see [2, 3, 5]) to use the
so-called sharp interface functional, in which the exchange energy is measured by the
BV semi-norm m of the magnetization m as opposed to the Dirichlet energy as in (1.6).
Thus, in these studies, one might see an expression of the form

µ

∫
Ω

|∇m|, (1.8)

where µ > 0 is the wall cost per unit length. Before discussing how the sharp interface
and diffuse energies are related, we discuss the magnetocrystalline anisotropy energy.

The magnetocrystalline anisotropy energy, or simply anisotropy, sets certain crystallo-
graphic directions, referred to as the easy axes, energetically preferred for the magne-
tization m. The anisotropy energy density (Kaϕ(m)) is determined by the anisotropy
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energy coefficient Ka > 0 1 and ϕ(m) given by

ϕ(m) =

(1
4
− m2

1m2
2

)
=

1
4

(m2
1 − m2

2)2. (1.9)

The wells of the anisotropy energy are referred to as the easy axes of the sample, and in
our case are given by ±m1,±m2, where m1 =

(
1/
√

2, 1/
√

2, 0
)

and m2 =
(
1/
√

2,−1/
√

2, 0
)
.

How are the sharp-interface version of the exchange energy, (1.8) and the diffuse coun-
terpart in (1.6) related? To answer this question, it is helpful to record the dimensions of
the various quantities in question. Since our functional F from (1.6) has dimensions of
energy per unit length (in the z−direction), one has

[A] =
[Energy]
[Length]

, [Ka] =
[Energy]
[Length]3 [γ] =

[Energy]
[Length]2 . (1.10)

For sufficiently large values of the anisotropy constant |Ka|, the magnetization m stays
close to the easy axes of the sample, thus being essentially piecewise constant and
forming magnetic domains. Different domains are separated by thin transition layers.
Competition between the diffuse exchange energy A

∫
|∇m|2 and the anisotropy energy∫

Kaϕ(m) sets a surface tension µ that effectively penalizes the surface area of the tran-
sition layer

∫
|∇m|. The width of a transition layer must necessarily be smaller than the

characteristic length L, which yields √
A
Ka

< L. (1.11)

Under these circumstances, one can show that the surface tension is related to the ex-
change constant A by

µ2 ∼ AKa. (1.12)

From the point of view of optimal energy scaling laws, these two formulations are
asymptotically equivalent due to the Modica-Mortola inequality, see [7, Section 6.8].
The sharp-interface formulation has certain advantages: it permits one to focus attention
on the domain morphology without having to simultaneously resolve the internal struc-
ture of walls. It is the sharp-interface formulation that we used in [5], because this sim-
plified our computations concerning the upper bound. The rigorous connection between
the sharp interface and diffuse formulations is conveniently done using Γ−convergence;
see [19], also [7, Section 6.8]. The diffuse formulation naturally has an extra small

1Our choice of signs here is a bit different from convention: the materials that are of interest in this
paper are “negative anisotropy materials”, with Ka < 0 and correspondingly ϕ is defined by the negative of
Eq. (1.9), nevertheless rendering the product Kaϕ nonnegative.
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length-scale η > 0 corresponding to the diffuse wall thickness, as compared to the sharp
interface limit. The η→ 0 limiting procedure yielding the sharp interface limit can then
be made precise in the parameter regime A ∼ µη,Ka ∼

µ
η , consistent with (1.12).

While the magnetization m is S 1−valued and the diffuse exchange energy which
is present in the full micromagnetic energy (1.6) penalizes the H1−seminorm of m, it
is well known [1] that S 1−valued vector fields in the plane having vortices have infinite
H1-seminorm. However, even the normal Landau state, refer to Figure 1 (a) has vortices,
at each triple junction.

A convenient “remedy” to this issue is to relax the “hard” constraint |m| = 1, and replace
m by a vector field v : Ω→ R2 along with a penalty term in the energy which forces v to
be nearly S 1-valued; see again [1]. This corresponds to the term Ginzburg-Landau term
µ
η

∫
G(|v|2 − 1)2 dx in the energy (1.4), where η is a non-dimensional version of η that will

be explained below. In this scaling, the cost of a vortex is η| log η| which vanishes in the
η→ 0+ limit considered in Theorem 1.1.

While the Ginzburg-Landau penalty might seem like a mathematical artefact, it can
be physically thought of as penalizing out-of-plane magnetization, and the walls cor-
respondingly as Bloch walls. Since we wish to work with a two-dimensional theory, we
do not pursue this interpretation; the reader might wish to see [10] for instance.

Magnetostriction energy.

We next turn to the magnetostriction energy, the third term in (1.6). Our reference for
modeling this energy is [12] which relies on linear elasticity. For notational consis-
tency with [12], and for the convenience of the reader, we briefly describe full three-
dimensional magnetostriction. Subsequently, we describe our two-dimensional reduc-
tion. The preferred strain associated to a magnetization m = (m1,m2,m3) : Ω → S2 is
given by

E0(m) =
3
2

(
λ100(m ⊗m −

1
3

I) + (λ111 − λ100)
∑
i, j

mim jei ⊗ e j

)
, (1.13)

where the vectors {e1, e2, e3} in (1.13) refer to an orthonormal basis parallel to the cubic
axes. The constants λ100 and λ111 are referred to as the magnetostriction constants of the
cubic material. The elastic energy associated to a magnetization m and a displacement
u ∈ H1(Ω;R3) is given by

1
2

∫
Ω

(E(u) − E0(m)) : C (E(u) − E0(m)) dx, E(u) =
∇u + ∇uT

2
.
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In the above, C is a fourth order, positive-definite, symmetric tensor, referred to as the
elastic modulus. For a cubic material such as Galfenol, the elastic modulus C consists
of 3 independent components , c11, c12 and c44. Minimizing the elastic energy over all
mechanically compatible strains, i.e. all strains E that arise as a symmetric gradient of an
H1−displacement field u results in (1.7). For a brief discussion on the role of mechanical
compatibility in our variational problem, we refer the reader to [5].

With this background on magnetostriction, we turn to making simplifications that result
in a two-dimensional theory that we use in our analysis. First, for Galfenol, one has
c11 ≈ c12 ≈ c44 ≈ 1011 N/m2, refer to [20]. We will therefore only use one elastic
constant, namely c44 and set

c11 = c12 = c44. (1.14)

Furthermore, as for the magnetostriction constants, refer to [5] and references therein,
one has λ100 ≈ λ111 ≈ 10−4. Consequently, we set

λ100 = λ111. (1.15)

With these assumptions, the preferred strain simplifies to

E0(m) =
3λ111

2

(
(m ⊗m −

1
3

I
)
. (1.16)

Second, we note that in our two-dimensional framework, since m is in-plane, i.e. m
takes the form (m1(x, y),m2(x, y)) and m3 = 0, the preferred strain reduces to

E0(m) =
3λ111

2


m2

1 −
1
3 m1m2 0

m1m2 m2
2 −

1
3 0

0 0 − 1
3

 .
Motivated by the micrographs in [4], a more significant restriction that we make is to
look at displacements of the form

u(x, y, z) =

(
u1(x, y), u2(x, y),

−λ111

2
z
)

(1.17)

With this choice, the actual strain is given by

E(u) =


∂u1
∂x

1
2

(
∂u1
∂y +

∂u2
∂x

)
0

1
2

(
∂u1
∂y +

∂u2
∂x

)
∂u2
∂y 0

0 0 −
λ111

2

 .
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It is thus clear that we can identify u with a vector inR2 of the form u(x, y) = (u1(x, y), u2(x, y)),
and correspondingly identify the actual and preferred strains with their top-left 2 × 2
blocks, viz.

ε0(m) =
3λ111

2

(
m ⊗m −

1
3

I2

)
=

3λ111

2

(
m2

1 −
1
3 m1m2

m1m2 m2
2 −

1
3

)
, (1.18)

ε(u) =


∂u1
∂x

1
2

(
∂u1
∂y +

∂u2
∂x

)
1
2

(
∂u1
∂y +

∂u2
∂x

)
∂u2
∂y

 . (1.19)

As our third simplification, we note that the constraint m2
1 + m2

2 = 1 renders the ten-
sor ε0(m) to have trace λ111

2 . For simplicity in our estimates, it is desirable to have the
preferred strain be trace-free. We therefore define

ε0(m) = ε0(m) −
λ111

2
I2, ε(u) = ε(u) −

λ111

2
I2, (1.20)

where I2 is the identity matrix in R2. Obviously, this does not change the elastic energy
associated to a magnetization m and a corresponding displacement u of the form (1.17).

Our last simplification is one of non-dimensionalization: we set

C̃ =
C

c44
, ε0(m) =

ε0(m)
λ111

, ε(u) =
ε(u)
λ111

. (1.21)

Putting together (1.14), (1.15), (1.20) and (1.21) we find the magnetostriction energy
from equation (1.7) associated to a magnetization m is given by

inf
u∈H1(Ω;R2)

c44λ
2
111

∫
Ω

‖ε(u) − ε0(m)‖2 dx (1.22)

with ‖A‖2 denoting the sum of the square of the entries of the matrix A. We will denote
the magnetostriction energy coefficient as c44λ

2
111.

Magnetostatic energy.

The final term in our energy is the magnetostatic energy and the relevant material para-
mater is known as magnetostatic energy coefficient Kd. The magnetostatic energy penal-
izes the induced or stray field hm associated to the magnetization m. The induced field
hm is obtained by solving Maxwell’s equations of magnetostatics on R2,

∇ · (hm + m) = 0, (1.23a)

∇ × hm = 0. (1.23b)
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in H−1(R2). We remind the reader that since our sample is infinitely thick in the z−direction,
the magnetostatic energy in (1.6) is interpreted as the magnetostatic energy per unit
length of the sample in the z-direction. It is then easily seen that∫

R2
|hm|

2 dx = ‖div m‖2H−1(R2).

Parameter regime and derivation of the functional (1.4)

A primary motivation for our project is the fascinating two-scale microstructure in Galfenol
[4]; the authors there refer to this pattern as the zig-zag Landau state. The magnetic mi-
crostructure in Galfenol is in striking contrast to known traditional soft ferromagnets
such as Permalloy, that exhibit the so-called “normal Landau state” refer to Figure 1.
Our point of view in [5] and the present paper is to explain this complex microstruc-
ture as the result of the competition between magnetostriction energy, which prefers
high frequency oscillations in the magnetization, and the small yet nonzero wall en-
ergy, which favors relatively few domain walls. Indeed, the magnetostrictive strains in
Galfenol (≈ 10−4) are much larger than traditional ferromagnets (≈ 10−6). Furthermore,
the large magnetostriction energy coefficient in Galfenol is comparable to the anisotropy
energy coefficient, i.e. c44λ

2
111 ≈ Ka ≈ 103. In contrast, in Permalloy, the magne-

tostriction energy coefficient is much smaller than the anisotropy energy coefficient, i.e.
c44λ

2
111 ≈ 10−1 << Ka ≈ 102.

In [5] we constructed an upper bound for the micromagnetic energy based on a zig-
zag Landau state construction. The construction reported there was an interpretation of
the micrographs from [4]. The goal of our paper is to prove a matching ansatz-free lower
bound. For clarity, we work with in a parameter regime of a soft ferromagnet in which
magnetostriction is strongly coupled with anisotropy. Furthermore, we suppose that the
sample cross-section is given by the square

Ω =

(
−

L
2
,

L
2

)2
.

Rescaling the domain by the characteristic length L, we arrive at a functional defined on
the unit square

G :=
(
−

1
2
,

1
2

)2

.

Non-dimensionalizing the energy by dividing through by c44λ
2
111L2, and defining the

10



(non-dimensional) positive numbers µ, η,Qη via

Fη(v) :=
1

c44λ
2
111L2

F(v), µη :=
A

c44λ
2
111L2

,

µ

η
:=

Ka

c44λ
2
111

, β =
Kd

c44λ
2
111

,

we arrive at the energy (1.4). Here, µ plays the role of a non-dimensional surface tension,
refer to (1.12), and η a non-dimensional diffuse wall-thickness.

2 Preliminaries

2.1 Fourier analysis

We will make crucial use of Fourier Analysis, specifically in our analysis of the magne-
tostriction energy and its lower bound. We set some notation in this section and collect
a number of results for the convenience of the reader. This section is mainly drawn from
[18].

Let f ∈ L1(Rn). Recall that the Fourier transform of the function f is defined by letting

f̂ (ξ) =

∫
Rn

f (x)e−2πiξ·x dx, (2.1)

with · denoting the usual (Euclidean) inner product. We crucially use L. Schwartz’s
version of the Paley-Wiener theorem which concerns Fourier transforms of distributions
with compact support. This is natural in our context, since the magnetization is supported
in the (closure of the) sample domain. To state Schwartz’s version of the Paley-Wiener
theorem, recall that in (2.1), allowing ξ to vary over Cn as opposed to Rn results in the
so-called Fourier-Laplace transform. Schwartz’s version of the Paley-Wiener theorem
asserts that an entire function F on Cn is the Fourier-Laplace transform of a distribution
v with compact support if and only if for all z ∈ Cn, one has the bounds

|F(z)| 6 C(1 + |z|)NeB Im (z),

for some constants C,N, B. Entire functions satisfying such an estimate are said to be of
exponential type B. A posteriori, the distribution v is in fact be supported in the closed
ball centered at the origin of radius B. The crucial Plancherel-Polya inequality [16]
implies that if F is an entire function of exponential type B, and if its restriction f̂ to Rn
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belongs to Lp(Rn) for some p ∈ [1,∞), then one has 2∑
k∈Zn

|F(k)|p ∼ ‖F‖pLp(Rn). (2.2)

Here, we identify Rn ⊂ Cn as the real parts of the frequencies ξ ∈ Cn. We refer the
reader to [16] for related discussion, but briefly summarize the idea behind this estimate.
The proof of this estimate relies on the fact that the function [0,∞) 3 t 7→ tp being
strictly increasing and convex, and z 7→ F(z) being analytic, the map z 7→ |F(z)|p is
pluri-subharmonic. Given a well-spaced set of discrete points such as the integers, one
can thus use the sub-averaging of pluri-subharmonic functions along with Lp estimates
on the Fourier transform to obtain the summability estimate (2.2).

To specialize these results to the setting that we will use them in, let G denote the
unit cube in R2, i.e. G =

(
−1

2 ,
1
2

)2
. For any f ∈ L2(R2), one defines the Fourier transform

of f by

f̂ (ξ) := lim
R→∞

∫
(−R,R)2

f (x)e−i2πξ·x dx ξ ∈ R2,

where the limit is taken in the L2-sense. If in addition, f is supported in G, then its
Fourier transform f̂ is the restriction to R2 of the entire function F on C2 defined by

F(z) =

∫
G

f (x)e−2πix·z dx, (2.3)

where we define x · z = x1z1 + x2z2. By the Plancherel-Polya inequality, there exists a
constant C > 0 such that ∑

k∈Z2

|F(k)|2 6 C
∫
R2
|F(x)|2 dx. (2.4)

This in particular yields that the sequence {F(k)}k∈Z2 is square-summable. We point out
that {F(k)} is precisely the sequence of Fourier coefficients thinking of f as a 1−periodic
function. In particular, the Fourier transform F satisfies

f (x) =
∑
k∈Z2

F(k)e2πik·x

as functions in L2(G). Finally, we in fact have the equality∫
G
| f (x)|2 dx =

∑
k∈Z2

|F(k)|2. (2.5)

2Notation: By A ∼ B we mean that there exist universal constants c and C > 0 such that cA 6 B 6 CA.
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2.2 On the magnetostriction energy

We recall the following version of Korn’s inequality (refer to [15]) that we will use to
show that for any magnetization m, one has a displacement u that achieves the infimum
in (1.22).

Theorem 2.1. Let Ω ⊂ Rn denote a bounded, open set with Lipschitz boundary. There
exists a constant C(n,Ω) such that

‖∇u‖H1(Ω) 6 C

∥∥∥∥∥∥∇u + ∇uT

2

∥∥∥∥∥∥
L2(Ω)

, (2.6)

for all u ∈ H1(Ω;Rn) such that

(i) for i ∈ {1, · · · , n}, we have
∫
Ω

ui dx = 0,

(ii) the matrix ai j :=
[∫

Ω
∇iu j dx

]
is symmetric.

Using this theorem, concerning the variational problem in (1.22) we prove

Theorem 2.2. Let m ∈ L2(Ω). Then there exists u0 ∈ H1(Ω) with
∫
Ω

ui
0 dx = 0 and

∫
Ω
∇iu

j
0 dx =

0 for every i, j ∈ {1, · · · ,N}, such that∫
Ω

‖ε(u0) − ε0(m)‖2 dx = inf
u∈H1(Ω;R2)

‖ε(u) − ε0(m)‖2 dx (2.7)

Proof. The proof is an easy application of the direct method in the Calculus of Varia-
tions, and we outline it. For ease of notation, set V := e0(m) and note that ‖V‖L2(Ω) 6 C.
Let {u j} ⊂ H1(Ω;R2) denote a minimizing sequence for the variational problem in (2.7).
Since the energy on the right hand side of (2.7) does not change upon adding constants
and infinitesimal rotations, we may assume that for each j ∈ N, one can

(i) add an appropriate constant to each u j to arrange
∫
Ω

(u j)i dx = 0, for i ∈ {1, · · ·N},

(ii) add an appropriate infinitesimal rotation W jx to u j, with W j skew symmetric,
so that for each j ∈ N, we can arrange that the matrix c j

ik :=
[∫

Ω
∇i(u j)k dx

]
is

symmetric: that is c j
ik = c j

ki for each j ∈ N, and for all i, k ∈ {1, 2}.

These operations do not change the energy in (2.7) of the functions u j. Denoting by m
the inf on the right hand side of (2.7), one easily obtains by Korn’s inequality, refer to
Theorem 2.1 that for all j sufficiently large,

‖u j‖
2
H1(Ω) 6 C

(
‖ε(u j) − V‖2 + 1

)
6 C(m + 2).

The result follows by usual compactness and weak-lower semicontinuity theorems. �
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In the next lemma, we obtain a Fourier representation for the magnetostriction energy in
the special case that

Ω = G :=
(
−

1
2
,

1
2

)2

.

For the remainder of the paper, it is this cross-section that we will work with.

Lemma 2.3. Let V ∈ L2(G;R2×2). Then

inf
u∈H1(G;R2)

∫
G
‖ε(u) − V‖2 dx =

∑
k∈Z2\{0}

1
|k|4

(
|k|4‖V̂(k)‖2 − 2|k|2|V̂(k)k|2 + |k · V̂(k)k|2

)
,

(2.8)

with

V̂(k) :=
∫

G
V(x)e−2πik·x dx.

Proof. Let V be as in the Lemma, and let u0 denote the minimizer obtained from Theo-
rem 2.2. We know that u0 ∈ H1(G) are weak solutions of the Euler-Lagrange equations
given by

div (ε(u0) − V) = 0, x ∈ G,

(ε(u0) − V) ν = 0, x ∈ ∂G\C

with C denoting the corners of the domain G. Consider now the larger square G∗ :=
(− 1

2 ,
3
2 ) × (− 1

2 ,
3
2 ); see Figure 2 below.

We define V∗ on G∗ as follows: first, define V∗ = V on G ⊂ G∗. On the square
( 1

2 ,
3
2 ) × (− 1

2 ,
1
2 ) we define V∗ be performing an even reflection of V in the x−variable

about the side {x = 1
2 } ∩G. Finally, we define V∗ on the rectangle (−1

2 ,
3
2 ) × ( 1

2 ,
3
2 ) by an

even reflection in the y−variable of V∗ defined thus far, about the line {y = 1
2 } ∩G∗. We

denote by u∗0 the result of performing the foregoing reflection procedure to u0. It is clear,
thanks to the even reflection that u∗0 ∈ H1(G∗), and is G∗−periodic. We now consider the
variational problem

inf
w∈H1

# (G∗;R2)

∫
G∗
‖ε(w) − V∗‖2 dx, (2.9)

where H1
#(G∗;R2) consists of G∗−periodic H1 vector fields in R2. We note that up to ad-

dition of constants and infinitesimal rotations, this problem has a unique minimizer. We
claim that u∗0 ∈ H1

#(G∗) is a minimizer to this variational problem. Indeed, by convexity,
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Figure 2: The construction in the proof of Lemma 2.3

it suffices to verify the weak form of the Euler-Lagrange equations. In fact, it suffices
to verify the weak form of the Euler-Lagrange equations associated to (2.9) in neighbor-
hoods of points along ∂G∗ (away from the corners). To this end, we let B = B(x, r) denote
a ball centered at x ∈ ∂G∗\C and radius r < 1. We test against functions φ ∈ C∞c (B;R2),
and we write B = B+ ∪ B− with B+ = B ∩G∗ and B− = B\G∗ . By integration by parts,
we find∫

B
ε(φ) :

(
ε(u∗0) − V∗

)
dx = −

∫
B+

φ · div
(
ε(u∗0) − V∗

)
dx −

∫
B−
φ · div

(
ε(u∗0) − V∗

)
dx

+

∫
∂G∩B

φ ·
(
ε(u∗0) − V∗

)
+
ν −

∫
∂G∩B

φ ·
(
ε(u∗0) − V∗

)
−
ν

= 0,

thanks to the Euler-Lagrange equations satisfied by u0, and crucially, the natural bound-
ary conditions. Here, subscripts ·± respectively denote the traces of the periodized quan-
tities along ∂G∗.

Having shown this, the Fourier representation follows as in the proof of [13, Lemma
4.1]. �

Remark 2.4. We point out that one can think of the foregoing theorem as a conse-
quence of the Paley-Wiener and Plancherel-Polya inequality discussion from Section
2.1, applied to the compactly supported distributions u0 and V on R2 by extending these
trivially outside G.
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Figure 3: Deformed zig-zag Landau state with no transition layer. The preferred strains:
E1 and E2 and the infinitesimal rotation W are given in equation (56) of [5] .

3 Upper bound: the results of [5] and a modification

In our previous paper [5], the energies of laminates of the normal Landau state and
of the zig-zag Landau state were compared. The zig-zag Landau state refers to the
magnetization pattern reported in the experiments of Chopra and Wuttig [4], also see
Figure 1(b) and 1(c), whereas, the normal Landau state is the magnetization pattern
observed in more traditional cubic materials such as Permalloy, see Figure 1(a).

At the level of energies, comparing the two in the parameter regimes of Galfenol
shows that the zig-zag Landau state is energetically favored compared to the normal
Landau state. This is striking, because the zig-zag Landau state is a significantly more
complex, two scale construction, as opposed to a single-scale normal Landau state lam-
inate. We showed in [5] that the zig-zag Landau state has a coarse microstructure in
regions of mechanical compatibility of the preferred strain and a fine scale microstruc-
ture near the regions of incompatibility of the preferred strain, refer to the discussion in
[5, Section 2.1 and Lemma 4.2].

Towards recalling this construction and presenting a different version of it, we note that

the easy axes of a cubic material consists of
{(
± 1√

2
,± 1√

2

)}
, and thus, two kinds of walls
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make up most of our constructions: 90◦ walls, and 180◦ walls. In [5], we made a con-
struction which was divergence free, motivated by the large Kd-value for Galfenol. Here,
we briefly present a slight modification of that construction that is relevant for cubic fer-
romagnets with large and comparable magnetostriction and magnetostatic energies and
significantly larger magnetocrystalline anisotropy.

The fundamental building block of both constructions is the single zig-zag Landau
state unit cell, shown in Figure 3. Both our constructions consist in the bulk of k ∈ N
single zig-zag Landau states in the sample G. It is easily checked that the number of
180◦ walls is comparable to k. In regions of mechanical incompatibility, the zig-zag
Landau state construction consists of a further fine-scale oscillation that predominantly
makes use of ‘l’ 90◦− walls.

The difference between the constructions we presented in [5] and the modification we
describe here lies in the triangular boundary domains. In the construction in [5], these
consisted of closure domains where the magnetization does not lie along the easy axes,
but is divergence free. In the modification we present in Figure 4, the magnetization is
not divergence-free, but lies on the easy axes. We have highlighted the magnetization in
four representative boundary triangles in Figure 4.

This magnetization pattern m is shown in Figure 4, where k = 2. In this construction
m ∈ {±m1,±m2}, and so this construction has zero anisotropy energy.

Aside from the boundary triangles described above, the modification in 4 is identical to
the constructions in [5]: each zig-zag Landau state is a second order laminate consisting
of two distinct scales of oscillation frequencies, a coarse scale oscillation of frequency

k ∼
L

1
3 (c44λ

2
111+Kd)

1
3

γ
1
3

and a fine scale oscillation of frequency lk ∼
L

2
3 (c44λ

2
111+Kd)

2
3

γ
2
3

Calculating the energies of the both constructions is identical with the exception that the
present construction also has a magnetostatic contribution. We remind the reader that
in [5] we worked with the sharp interface energy, which prior to non-dimensionalizing
reads

F#(m) = µL
∫

G
|∇m| + KaL2

∫
G
ϕ(m) dx + KdL2

∫
R2
|hm|

2 dx + c44λ
2
111emag(m), (3.1)

with competitors that satisfied m ∈ BV(G;R2). Estimating the magnetostriction energy
of this magnetization proceeds identically to [5]: for a detailed description of the magne-
tization, and the deformation gradients in the sample G away from the boundary triangles
which remain unchanged for the present construction, we refer the reader to [5, Section
4.3].

It remains to estimate the magnetostatic energy of our construction in Figure 4. We make
use of
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Figure 4: Magnetization in (− L
2 ,

L
2 )×(− L

2 ,
L
2 ) square consisting of k zig-zag Landau states

for cubic ferromagnet with large and comparable magnetostriction and magnetostatic
energies. Note that the magnetization in the boundary triangles in not divergence free.
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Lemma 3.1. Let m ∈ L2(G;R2) be a magnetization pattern, and let hm ∈ L2(R2,R2)
denote the corresponding induced magnetic field that satisfies Maxwell’s equations of
magnetostatics (1.23a, 1.23b) in the sense of distributions. Then

∫
R2
|hm|

2 dx 6
∫

G
|m|2 dx.

In fact, ∫
R2
|hm|

2 dx = min
n∈B

∫
R2
|n|2 dx,

with

B := {n ∈ L2(R2;R2) :
∫
R2

(n + m) · ∇ψ dx = 0 for every ψ ∈ H1(R2)}.

Proof. Let hm = −∇χ where χ ∈ H1(R2,R2). The short proof of this lemma is, for any
n ∈ B, we have ∫

R2
|n|2 dx =

∫
R2
|n − hm|

2 + |hm|
2 + 2〈(n − hm),hm〉 dx

>

∫
R2
|hm|

2 − 2
∫
R2
〈n + m,∇χ〉

=

∫
R2
|hm|

2 dx,

where in the second-to-last line, we have used Maxwell’s equations and the fact that
n ∈ B. We note that we have equality if and only if n = hm. �

Observe that the above lemma does not require that the test vector field n has support
equal to that of m; in fact, the vector field n is not even required to be S 1-valued in the
domain. We choose the test function n as follows: n = −m on the boundary triangles and
zero elsewhere, so that n is supported on the boundary triangles. Since div n = −div m
in the sense of distributions on R2, by Lemma 3.1, we have

Kd

∫
R2
|hm|

2 dx 6 Kd

∫
R2
|n|2 dx = Kd

∫
bdry. triangles

|n|2 dx ∼ Kd ×
L2

lk

Hence, arguing as in [5], the total sharp interface micromagnetic energy F#(m) has three
contributions, estimated by

F#(m) . γLk︸︷︷︸
180◦ degree wall energy

+ γLl︸︷︷︸
90◦ degree wall energy

+

{
c44λ

2
111 + Kd

}
×

L2

lk
.︸                     ︷︷                     ︸

magnetostriction and magnetostatic energy

(3.2)
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Optimizing equation (3.2) with respect to l and k we obtain our upper bound for a cubic
ferromagnet with large and comparable magnetostriction and magnetostatic energies,
both of which are dominated by the anisotropy energy. Returning to our non-dimensional
units and by standard facts about the Modica-Mortola η → 0 asymptotics, the upper
bound stated in Theorem 1.1 follows.

3.1 Branching constructions

The goal of this section is to compare the zig-zag Landau state construction with other
constructions observed in micromagnetics, primarily the normal Landau state laminate
as seen in Permalloy, and constructions based on branching, studied in detail in [2].

First, in Permalloy, it is easy to understand why one sees the normal Landau-state lami-
nate: here, the value of the magnetostriction contribution c44λ

2
111 is extremely small, as

compared to the anisotropy and demagnetization, refer to [5] for details. As argued in
[5], in this parameter regime, the normal Landau state has lower energy scaling than the
zig-zag Landau state.

Material parameters Galfenol Permalloy Iron
A 10−12 J/m 10−12 J/m 10−12 J/m

Ka −3 × 103 J/m3 −1.7 × 102 J/m3 4.8 × 104 J/m3

Kd 1.06 × 106 J/m3 5 × 105 J/m3 106 J/m3

c44λ
2
111 1.06 × 103 J/m3 10−1 J/m3 102 J/m3

Table 1: Material parameters of Galfenol, Permalloy and Iron. Exchange stiffness: A,
anisotropy energy coefficient: Ka, magnetostatic energy coefficient: Kd = Js

2/2µ0 and
magnetostriction energy coefficient: c44λ

2
111.

Next we turn our attention to magnetic microstructures in Iron, cf. Figure 5. In the
rest of this section, we argue that, interestingly, the energy scaling of “branched” con-
structions that one sees in these settings is identical to that of the zig-zag Landau state.
Branched magnetic microstructures are analytically captured via the Privorotskii con-
struction, which we next briefly digress recall following [2].

On Privorotskii constructions in light of magnetostriction:

The authors in [2] detail two “Privorotskii” constructions, one that is divergence-free [2,
Figure 2.2], and one that is anisotropy-free [2, Figure 3.1]. While the magnetostriction
energy contribution is not included in the uniaxial context considered in [2], it is easy to
estimate the contribution of this energy for these constructions. For the anisotropy-free
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(b)

(a)

Figure 5: (a) Branching in uniaxial materials: anisotropy-free Privorotskii’s construc-
tion, see [3]. (b) Branching in cubic materials: Privorotskii’s construction for cubic
materials, see [17]

.
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construction, the magnetostriction energy is zero, because this construction only makes
use of one pair of easy axes, say ±m1. Since the preferred strain tensor ε0(m) is an even
function of m, it follows that the corresponding minimizing strain for the magnetostric-
tion energy is equal to the preferred strain, hence resulting in zero magnetostriction
energy. Consequently, working with the dimensional micromagnetic energy, the scaling
law for this construction is given by A2/3(KdL2)1/3.

Turning to the magnetostriction energy of the divergence-free Privorotskii construc-
tion, the estimate of the magnetostriction contribution is just as easy: as a competitor,
setting ε(u) = ε0(m1), the magnetostriction contribution only arises from regions where
the magnetocrystalline anisotropy is penalized. In other words, the scaling of this con-
struction including magnetostriction is A2/3(Ka + c44λ

2
111)1/3L2/3.

In the context of Iron, Lifshitz conjectured, [14, Figure 2], and Privorotskii con-
structed an upper bound for cubic ferromagnets which displayed branching, refer to
Figure 5. A calculation as in [2] shows that the energy for this construction also scales
as A2/3(Kd + c44λ

2
111)1/3L2/3. For concreteness, let us compare two specific ansatzes:

the zig-zag Landau state, studied in this paper and in [5], and variations of Privorotskii’s
constructions, studied in [2]; see also [17] for a construction in the case of cubic fer-
romagnets. The foregoing discussions indicate that at the level of energy scaling, both
sets of constructions achieve the 2/3-scaling, and are hence optimal in scaling, in ac-
cordance with the lower bound proof in this paper. However, arguing as in [5], one can
show that the average strains corresponding to the various Privorotskii constructions do
not match with those from experiments on Galfenol, [4]. It was in fact for this reason
that in [5], we pursued a detailed construction of the zig-zag Landau state, and computed
that the average strains for this construction corresponds to those obtained from experi-
ments. The situation is, however, different for Iron, which predominantly demonstrates
branching as in the Privorotskii construction, refer to [14, 11, 17]. Looking at Table 3.1,
it is clear that the magnetostriction constant in Iron are significantly higher than those in
Permalloy, while those in Galfenol are higher still. The authors in [3] raised the ques-
tion of understanding branching in Iron in the context of scaling laws of micromagnetic
energy plus magnetostriction. While our paper presents a contribution towards answer-
ing this question in a two-dimensional setting, it naturally raises the following question:
beyond optimal energy scaling laws, what are other selection criteria in pattern selection
within cubic ferromagnets, that also correctly predict the observed macroscopic strain
from experiments?

4 Proof of the lower bound

The goal of this section is to prove Theorem 1.1
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Proof of Theorem 1.1. The proof of the upper bound follows easily from the discussion
in Section 3, and expressing the construction there in the non-dimensional units. It
remains to prove the lower bound. The proof of the lower bound theorem proceeds in
several steps.
Step 0. For any η > 0, let vη ∈ H1(G;R2) denote a minimizer of the energy Fη. The
existence of such a minimizer follows by an easy application of the direct method in
the Calculus of variations. By the upper bound construction, Fη(vη) . µ2/3. By the De
Simone-Kohn-Müller-Otto compactness theorem [9], after passing to a sub-sequence
that is not denoted, vη → m strongly in L2(G;R2) where |m| = 1 almost everywhere in
G. Furthermore, thanks to the bound on the magnetocrystalline anisotropy, we in fact

have m ∈
{(
± 1√

2
,± 1√

2

)}
almost everywhere in G.

Let uη denote the displacement associated to vη, guaranteed by Theorem 2.2. It
follows then that uη → u strongly in H1(G;R2) where u is the displacement associated
to m; furthermore, we have∫

G
‖ε(u) − ε0(m)‖2 dx = lim

η→0
‖ε(uη) − ε0(vη)‖2 dx. (4.1)

Finally, by the Modica-Mortola inequality [19], and using the fact that m ∈
{(
± 1√

2
,± 1√

2

)}
almost everywhere in G, we find that

µ

∫
G
|∇m| . lim inf

η→0

∫
G
µ η|∇vη|2 +

µ

η
ϕ(vη) 6 lim inf

η→0
Fη(vη). (4.2)

For the convenience of the reader, we summarize the structure of the proof:

• In Step 1, we simplify the magnetostriction energy in Fourier space. The key idea
is to write this energy in terms of a Fourier multiplier acting on the oscillatory
function m1m2 which is ± 1

2−valued on G.Note that the quantity m1m2 corresponds
to the off-diagonal terms in the preferred strain matrix ε0(m), and changes sign on
G, while the diagonal terms of ε0(m) are constant and equal to 1

2 .

• In Step 2, we decompose the minimizing magnetization m in Fourier space, via a
sort of laminate decomposition. This step follows the arguments in [13].

• In Step 3, we obtain a lower bound on the sum of the exchange and magnetostric-
tion energies, along with an interpolation inequality from [3]. This permits us to
complete the lower bound in the case when the magnetization is, roughly speak-
ing, equally distributed among the four easy axes, so that

∫
G m1m2 dx ∼ 0. It is in

this context that the magnetostriction contribution is large.
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• In the last step, Step 4, we deal with the case when the magnetization lies predom-
inantly in one pair of easy axes, either ±( 1√

2
, 1√

2
) or ±(− 1√

2
, 1√

2
), or equivalently,∫

G m1m2 dx is big. In this case, the magnetization is predominantly uniaxial, and
the required lower bound follows from [3].

Step 1. The goal of this step is to simplify the magnetostriction energy. Let m be as in
Step 0. We note that V = ε0(m) is in Lp(G;R2×2) and is compactly supported for each
p ∈ [1,∞]. Let u ∈ H1(G;R2) with

∫
Ω

u dx = 0, and note that this mean-zero condition
is merely a choice: in the following estimates it is convenient to arrange

〈∇u〉 + 〈∇u〉T

2
= 〈V〉. (4.3)

We continue to denote the resulting translated u by u. Identifying the L2 function ∇u+∇uT

2
with its extension by 0 outside G, we fall in the setting of the Schwartz’s Paley-Wiener
Theorem discussed Section 2.1. Taking into account Lemma (2.3)-Equation (2.8), (2.5),
and (4.3),∫

G
‖ε(u) − V‖2 dx =

∑
k∈Z2,k,0

1
|k|4

∣∣∣∣|k|4‖V̂(k)‖2 − 2|k|2|V̂(k)k|2 + |k · V̂(k)k|2
∣∣∣∣2 , (4.4)

with V̂(k) being defined by (2.3). Since m2
1 = m2

2 = 1
2 in G, it follows that for k ∈ Z2\{0},

the extension of these functions by zero outside G satisfies m̂2
1(k) = m̂2

2(k) = 0. Towards
using (4.4), for k , 0, the matrix V̂(k) takes the form

V̂(k) =
3
2

(
0 bk

bk 0

)
(4.5)

with

bk = m̂1m2(k). (4.6)

It is this structure of the matrices V̂(k) significantly simplifies (4.4) and lies at the heart
of our paper. Indeed, plugging in (4.5) into (4.4), we find that for each k, since

|k|4‖V̂(k)‖2 − 2|k|2|V̂(k)k|2 = 0,

one has ∫
G
‖ε(u) − ε0(m)‖2 dx =

∑
k∈Z2,k,0

1
|k|4
|2bkk1k2|

2 (4.7)
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Step 2: In this step, we decompose the magnetization m in Fourier space. To this
end, let S 1 denote the unit circle in Fourier space: S 1 := {k̂ ∈ R2 : k̂2

1 + k̂2
2 = 1}. Consider

the open cover {U j}
2
j=1 of S 1 defined by

U1 := {k̂ ∈ S 1 : k̂2
2 < k̂2

1}, U2 := {k̂ ∈ S 1 : k̂2
2 >

3
4

k̂2
1}.

For use in the next step, we record that the trivial estimates that for any k ∈ R2\{0}whose
projection onto S 1 lies on U1, one has

k2
1k2

2

(k2
1 + k2

2)2
>

1
2

k2
2

k2
1 + k2

2

, (4.8)

while for any k ∈ R2\{0} whose projection lies on U2 one has the inequality

k2
1k2

2

(k2
1 + k2

2)2
>

3
7

k2
1

k2
1 + k2

2

. (4.9)

Let now {η̃ j}
2
j=1 be a smooth partition of unity subordinate to the cover {U j}

2
j=1, satis-

fying η̃ j are nonnegative, even, supported respectively on U j, and
∑2

j=1 η̃ j(k̂1, k̂2) ≡ 1
on S 1. With an eye towards defining Fourier multipliers that are smooth away from the
origin and verify the conditions of the Hörmander-Mikhlin multiplier theorem, define
η j : R2 → [0,∞) by η j(k) := η̃ j

(
k
|k|

)
for k , 0 and η j(0) = 0. For any h ∈ Lp(R2), p ∈

(1,∞), defining the operator T j in Fourier space by

T̂ jh(ξ) =

√
η j(ξ)̂h(ξ), (4.10)

the Hörmander-Mikhlin multiplier theorem, [18, Theorem 3.8 and Corollary 3.16] entail
that T j : Lp(R2) → Lp(R2) is a bounded linear operator. We will make use of this
operator below to define a certain decomposition of the magnetization into “laminates”.

Recall from Step 1 that∫
G
‖ε(u) − ε0(m)‖2 dx =

∑
k∈Z2\{0}

4k2
1k2

2

(k2
1 + k2

2)2
|bk|

2. (4.11)

Before proceeding, we define a decomposition of the magnetization profile into a pair of
“laminates”, one of which is predominantly along the x−direction and the other which
is predominantly along the y−direction. More precisely, we define, for k ∈ Z2\0, and
j = 1, 2

f̂ j(k) := ̂T j(m1m2)(k) =

√
η j(k)m̂1m2(k) =

√
η j(k̂)bk, (4.12)
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using the operator T j from (4.10). Continuing from (4.11), inserting the definitions
(4.12), and subsequently the lower bounds (4.8)-(4.9), we find∫

G
‖ε(u) − ε0(m)‖2 dx =

∑
k∈Z2\{0}

4k2
1k2

2

(k2
1 + k2

2)2

(
η1(k̂) + η2(k̂)

)
|bk|

2

=
∑

k∈Z2\{0}

4k2
1k2

2

(k2
1 + k2

2)2
(| f̂1(k)|2 + | f̂2(k)|2)

&
∑

k∈Z2\{0}

1
k2

1 + k2
2

(
k2

2 | f̂1(k)|2 + k2
1 | f̂2(k)|2

)
&

(
‖ f1‖2H−1(R2) + ‖ f2‖2H−1(R2)

)
, (4.13)

where in the last line, we have once again used the Plancherel-Polya inequality and its
consequences.
Step 3: In this step, we obtain the desired lower bound on the sum of the exchange en-
ergy and the results of Step 3, viz. the sum of anisotropic and magnetostriction energies.
The proof involves the application of an interpolation inequality, [3], which is by now
well-used in studies on energy-driven pattern formation. To this end, we first obtain a
lower bound on the exchange energy in terms of the f ′j s. We begin with the observation
that for each j = 1, 2, we have that for k , 0,

| f̂ j(k)|2 6 |m̂1m2(k)|2

Consequently, it follows that for any vector h ∈ R2 we have∑
k∈Z2

4 sin2 (πk · h) | f̂ j(k)|2 6
∑
k∈Z2

4 sin2 (πk · h) |m̂1m2(k)|2

Using the notation ∆h f (·) := f (· + h) − f (·), we have in physical space,∫
G
|∆hm1|

2 dx +

∫
G
|∆hm2|

2 dx &
∫

G
|∆h(m1m2)|2 dx. (4.14)

Identifying ∆h(m1m2) with its extension by zero outside G as an L2(R2) function, and
repeating earlier arguments using (2.5), we find∫

R2
|∆h(m1m2)|2 dx =

∑
k∈Z2

4 sin2(πk · h)|bk|
2 &

∑
k∈Z2

4 sin2(πk · h)
2∑

j=1

| f̂ j(k)|2

=
∑
k∈Z2

2∑
j=1

|∆h f ĵ(k)|2 =

2∑
j=1

∫
R2
|∆h f j|

2 dx. (4.15)
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Before proceeding, we record an easy estimate concerning the finite difference operator
∆h. Thanks to the fundamental theorem of Calculus, we have for any g ∈ W1,1(G) that

‖∆hg‖2L1 . |h|‖g‖L∞
∫

G
|∇g| dx. (4.16)

By density arguments, this estimate also holds for g ∈ BV. Applying this last inequality
to g = m1m2, and then continuing from (4.15), we find for any h , 0 that∫

G
|∇m| >

1
|h|

∫
R2
|∆h(m1m2)|2 dx &

1
|h|

∫
R2
|∆h f1|2 + |∆h f2|2. (4.17)

Taking the supremum over h ∈ R2 with 0 < |h| < 1, we recall that a particular Besov
seminorm of a function f is equivalently characterized by

‖ f ‖2
B̊1/2

2,∞
:= sup

0<h<1

1
|h|

∫
R2
|∆h f (x)|2 dx.

For later use, we also note that the corresponding full Besov norm is then given by

‖ f ‖B1/2
2,∞

:= ‖ f ‖L2 + ‖ f ‖B̊1/2
2,∞
.

With these definitions, we get the bound

‖ f1‖2B̊1/2
2,∞

+ ‖ f2‖2B̊1/2
2,∞
6

∫
G
|∇m|. (4.18)

Conclusion of Step 3: It remains to combine the results of Steps 2 and 3 so far, by us-
ing an interpolation inequality [3]. We have from (4.13) and (4.18), Step 0, Young’s
inequality, and the interpolation inequality [3, Lemma 2.3 and Remark 3.1] that

lim inf
η→0

Fη(vη) & µ
∫

G
|∇m| +

∫
G
‖ε(u) − ε0(m)‖2 dx

& µ

(
‖ f1‖2B̊1/2

2,∞
+ ‖ f2‖2B̊1/2

2,∞

)
+

(
‖ f1‖2H̊−1(R2)

+ ‖ f2‖2H̊−1(R2)

)
= µ

(
‖ f1‖2B1/2

2,∞
+ ‖ f2‖2B1/2

2,∞

)
+

(
‖ f1‖2H̊−1(R2)

+ ‖ f2‖2H̊−1(R2)

)
− µ

(
‖ f1‖2L2 + ‖ f2‖2L2

)
> c331/3(3/2)2/3µ2/3

(‖ f1‖2/3B1/2
2,∞

‖ f1‖
1/3
H̊−1

)2

+

(
‖ f2‖

2/3
B1/2

2,∞

‖ f2‖
1/3
H̊−1

)2 − µ (
‖ f1‖2L2 + ‖ f2‖2L2

)
> (c3µ

2/3 − µ)
(
‖ f1‖2L2 + ‖ f2‖2L2

)
=

c3µ
2/3

2

∑
k∈Z2,k,0

|bk|
2, (4.19)
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provided µ < 1 is suitably small, say µ 6 c1 < 1 for a universal constant c1 depending
only on c3. Here, up to the universal constant 31/3(3/2)2/3, the constant c3 > 0 is the one
arising from the quoted interpolation inequality. Let 0 < δ < 1

2 be a number that will
be fixed towards the end of the proof. To complete the proof, we first suppose that the
magnetization m satisfies (∫

G
m1m2 dx

)2

6
1
4
− δ2. (4.20)

Adding and subtracting µ2/3
(∫

G m1m2 dx
)2

to the right hand side of (4.20), it follows by
Plancherel’s theorem that

lim inf
η→0

Fη(vη) > µ2/3
∫

G
(m1m2)2 dx − µ2/3

(∫
G

m1m2 dx
)2

.

On the one hand, since m2
1 = m2

2 = 1
2 , we have∫
G

(m1m2)2 dx =
1
4
.

On the other hand, using (4.20), we would have

lim inf
η→0

Fη(vη) & δ2µ2/3. (4.21)

It remains to make an appropriate choice of δ, this will be done at the end of the next
step. Our choice will entail that when β 6 c2, then 1

4 > δ2 > c3β
1/3. Thus, making the

choice of δ will complete the proof under the assumption (4.20).

Step 4: In this step, we suppose instead of (4.20), we have the inequality

1
4
− δ2 <

(∫
G

m1m2 dx
)2

6
1
4
. (4.22)

Magnetizations that satisfy such an inequality are similar to the anisotropy-free Privorot-
skii construction, where m only uses one pair of easy axes. Before providing the details
of the proof, we sketch some heuristics. Suppose for instance

∫
G m1m2 dx > 0 and satis-

fies the inequality in (4.22). In this case, m is essentially uniaxial and only takes values

in ±
(

1√
2
, 1√

2

)
. Concerning the magnetostriction energy, the preferred strain ε0(m) is an

even function of m, and hence, we expect the magnetostriction energy corresponding to
such a magnetization to be small. On the other hand, in this essentially uniaxial regime,
obtaining a lower bound for the sum of the exchange and magnetostatic energy was ex-
actly the content of [3]: we thus make use of the result of this paper, and we obtain an
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error term owing to the fact that m is only approximately uniaxial. It is this error term
which sets the value of δ, making use of the parameter regime relating µ and Q.

We turn now to implementing this program. We assume throughout that
∫

G m1m2 dx > 0
and satisfies (4.22). The proof in the case when

∫
G m1m2 dx < 0 and satisfies (4.22) is

completely analogous. By Cauchy-Schwarz applied to the magnetostatic energy, we find

‖div m‖2H−1 = ‖m1,x + m2,y‖
2
H−1 >

1
2
‖m1,x + m1,y‖

2
H−1 − ‖m1,y − m2,y‖

2
H−1 .

Thanks to
∫

G m1m2 dx > 0 and (4.22), we find
∫

G(m1−m2)2 dx 6 δ2. This in turn implies
that

‖m1,y − m2,y‖H−1 = sup
ζ∈H1

0 ,‖∇ζ‖L261

∫
G

(m1 − m2)∂yζ dx dy 6 δ.

It follows then that

lim inf
η→0

Fη(vη) >
µ

2

∫
G
|(∂x + ∂y)m1| +

β

2
‖(∂x + ∂y)m1‖

2
H−1 − βδ

2.

At this stage, the arguments in [3] applied to m1, entail that

µ

2

∫
G
|(∂x + ∂y)m1| +

β

2
‖(∂x + ∂y)m1‖

2
H−1 > c3µ

2/3β1/3
∫

G
m2

1 dx,

so that, when we combine this with the preceding estimate and the fact that |m1| =
1√
2
,

we obtain

lim
η→0
Fη(vη) > c3µ

2/3β1/3 − βδ2. (4.23)

We are now ready to make a choice of δ. Thanks to the assumptions of the theorem, we
can choose δ satisfying

c3β
1/3 6 δ2 < min

(1
4
,

1
2

c3(µβ)2/3). (4.24)

Combining (4.21), (4.23) and (4.24) completes the proof of the theorem.

�
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