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Objective quasicontinuum approach for rod problems
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An objective quasicontinuum (OQC) method is developed for simulating rodlike systems that can be
represented as a combination of locally objective structures. An objective structure (OS) is one for which a
group of atoms, called a “fundamental domain” (FD), is repeated using specific rules of translation and rotation
to build a more complex structure. An objective Cauchy-Born rule defines the kinematics of the OS atoms in
terms of a set of symmetry parameters and the positions of the FD atoms. The computational advantage lies
in the capability of representing a large system of atoms through a small set of symmetry parameters and FD
atom positions. As an illustrative example, we consider the deformation of a copper single-crystal nanobeam
which can be described as an OS. OQC simulations are performed for uniform and nonuniform bending for
two different orientations (nanobeam axis oriented along [111] and [100]) and compared with elastica results.
In the uniform bending case, the [111]-oriented single-crystal nanobeam experiences elongation, while the
[100]-oriented nanobeam experiences contraction in total length. The nonuniform bending allows for stretching,
contraction, and bending as deformation. Under certain loading conditions, dislocation nucleation is observed
within the FD.
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I. INTRODUCTION

A rodlike structure is a three-dimensional structure that
satisfies certain geometric constraints such as having two
of its dimensions smaller in magnitude relative to the third
or forming a material curve with finite thickness bounded
by its lateral surface. The analysis of deformations of rods
is of considerable importance due to recent interest in the
mechanical properties of nanoscale rodlike structures ranging
from nanotubes to polymer chains and DNA strands. For
example, the mechanical properties of some nanorods exhibit
considerably greater strength than those that are observed
in macroscopic single crystals,1 suggesting new composite
materials. Special attention is given to experimental results
pertaining to nanotubes1–3 and nanobeams.1,4,5 Due to their
unique physical properties, nanobeams are considered to be
important building blocks for studies of the physical properties
of nanoscale structures and the assembly of a wide range of
functional nanometer-scale systems.6,7

The analysis of the mechanical properties of nanoscale
rodlike structures divides into two main approaches. In the
first, the results of the continuum theory of elasticity are used to
obtain surface and edge corrections for nanoscale effects (see,
for example, Refs. 8 and 9). The second approach involves
the extraction of the overall response from the underlying
atomic interactions (refer to Ref. 10). The conditions under
which continuum theories of bulk systems can be applied to
nanoscale objects remain an area of open research.

We suggest approaching this challenge through the qua-
sicontinuum (QC) method, which was originally devel-
oped for simple crystal materials11,12 and later extended
to multilattices.13 In the local limit of QC, every point
in a continuum corresponds to an infinite periodic region
on the atomistic scale. The constitutive response of the
system is obtained from an atomistic computation through
application of the Cauchy-Born rule rather than an empirical
phenomenological relation. In this paper, we extend the local
QC method to objective structures. The resulting objective

quasicontinuum (OQC) method is used for simulating systems
that are not objective but can be represented as a combination of
locally objective structures. (Objective structures are defined
in Sec. II.)

The OQC formulation is inspired by a Cosserat point
approach for nonlinear rods with rigid cross sections of Rubin
and co-workers.14,15 Similar to the Cosserat point approach,
the constitutive relations are the key to making the connection
between the continuum OQC formulation and objective struc-
tures. Assuming a conservative system, constitutive relations
can be derived by relating resultant forces and couples to
derivatives of a strain energy function. In OQC, the strain
energy function is computed from an objective molecular stat-
ics calculation by analogy to the method described in Ref. 16.
OQC has two major benefits: (1) It is computationally efficient.
Through the introduction of local objective structures, the large
numbers of atoms making up a nanorod are represented by a
small set of symmetry parameters and fundamental domain
atoms. (2) The local constitutive relations for the rod are
obtained from first principles as opposed to phenomenological
models. The results of an OQC simulation are therefore
predictive.

As a practical example, OQC is applied to study the
uniform and nonuniform bending of single-crystal copper
nanobeams which can be described as objective structures (see
Sec. II A).

II. OBJECTIVE STRUCTURES

An objective structure17 (OS) is one for which a finite unit
of atoms, called a “fundamental domain” (FD), is repeated
using specific rules of translation and rotation to build a
more complex structure. The images of the FD generated
by this replication rule are called “molecules.” The result
is a generalization of crystal structures to structures for
which the corresponding atoms in each molecule experience
identical environments up to an orthogonal transformation and
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FIG. 1. (Color online) Examples of OSs include (a) crystals, (b)
nanotubes, (c) viral capsids, (d) buckyballs, (e) common proteins, and
(f) contracted and extended tail sheaths of bacteriophage T4.

translation. More precisely, a set of position vectors

OS = {xJ,k : J = 1, . . . ,N,k = 1, . . . ,M}, (1)

where J denotes the molecule and k enumerates atoms
within it, is an OS, if there exist NM orthogonal matrices
{Q1,1, . . . ,QN,M} such that

OS = {xJ,k + QJ,k(xI,m − x1,k) :

I = 1, . . . ,N,m = 1, . . . ,M} (2)

for every J ∈ {1, . . . ,N} and k ∈ {1, . . . ,M}.
Many of the most actively studied structures in sci-

ence are OSs (Fig. 1), including crystals, nanobeams and
nanowires, carbon nanotubes, C60, many of the common
proteins (hemoglobin, actin, collagen), viral capsids and parts
(baseplates, tails, necks), various kinds of molecular fibers,
bilayers (staggered and unstaggered), and others.17 In this
paper, we focus on rodlike structures (nanobeams, nanowires,
nanotubes, viral parts, and various kinds of molecular
fibers).

By definition, the isometry group G of an objective
structure OS (or any structure) is the set of all orthogonal
transformations and translations, usually written (Q|c) ∈ G,
that preserve the structure, that is, that satisfy

QxJ,� + c = x�(J,�), J = 1, . . . ,N, � = 1, . . . ,M (3)

for some permutation �. In cases that one assigns a species to
atom J,�, then � is required to preserve the species, that is, if
K,m = �(J,�), then atom K,m is the same species as atom
J,�. These transformations form a group under the product
(Q1|c1)(Q2|c2) = (Q1Q2|c1 + Q1c2) and with (I|0) being the
identity.

Each OS can be constructed as the orbit of an isometry
group on molecule 1, M1 = {x1,k, k = 1, . . . ,M}. To see
this, rearrange the definition of an OS as QJ,kxI,m + xJ,k −
QJ,kx1,k = x�(I,m). Thus, (QJ,k|xJ,k − QJ,kx1,k) belongs to the
isometry group G of the OS for each J,k. Now note that, triv-
ially, xJ,k = QJ,kx1,k + xJ,k − QJ,kx1,k = Qx1,k + c, where
(Q|c) = (QJ,k|xJ,k − QJ,kx1,k) ∈ G, by the above. Thus, the
OS is contained in the orbit of M1 under G. Conversely,
putting j = 1 in (3) we get that the orbit of M1 under G is
contained in the OS, completing the argument.

A fundamental domain of an isometry group, denoted FD,
is a set in R3 with the property that images of the FD under
the group are nonoverlapping and fill R3. Any collection of
atoms in the FD can serve as a molecule, and conversely, the
intersection of any OS with its FD can be taken as molecule 1.
This terminology is used below.

A. Objective structures for rod deformations

A rodlike structure such as a nanobeam can be described
as an OS where the FD is a “slice” of the beam. For
example, Fig. 2 shows various nanobeams that are generated
by a planar array of atoms [Fig. 2(a)] lying in an FD of
various groups. All of these beams are obtained by using the
basic helical group G = {[Q|λe + (I − Q)x0]J : J ∈ Z} =
{[QJ |Jλe + (I − QJ )x0] : J ∈ Z} in the notation introduced
above, where Q is a rotation matrix and the unit vector e
defines its axis Qe = e. This group consists of powers of
the basic isometry g = [Q|λe + (I − Q)x0], called a screw
transformation, which represents a rotation about the axis e
passing through the fixed point x0, followed by a translation
of amount λ in the direction e. The beam is generated by
applying G to a slice, represented by xFD,k, k = 1, . . . ,M ,
that is,

xJ,k = gJ (xFD,k) = QJ xFD,k + Jλe + (I − QJ )x0. (4)

For example, referring to the orthonormal basis shown in
Fig. 2, various deformations can be obtained by fixing the

FIG. 2. (Color online) Deformations in a nanobeam: (a) a
molecule or FD, (b) axial stretch/compression, (c) simple shear, (d)
pure torsion, (e) pure bending, and (f) torsion-bending combination.
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atoms in the slice xFD,k, k = 1, . . . ,M and applying the
formula above with suitable choices of the parameters. A
simple extension with axial stretch λ �= 0 is obtained by using
the choices Q = I,e = e3 [see Fig. 2(b)]. A shear [Fig. 2(c)]
is obtained similarly by choosing λ �= 0 and e · e3 �= 0,1. A
torsional deformation [Fig. 2(d)] is given by the choices Q �= I,
e ‖ e3, λ �= 0, x0 = 0. A pure bending deformation as shown in
Fig. 2(e) results by choosing Q �= I, e ‖ e1, λ = 0, x0 = δe2,
for a suitable δ > 0. Finally, a general helical deformation
as seen in Fig. 2(f) is given by generic choices of the
parameters.

Note, that all of the above structures are objective, irre-
spective of the choice of atoms in the FD or the values of the
symmetry parameters λ, x0 and the angles of rotation in Q.
For equilibrium structures, the symmetry parameters and the
positions of atoms in the FD are determined by the applied
loading and the interatomic forces.

III. MULTISCALE MODELING USING THE OBJECTIVE
QUASICONTINUUM APPROACH

Methods for performing molecular dynamics and molecular
statics on OSs are described in Ref. 16. Such objective
molecular statics (OMS) simulations are limited to perfect
OSs. It is possible to use OMS to simulate the uniform bending
or twisting of an infinite nanobeam or carbon nanotube.
However, nonuniform bending of a nanobeam, where the
curvature varies along the length of the beam, is not possible.
Another difficulty arises if the structure is finite or contains a
defect of some sort. In this case, it is no longer a perfect OS
and can not be modeled by OMS. As an alternative, in OQC
we propose to model such structures by approximating the
energy at each point in the structure using an energy density
computed from a locally objective structure.

As mentioned in the Introduction, constitutive equations
are the key to making the connection between the atomic
level and the continuum. Constitutive equations which are
used in rod theories to couple the geometry of the rodlike
structure and the material properties introduce constraints on
the deformation of the rod (linear or nonlinear) and assume
a form of material response (elastic or nonelastic) (see, for
example, Refs. 18–23). A classical example of a constrained
rod theory is the elastica rod of Kirchhoff and Euler,18 with
rigid cross sections that remain normal to an inextensible
reference curve. We will use elastica theory below for com-
parison with our results. In the OQC approach proposed here,
instead of introducing a priori constraints on the constitutive
response, it emerges naturally as an output of the atomic
interactions.

IV. OBJECTIVE QUASICONTINUUM

The OQC formulation is inspired by the theory of a Cosserat
point originally introduced by Rubin and co-workers.14,15,23–25

This theory can be used to obtain numerical solutions for
the dynamical motion of nonlinear rods. Following the usual
finite element methodology, the rod is divided into N elements,
where each element is a structure modeled as a Cosserat point.
An element is bounded by a lateral surface and two end cross
sections. The I th cross section can be described by the location

FIG. 3. (Color online) Cosserat rod element.

of the centroid I d0 and two vectors {I d1,I d2} lying within the
cross section (see Fig. 3). This gives 9 degrees of freedom
for each cross section for a total of 18 degrees of freedom
per element. A simplified theory is obtained by assuming that
the cross sections are rigid as done by Brand and Rubin.15 In
this case, the unit vectors {I d1,I d2} are perpendicular to each
other (as in Fig. 3), thereby reducing the number of degrees of
freedom to 12 per element.

The constitutive response for a Cosserat point element is
obtained by postulating a nonlinear phenomenological form
in terms of the element degrees of freedom and fitting the
parameters in this form to analytic results from small strain
elasticity theory.15,23 This is different from finite element
formulations for bulk materials where a strain energy density
function characterizes the material response, and the element
response then follows by integration.

OQC differs from the Cosserat point approach in two
main aspects. First, the kinematics of the element is different
since now each element is associated with an OS (rather than
the general structure depicted in Fig. 3). Thus, instead of the
18 (or 12) kinematic degrees of freedom characterizing the
Cosserat point element, an OQC element is characterized by
the symmetry parameters of the OS and the positions of the FD
atoms. Second, instead of the phenomenological constitutive
model of the Cosserat point element, the constitutive response
of an OQC element is obtained by performing an OMS
calculation on the FD atoms with appropriate objective
boundary conditions.

The total energy of an OQC model divided into N elements
is

EOQC =
N∑

i=1

E
(i)
el , (5)

where E
(i)
el , the energy of the ith element, is given by

E
(i)
el = n

(i)
FDE

(i)
FD. (6)

Here, n
(i)
FD is the number of images of the FD (number of

molecules) within element i and E
(i)
FD is the energy of the FD

associated with it. The FD energy will depend on the symmetry
parameters of element i (determined from its nodal values)
and the positions of the FD atoms which constitute internal
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FIG. 4. (Color online) 1D OQC model consisting of N elements.

element variables. This is analogous to the Cauchy-Born rule
for multilattice crystals13 and can therefore be referred to as
the objective Cauchy-Born rule.

A. OQC kinematics

In order to demonstrate the OQC methodology, we consider
the nonuniform bending of a one-dimensional (1D) rodlike
structure. The rod is divided into N elements delimited by
N + 1 nodes. Each node is characterized by its position zi

(i = 1, . . . ,N + 1) along the horizontal z axis, and the angle
βi between the tangent to the rod at the position of the node
di = (sin βi,0, cos βi) and the horizon (see Fig. 4). Next, we
limit the kinematics of an element to that of an arc of constant
radius (so that a locally objective structure is retained). The arc
is characterized by the symmetry parameters αi and Ri (see
inset in Fig. 4):

αi = βi+1 − βi, Ri = Li

2 sin(αi/2)
, (7)

where

Li = zi+1 − zi

cos γi

, γi = βi+1 + βi

2
. (8)

While the angle αi and the radius of curvature Ri are natural
parameters with which to describe arc-shaped elements, the
variables γi and Li are preferable to work with in practice
since Ri tends to infinity when the beam is flat, which leads
to numerical difficulties. In the case of a torsion-bending
combination, the torsion angle within an element needs to
be added.

Modeling each element as a circular arc with a different
curvature radius is an approximation similar to the finite
element method in 1D with constant strain elements. In both
cases, one can approach a nonuniform deformation as closely
as one likes as the element size becomes infinitely small.

B. OQC element constitutive model

The energy of an OQC element given in Eq. (6) is a multiple
of the energy of the FD, EFD, of the OS associated with the
element. This energy is a function of the symmetry parameters
defining the OS (see Sec. IV A) and the positions of the FD
atoms. It is computed via OMS by constructing the FD in

a computer with the necessary neighbors generated by the
application of objective boundary conditions.

The kinematics of the rod OS is described in Sec. IV A.
For constructing the FD images, it is convenient to work with
the element angle α and length L [see Eqs. (7) and (8)]. Since
the FD energy is rotationally invariant, we can simply set
the tangent vector to d = (0,0,1). Note that for notational
simplicity, we omit the element index i, taking all element
quantities to refer to a generic element.

For any atom xFD,k (k = 1, . . . ,M) within the FD, the image
in the J th molecule is

xJ,k = xc + Q
(

αJ

nFD

)
· (xFD,k − xc) + lJ Q

(
αJ

2nFD

)
· d,

(9)

where Q(θ ) is a counterclockwise rotation by angle θ around
the axis perpendicular to the plane containing the rod, xc is the
center of mass of the FD, and lJ is the distance between xc and
its position in the J th image (see Fig. 5):

xc =
∑M

k=1 mkxFD,k∑M
k=1 mk

and lJ = L
sin αJ

2nFD

sin α
2

, (10)

where mk is the mass of the kth atom. Equation (9) describes
the general case of bending and extension. Setting α = 0,
Eq. (9) reduces to the following simpler expression for the
special case of axial stretching and compression:

xJ,k = xFD,k + lJ d. (11)

The energy of the FD and the forces on the FD atoms
are computed from an interatomic model. In the case of pair
potential interactions (Lennard-Jones potential for example),
the energy of the FD is

EFD = 1

2

∑
i∈FD

∑
j∈FD
j �=i

φij (rij ) + 1

2

∑
i∈FD

∑
j /∈FD

φij (rij )

= 1

2

∑
i∈FD

∑
j

j �=i

φij (rij ), (12)

where rij is a distance between atoms i and j , rij < rcut (the
cutoff radius of the interaction potential). Note that for atoms
j /∈ FD, the position is determined through the atoms in the
FD xFD,k and symmetry parameters through Eq. (9). Thus,
to compute the energy of the FD correctly, it is necessary to
construct nimg image layers on both sides of the FD to ensure
that every atom in the FD has all of its neighbors up to the cutoff
distance rcut [see Fig. 6(a)]. In a numerical implementation, the
padding around the FD atoms is increased to rcut + δ (where
δ is a fraction of the cutoff radius, typically about 20%). This
prevents the need to recompute the neighbors of the FD atoms
at each minimization step (as described in the next section) and
therefore reduces the computational cost (see, for example,
Ref. 26).

In the numerical examples presented in Sec. V, an embed-
ded atom method (EAM) potential27 suitable for describing
metals was used. For an EAM potential, the energy of the FD
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FIG. 5. (Color online) (a) Geometry of an OQC element, (b) fundamental domain, (c) OS generated by replicating the FD.

is

EFD = 1

2

∑
i∈FD

∑
j

j �=i

φij (rij ) +
∑
i∈FD

Ui(ρi),

(13)
ρi =

∑
j

j �=i

gj (rij ),

where rij < rcut, φij is a pair potential function, gj (rij ) is
the contribution to the electron charge density at the position
of atom i due to atom j , and Ui is an embedding function
representing the energy required to place atom i into the
electron density ρi at its location.

C. OQC energy minimization

The total energy of an OQC system is given in Eq. (5).
This energy depends on the nodal degrees of freedom zi and
βi (i = 1,N + 1) and the positions of the FD atoms associated
with each element x(i)

FD,k (i = 1, . . . ,N). This constitutes a set
of 2(N + 1) + 3MN global degrees of freedom for the OQC
formulation.

To find the equilibrium of the system, we also need to take
into account the potential −W (z1,β1, . . . ,zN+1,βN+1) of the
external forces or moments. The potential energy functional
of the system is

� = EOQC − W

= �
(
z1,β1, . . . ,zN+1,βN+1,

{
x(i)

FD,k

}
i=1,...,N,k=1,...,M

)
.

(14)

The potential of the external loads −W depends on the loading
conditions. For example, for a cantilever nanobeam subjected
to an upward point forceF applied at its free end (node N + 1):

� =
N∑

i=1

n
(i)
FDE

(i)
FD − F

N∑
i=1

(zi+1 − zi) tan

(
βi+1 + βi

2

)
,

(15)

with z1 = 0,β1 = 0 at the fixed end as the boundary conditions.
If instead of a point load, a pure moment M is applied at its
free end, the appropriate potential energy is

� =
N∑

i=1

n
(i)
FDE

(i)
FD − MβN+1. (16)

To minimize the total potential energy, we use the nonlinear
conjugate gradient (CG) method, in which, in addition to the
functional in Eq. (14), we need to supply the gradient (deriva-
tives of the potential energy with respect to all independent
variables). Using Eqs. (14) and (5), we have

∂�

∂x(i)
FD,k

= −n
(i)
FDf(i)

FD,k = n
(i)
FD

∂E
(i)
FD

∂x(i)
FD,k

. (17)

In nonobjective atomistic simulations, f(i)
FD,k can always28 be

represented as a pairwise sum of forces due to neighboring
atoms within some finite distance (rcut for a pair potential and
2rcut for EAM). However, with objective boundary conditions,
there is an additional contribution to the force since the
interaction between a pair of atoms contributes to the forces
on all other atoms in the FD due to Eq. (9). It is easy to show
that in the case of a pure moment applied at the free end [see
Eq. (16)], this additional term equals zero. More details on
derivation of the force in Eq. (17) for pair potential and EAM
interactions are presented in the Appendix.

Similarly, we need to provide derivatives of � with respect
to zi and βi (i = 1, . . . ,N). Since the energy of the FD also
depends on the symmetry parameters α and L in each element,
it is necessary to use the chain rule to compute derivatives with
respect to zi and βi . Each element has nodal values z(1), β(1),
z(2), β(2) (local numbering). Therefore,

∂EFD

∂β(i)
=

∑
j /∈FD

∂EFD

∂xj

(
∂xj

∂L

∂L

∂β(i)
+ ∂xj

∂α

∂α

∂β(i)

)
(18)

and

∂EFD

∂z(i)
=

∑
j /∈FD

∂EFD

∂xj

∂xj

∂L

∂L

∂z(i)
, (19)

where

α = β(2) − β(1) and L = z(2) − z(1)

cos β(2)+β(1)

2

. (20)

Finally, we need to add derivatives over global variables
coming from the potential of the external forces or moments
when applied [see, for example, Eqs. (15) and (16)]. Thus,
going back to global numeration, we have

∂�

∂zi

= n
(i)
FD

∂E
(i)
FD

∂zi

+ n
(i−1)
FD

∂E
(i−1)
FD

∂zi

− ∂W

∂zi

(21)
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FIG. 6. (Color online) (a) FD with image layers for periodic boundary conditions, (b) FD example, (c) FD with image layers for objective
boundary conditions.

and

∂�

∂βi

= n
(i)
FD

∂E
(i)
FD

∂βi

+ n
(i−1)
FD

∂E
(i−1)
FD

∂βi

− ∂W

∂βi

. (22)

V. EXAMPLES

In this section, we present the results of OQC calculations
for nanobeams under different loading conditions. The OQC
results are compared with elastica where possible. Failure
within the FD due to dislocation nucleation is also explored.
The section concludes with an error analysis of the OQC
method.

A. Cantilever nanobeams with a point load at the free end

Consider a face-centered-cubic (fcc) single-crystal copper
nanobeam of length 1735.2 Å with a square cross section
of size 86.76 Å, i.e., with a side-to-length ratio of 1:20. An
EAM model29 is used to describe the atomic interactions
in the copper. The nanobeam is oriented with its [100]-
crystallographic direction along the z axis [see Figs. 7(a)
and 7(b)] with L0 = 480a0 and H = W = 24a0, where a0 =
3.615 Å is the lattice constant of bulk fcc copper.

This system, when fully simulated, consists of 1 152 480
atoms corresponding to 3 457 440 degrees of freedom. It is
modeled using OQC with 3 or 6 elements with a FD of 2401

FIG. 7. (Color online) (a) Schematic of the nanobeam, (b) [100]
nanobeam, (c) [111] nanobeam.

atoms for a total of 21 617 or 43 232 degrees of freedom. The
nanobeam is fixed at the left end and loaded by an upward point
force F at its free end on the right. We therefore minimize the
potential energy in Eq. (15) for a given value of F . In all
simulations, a uniform mesh is used (i.e., all elements are the
same size) with the same FDs.

The simulations are performed as follows:
(1) The FD is constructed for the appropriate orientation of

the fcc copper crystal with sufficient images [see Fig. 5(b)] to
enable calculation of the energy and forces on the FD atoms.

(2) The FD energy is minimized with respect to the FD
atom positions. This causes the FD to distort slightly due to
surface effects. (The FD exhibits a contraction in length of
about 0.59% in this particular case.)

(3) The OQC model is set up. The initial positions of the FD
atoms within each element are set to the relaxed FD structure.
The nodal values are initialized.

(4) Boundary conditions are applied. For the present simu-
lation, a forceF in the x direction (vertical direction) is applied
at the free end node (N + 1). The left end of the beam is fixed
with z1 = 0 and β1 = 0.

(5) The equilibrium configuration of the system is computed
for each value of the force F . The force F is then increased by
a small increment 
F = 0.02 eV/Å and the previous solution
is used as the initial guess for the next step in the computation.

The results of the OQC simulations are compared with
continuum elastica solutions.18,30 The cross section of the
nanobeam is relatively large on the atomic scale and therefore
surface effects can be neglected.8,9 This means that the
standard bulk definition of Young’s modulus without the
surface effect corrections may be used in the elastica solution.
The directional Young’s moduli for the crystallographic
orientations being considered here are31

Y[100] = (c11 + 2c12)(c11 − c12)

c11 + c12
,

(23)

Y[111] = 3c44(c11 + 2c12)

c11 + 2c12 + c44
,

where c11, c12, and c44 are the cubic elastic constants of the
copper single crystal. For the EAM model29 used here, these
are c11 = 1.042 33 eV/Å3, c12 = 0.773 95 eV/Å3, and c44 =
0.474 36 eV/Å3, from which Y[100] = 0.382 74 eV/Å3 and
Y[111] = 1.202 78 eV/Å3.
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FIG. 8. (Color online) OQC results for nonuniform bending of a
single-crystal copper nanobeam with square cross section, oriented
in the [100] direction. (a) 3-element model, (b) 6-element model.
OQC results (red lines and dots) are compared with elastica solutions
shown as blue lines.

Figure 8 presents the results of the OQC simulations (red)
and the elastica solutions (blue) for the [100] single-crystal
copper nanobeam with fixed left end and a point upward
force F applied to the free end. The red dots correspond to
the OQC node positions and the lines between them are the
circular arcs defined by the symmetry parameters. Results are
shown every five load steps, i.e., for force values of F = 0,
0.1 eV/Å, 0.2 eV/Å, and so on. The largest value shown is
F = 3 eV/Å. It is clear from the figure that the OQC results
closely follow the elastica solutions for both the 3-element and

6-element models. The results also agree with beam theory
solutions shown for the smallest values of the force F . The
small differences between the OQC and elastica solutions can
be attributed to the fact that the elastica solution is limited
to nonlinear kinematics with linear material, whereas OQC
models nonlinear kinematics with a nonlinear material and
also includes surface effects.

Next, to demonstrate the computational advantages of
the OQC approach, we consider a nanobeam with a 1:100
side-to-length ratio. As before, the beam is fixed on the
left and subjected to a vertical point load at its right end.
The dimensions of the beam are L0 = 2400a0 = 8676 Å and
H = W = 24a0 = 86.76 Å for a total of 5 762 400 atoms in
a fully atomistic simulation. This may be contrasted with the
6 × 2401 = 14 406 atoms in all FDs of the OQC model.

The results for the nanobeam displacements for the applied
forces F = 0.001 eV/Å, 0.002 eV/Å, 0.003 eV/Å, and
0.004 eV/Å are illustrated in Fig. 9. As above, OQC results are
shown in red and elastica results in blue. The OQC results agree
very well for smaller loads. As the load increases, nonlinear
material effects begin to be more pronounced in the OQC
solution and the elastica model no longer provides an accurate
solution for the problem.

This simulation provides an example for the advantages that
OQC offers when approaching a very large system of atoms. A
system such as this with over five million atoms is considered
to be quite large for fully atomistic simulations and would
require parallel computation with a large number of processors.
In contrast, the OQC computations took just a few hours to run
on a single 2.67-GHz Intel(R) Xeon (R) W3520 processor.

In all the OQC simulations described above, the FD
consisted of 2401 atoms. This is a planar layer with a length
(thickness) in the z direction of just a0 = 3.615 Å. With an
increase in the length of the FD, we expect to approach the
results of fully atomistic simulations more closely. This is
particularly important when loading the structure to the point
where defects nucleate within the FD as incipient plasticity
sets in. The importance of the FD size is demonstrated below.

B. Nanobeam deformed in pure bending

1. A [111]-oriented nanobeam

Consider a single-crystal copper nanobeam of length
957.99 Å with a square cross section of size 95.799 Å, i.e.,
with a side-to-length ratio of 1:10. The axis of the beam is
in the [111] direction [see Fig. 7(c)] and L0 = 153az, H =
W = 15.3az, az = √

3a0. The system, fully simulated, consists

FIG. 9. (Color online) A nanobeam with a 1:100 side-to-length ratio is bent by the force applied to the right end, while keeping the left end
fixed. A single-crystal copper nanobeam with square cross section of size 24a0 = 86.76 Å with a [100] nanobeam orientation is considered.
The results of displacements are depicted for the applied force F = 0.001 eV/Å, 0.002 eV/Å, 0.003 eV/Å, 0.004 eV/Å (from the bottom up).
Data in red are for the OQC results (6 elements), and those in blue are for the elastica solution.
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TABLE I. Elongation of a [111]-oriented nanobeam.

α (rad) 0.5 1.0 1.5 1.6

Elongation 0.042 % 0.17 % 0.34 % 3.07 %

of 740 061 atoms. We use an FD of 14 511 atoms, which
corresponds to a slice of the nanobeam with a length of 3az in
the initial undeformed state. The same EAM model for copper
as in the previous simulations was used. The initial relaxation
due to surface effects resulted in a change of length of 0.14%.
As before, surface effect corrections8 are not taken into account
when comparing with the continuum results reported below.
Since the nanobeam is subjected to pure bending, a single
OQC element is sufficient to model the response.

The nanobeam is loaded by a pure moment M and as a
result bends to an arc of angle α = 
β [see Fig. 4 and Eq. (7)].
[Note that for a single element with one end fixed (β1 = 0), we
have α = β2, i.e., α is the bending angle at the end of the beam.]
The functional to minimize in this case is given in Eq. (16),
with boundary conditions z1 = 0 and β1 = 0. Rather than
applying the moment M, it turns out to be computationally
more efficient to apply the angle α as the boundary condition at
the right end of the beam. (M and α are conjugate, so the two
approaches are equivalent.) An incremental loading procedure
with 
α = 0.05 rad is adopted similar to that described above
for the point load case. Our computations show that the
[111]-oriented nanobeam experiences elongation as a result
of the bending. Table I shows the change in total length of the
nanobeam (relative to the initial relaxed undeformed length)
when bent at an angle α.

The results for the bending moment versus bending angle
are presented in Fig. 10. As we can see, for small angles, the
relationship between M and α is linear and follows the beam
theory prediction for bulk copper:

M = YIz

L0
α, Iz = WH 3

12
, (24)

where Y stands for the appropriate directional Young’s
modulus in Eq. (23) and Iz is the area moment of inertia of
the nanobeam with a square cross section about the z axis [see
Fig. 7(a)]. Following the initial linear response, the bending

FIG. 10. (Color online) Bending moment M as a function of
bending angle α for a [111]-oriented nanobeam with a length of
957.99 Å and a square cross section of side 95.799 Å. The blue line
is the beam theory result in Eq. (24). Points 1 and 2 correspond to the
state of the system just before and after a nucleation event in the FD.
See text for explanation.

moment softens a bit due to nonlinear effects until it reaches a
critical value of α = 1.55 rad (point 1 in Fig. 10) after which
there is a discontinuous drop in both the moment and bending
stiffness kb = ∂M/∂α. A linear response resumes at α = 1.6
rad (point 2).

In order to understand the source of the discontinuity in
the M versus α curve in Fig. 10, we investigate the atomic
structure of the FD before and after the jump. To facilitate this,
we compute the centrosymmetry parameter (CSP) for each of
the atoms in the FD. The CSP is defined as follows:32

CSP =
∑
i,1,6

‖Ri + Ri+6‖2, (25)

where Ri ,Ri+6 correspond to six pairs of opposite nearest
neighbors in the fcc lattice. The CSP is identically zero for
centrosymmetric crystal structures (such as fcc and uniformly
strained fcc) and has distinct values for particular defect
structures as explained below.

Figure 11 shows the FD atoms just before [frames (a)–
(c)] and just after [frames (d)–(f)] the discontinuous jump.
The colors of atoms correspond to the values of the CSP
parameter, with red representing atoms with 0 < CSP < 3
which includes partial dislocations (0.5 < CSP < 3), light red
to almost white representing stacking faults (3 < CSP < 11),

FIG. 11. (Color online) Defect structures in a FD of a [111]-
oriented single-crystal copper nanobeam of size 95.799 Å by 957.99
Å: (a) front view of FD at α = 1.55 rad, (b) side view, (c) bottom view;
(d) front view of the FD at α = 1.6 rad, (e) side view, (f) bottom view.
The atoms are colored by CSP: 0 < CSP < 3 (red), 3 < CSP < 11
(light red to almost white), and CSP > 11 (light blue to blue). See
text for explanation.
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TABLE II. Contraction of [100]-oriented nanobeam.

α (rad.) 0.5 1.0 1.9 2.0

Contraction 0.097 % 0.39 % 1.64 % 4.44 %

light blue (11 < CSP < 16) are atoms either at or near the
surface, and blue representing surface atoms (CSP > 16).33

Clearly the discontinuous jump in the moment is associated
with the nucleation of defects. The resulting structure consists
of a series of stacking faults originating from the bottom
(tension side) of this bent [111]-oriented nanobeam.

2. A [100]-oriented nanobeam

Consider next a [100]-oriented nanobeam of length 867.6
Å with a square cross section of size 86.76 Å. Thus, again the
side-to-length ratio is 1:10. The system, when fully simulated,
consists of 576 240 atoms and has a geometry of L0 = 240a0,
H = W = 24a0 where a0 = 3.615 Å (see Fig. 7). The OQC
model uses a FD of 7203 atoms which corresponds to a slice
of the nanobeam of length 3a0 in the z direction. The initial
relaxation in the FD due to surface effects is of magnitude
0.59%. As before, the beam is loaded in pure bending using
an incremental procedure. Our computations show that the
[100]-oriented nanobeam experiences contraction in total
length when undergoing pure bending. Table II shows the
change in the total length of the nanobeam (relative to the
initial relaxed undeformed length) when bent to an angle α.

Figure 12(a) presents the bending moment versus bending
angle response for the [100]- and [111]-oriented nanobeams.
Both nanobeams (and all other cases considered below) have a
1:10 side-to-length ratio and are loaded up to a maximum strain
of εmax = 0.05α. [The maximum strain occurs at the upper and
lower surfaces of the beam and is equal in magnitude to εmax =
Hα/(2L0).] Note that the directional Young’s modulus is
different for the two nanobeams as defined in Eq. (23). Similar
to the [111]-oriented nanobeam, the [100] beam experiences a
sudden discontinuous drop in the bending moment. In this case,
though, the stacking faults appear at the top (or compression
side) of the beam [Fig. 12(b)], whereas for the [111] nanobeam
[Fig. 12(c)], the stacking faults originate at the bottom (tension
side).

3. Effect of the cross-section size

Consider again a [100]-oriented single-crystal copper
nanobeam of length 867.6 Å. Two sets of simulations are
compared: one with a cross-section size of H = W = 24a0

(from above) and the other with H = W = 18a0; for both
cases, H/L0 = 1/10 and the FD length is 3a0. The bending
moment versus bending angle response for the two nanobeams
are shown in Fig. 13. Interestingly, the discontinuities in the
bending moment appear at the same critical angles [and hence
the same critical strains (εmax)] for both nanobeams although
the moment and bending stiffnesses vary.

4. Effect of the FD length

Finally, we consider the effect of changing the length of the
FD in the z direction. This is interesting from a methodological
standpoint since two OQC models with the same FD cross

FIG. 12. (Color online) (a) Bending moment versus angle for
nanobeams in pure bending for two orientations and sizes: a [100]-
oriented nanobeam of size 86.76 Å by 867.6 Å; a [111]-oriented
nanobeam of size 95.799 Å by 957.99 Å. The nanobeams are modeled
with FDs of size 3a0 and 3az, respectively. The OQC results (red) are
compared with beam theory predictions (blue). (b) Defect structures
for the [100]-oriented nanobeam with α = 2 rad. (c) Defect structures
for the [111] nanobeam with α = 1.6 rad.

section and different lengths are ostensibly modeling the same
beam. That means that any differences in the results reflect
an artificial numerical constraint introduced by the objective
boundary conditions inherent in OQC.

To explore this issue, we revisit the [100]-oriented
nanobeam of size H = W = 18a0 and L0 = 180a0, where

FIG. 13. (Color online) Bending moment M versus bending
angle α for a [100]-oriented nanobeam with a side-to-length ratio
of 1:10. The cross-section size is 24a0 for the upper curve and 18a0

for the lower curve.
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FIG. 14. (Color online) Bending moment M versus bending
angle α for a [100]-oriented nanobeam with a side-to-length ratio
of 1:10. The FD cross-section size is 18a0. The length of the FD is
3a0 for the red curve and 18a0 for the green curve. Points 1, 2, and 3
correspond to the angle values of 1.6, 1.7, and 2.4 rad.

a0 = 3.615 Å. In Fig. 14, we compare the previous results
obtained with a FD length of 3a0 to those obtained with a
FD of length 18a0. As we can see, for angle values up to
α = 1.5 rad, both simulations produce the same results. With
the shorter FD (of length 3a0), stacking faults first appear for
larger values of the angle (or maximum strain). Evidently, the
shorter FD imposes a mode of deformation with a very short
repeat distance on the nanobeam.

In contrast, as seen in Fig. 15, a far more complex defor-
mation mechanism is observed for the longer FD (of length
18a0). Three different states are shown: one at α = 1.6 rad just
before the appearance of the stacking faults [frames (a)–(c)]
and two at α = 1.7 and 2.4 rad after the initial nucleation
event [frames (d)–(f) and frames (g)–(i)]. The very first defects
nucleate at the top (or compression) side as observed for the
shorter FD, however, the deformation after that takes on a

FIG. 15. (Color online) Dislocation structures for a [100]-oriented single-crystal copper nanobeam of length 180a0 and side 18a0, bent to
an angle of α = 1.6 rad for (a), (b), and (c); bent to α = 1.7 rad for (d), (e), and (f); and bent to α = 2.4 rad for (g), (h), and (i).
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FIG. 16. (Color online) Deformed [100]-oriented nanobeam of cross-section side 18a0 and length 180a0. The FD (24642 atoms) of initial
length 18a0 is shown together with image molecules on the left and right generated via objective boundary conditions at (a) α = 1.6 rad,
(b) α = 1.7 rad, and (c) α = 2.4 rad.

three-dimensional character. This is demonstrated in Fig. 16,
which shows the entire FD (containing 24 642 atoms) with
the image molecules generated by the objective boundary
conditions.

Analyzing Figs. 12(b), 15, and 16, we see that in the [100]-
oriented nanobeam the stacking faults and dislocations are
formed on two primary planes: (111) and (111̄). As the bending
angle is increased, the (111) plane becomes dominant as the
defects on the (111̄) plane disappear [see Figs. 15(f) and 15(i)].

Another representation of the defect structure in the
nanobeam is shown in Fig. 17 through the use of the dislocation
extraction algorithm (DXA) described in Ref. 34. The DXA
technique has been developed to find dislocations in atomistic
simulation snapshots, to convert them to one-dimensional
line segments, and to determine their Burgers vectors in a
fully automated way. The method can be applied to complex

FIG. 17. (Color online) Deformed [100]-oriented nanobeam of
cross-section side 18a0 and length 180a0. The FD (24 642 atoms) of
initial length 18a0 is shown together with image molecules on the left
and right generated via objective boundary conditions at (a) α = 1.7
rad and (b) α = 2.4 rad. Gray surfaces correspond to stacking faults
and red tubes to dislocations.

dislocation processes in molecular dynamics simulations of
some crystalline materials. In our case, a DXA analysis finds
Shockley partial dislocations and stacking faults in the fcc
lattice as shown in Fig. 17.

Figure 18 provides a closer look at dislocations and stacking
faults in the FD with an angled view on the (100) plane [or
see Fig. 15(d)] when α = 1.7 and 2.4 rad. Partial dislocations

FIG. 18. (Color online) Deformed [100]-oriented nanobeam of
cross-section side 18a0 and length 180a0. The FD (24 642 atoms) of
initial length 18a0 is shown for (a) α = 1.7 rad and (b) α = 2.4 rad.
Partial dislocations are red, stacking faults are light red to almost
white, surface atoms are light blue to blue.
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FIG. 19. (Color online) Defect structures in a FD of a [111]-
oriented single-crystal copper nanobeam of size 95.799 Å by 957.99
Å, with α = 1.6 rad as in Fig. 11(d). Partial dislocations are shown
red, stacking faults are light red to almost white, surface atoms are
light blue to blue.

are shown in red, stacking faults are light red to almost white,
surface atoms are light blue to blue.

Figure 19 shows partial dislocations bounding stacking
faults that nucleate on three major planes [(1̄11), (11̄1), and
(111̄)] for the [111]-oriented nanobeam as in Fig. 11(d). A
detailed analysis of the (1̄11) [or (11̄1) due to symmetry] plane
stacking faults reveals a polytypic structure. The term poly-
typic refers to structural modification due to the occurrence
of stacking faults at regular intervals in crystals composed of
close-packed layers of atoms. While the traditional notation
for the layer sequence of closed-packed planes {111} in the
fcc structure is ABCABC . . ., the analysis of the (1̄11) plane
stacking faults shows a repeating sequence of nine layers:
ABCBCACAB. In Ramsdell notation,35 the structure is
denoted as a 9R polytype, where the digit corresponds to the
smallest number of repeated closed-packed layers (polytype
cell size) and the letter specifies the lattice type (polytype cell
symmetry): cubic “C,” hexagonal “H,” rhombohedral “R,” etc.
The occurrence of the polytype of the 9R type in Cu single
crystals has been observed experimentally (see, for example,
Refs. 36–40).

C. Error analysis

It is of interest to explore the accuracy of the OQC method
and the convergence with respect to the number of elements.

A 1D OQC model consists of N elements delimited by
N + 1 nodes. The energy in each element is a function
of the FD atoms and the symmetry parameters αi and Ri

(i = 1, . . . ,N ) which are computed from the nodal degrees
of freedom (see Sec. IV A). The symmetry parameters are
constant within the element and discontinuous across element
boundaries. It is expected that as the number of elements
increases, this piecewise constant approximation to the exact
nonuniform curvature will improve and OQC will converge to
the correct result. To quantify this convergence, we apply an

error estimator similar to the one used in the finite element
method.41,42

To prevent having to deal with infinite radii of curvature,
we choose to work in terms of the element bending angle αi

and curvature ci = 1/Ri . Each of the N + 1 nodes in the OQC
model is assigned average values ᾱi and c̄i based on values in
the neighboring elements with domains �i−1 and �i :

ᾱi =
∫

αi−1 d�i−1 + ∫
αi d�i∫

d�i−1 + ∫
d�i

. (26)

For the case of elements of the same size (also assumed below),
we have

ᾱi = (αi−1 + αi)/2, i = 2, . . . ,N
(27)

ᾱ1 = α1, ᾱN+1 = αN.

Similarly,

c̄i = (ci−1 + ci)/2, i = 2, . . . ,N
(28)

c̄1 = c1, c̄N+1 = cN .

Next, we construct an approximation for the element values
α̂i and ĉi from the average nodal values ᾱi and c̄i as follows:

α̂i = (ᾱi + ᾱi+1)/2, ĉi = (c̄i + c̄i+1)/2. (29)

The error in element i, ei , is now estimated by comparing
the energy of the element with the one obtained using the
approximated element variables:

ei = Ei(αi,ci) − Ei(α̂i ,ĉi)

Ei(αi,ci)
. (30)

The error estimator used here is similar to the method
introduced by Zienkiewicz and Zhu,41 which can be used for
any linear finite element discretization. While the methodology
is not proven to work in all nonlinear problems, the numerical
studies in Ref. 42 are encouraging.

We apply the error estimator in Eq. (30) to study the
convergence of an OQC model for the fcc single-crystal
copper nanobeam shown in Fig. 7. The nanobeam is of length
L0 = 180a0 and H = W = 6a0, where a0 = 3.615 Å is the
lattice constant of bulk fcc copper. The cantilever nanobeam is
fixed at one end and loaded by a point force F = 0.006 eV/Å
at the other.

FIG. 20. (Color online) The nodal values of OQC results for
nonuniform bending of single-crystal copper nanobeam, oriented in
[100] direction. The point force F = 0.006/ eV Åis acting at one end
of the nanobeam of size L0 = 180a0 and H = W = 6a0, while the
other end is fixed.
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FIG. 21. (Color online) The average absolute error values (the
natural logarithm is depicted) for different mesh refinements.

The nanobeam is modeled using N = 3, 6, 12, 20, and
30 OQC elements of equal size with a FD of length 3a0.
The OQC results for each of these models are presented on
Fig. 20. The computations appear to be quite accurate with
the displacements from all models falling on a single curve.
This is even true for the coarsest 3-element model. A more
quantitative measure of the error is shown in Fig. 21, where
the average absolute error

ē = 1

N

N∑
i=1

|ei | (31)

is plotted as a function of the number of elements N on
a semilog plot. The results indicate that the average error
decreases with increasing mesh resolution.

VI. SUMMARY AND DISCUSSION

In this paper, we developed an objective quasicontin-
uum method for simulating rodlike structures that can be
approximated locally as objective structures. This includes
nanobeams, nanowires, nanotubes, viral parts, and various
kinds of molecular fibers.

The OQC formulation is inspired by a Cosserat point
element approach for nonlinear rods with rigid cross sections.
In OQC, the rod is discretized into finite elements each of
which is associated with a local OS through a set of symmetry
parameters and a fundamental domain. The constitutive re-
sponse within each element is obtained through an atomistic
calculation where the positions of the atoms are defined
through objective boundary conditions. This is a generalization
of the Cauchy-Born approach to objective structures.

OQC has several advantages compared with fully atom-
istic and fully continuum approaches. First, OQC enjoys a
computational advantage over fully atomistic methods such
as molecular statics. This is because the number of degrees
of freedom is reduced from 3Natoms (where Natoms is the total
number of atoms in the structure) to about 3MN where M is
the number of atoms in the fundamental domain and N is the
number of elements (typically MN � Natoms). In addition, the
local OS calculations in each element are independent making
the code easy to parallelize.

Second, unlike continuum rod theories in which the
constitutive relations are phenomenological and therefore
have a limited ability to predict new behavior, the constitu-
tive response in OQC is atomistically based. The objective

Cauchy-Born rule used in OQC naturally includes surface
effects (important for nanostructures), nonlinear response at
large deformation, failure mechanisms including dislocation
nucleation and fracture at the FD level, and phase trans-
formations. These complex behaviors are computed directly
from the atomic interactions of the FD atoms and are
only limited by the accuracy of the interatomic model. For
ultimate accuracy, a first-principles approach such as density
functional theory with objective boundary conditions could be
used.43

As a test of the OQC formulation, it was applied to
the bending of single-crystal copper nanobeams. The FD in
this case is a slice of the nanobeam of a specified length.
Two different cases were considered. The first test case was
the nonuniform bending of a cantilever nanobeam loaded
by a point force at its free end. For low values of the
applied force, the results were in good agreement with elastica
predictions using the directional Young’s modulus computed
from the interatomic potential. For larger values of the force,
deviations between the OQC solution and elastica are observed
which are mainly attributed to nonlinear material effects. The
convergence of the OQC method with number of elements was
studied using a finite element method based error estimator.
The results show that the error for the nonuniform bending
case is reduced as the number of elements is increased.

The OQC simulations for nonuniform bending were com-
pleted in a few hours on a single processor workstation. This
reflects the efficiency of the OQC method which reduces the
number of atoms that have to be simulated from about 5.7
million for the fully atomistic case to about 14 400 in the FDs
of the OQC model.

Second, pure bending of a nanobeam was studied for
two different crystallographic orientations with the beam axis
along [100] and [111]. In both cases, the results agreed
with the beam theory predictions for small values of the
applied moment. As the magnitude of the loading is increased,
some nonlinear softening is observed until a critical value is
reached at which defects are nucleated within the FD. For
the [100]-oriented nanobeam, a pattern of stacking faults is
nucleated from the compressed side of the beam. For the [111]
orientation, a similar pattern is observed to nucleate from the
tension side of the beam.

The uniform bending results were repeated for a larger
FD and found to be highly sensitive to the FD length.
Instead of the planar stacking fault structures reported above,
complex three-dimensional defect structures were observed.
The selection of a suitable FD for a given problem is therefore
an important question. One possibility is to run the simulation
multiple times with increasing FD size until the desired output
is seen to converge. This is similar to finite element simulations
where convergence with respect to mesh size is the objective.
Alternatively, one can adapt the FD size on-the-fly in order
to meet certain accuracy requirements or when instabilities
are detected. The latter approach, referred to as cascading
Cauchy-Born kinematics (CCB), is used in multilattice QC
simulations.44 The adaption of CCB techniques to OQC is
an interesting area for future research. Other areas for future
OQC development include the extension to finite temperature
as done in the so-called “hot-QC” method45,46 and the inclusion
of a nonlocal (i.e., atomistic) region as in the full QC method
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in order to model isolated defects in otherwise objective
structures.
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APPENDIX: FORCE COMPUTATION

In this section, we derive the forces acting on the atoms
in the FD. For simplicity, let us first consider pair potential
interactions between atoms i and j :

Eij = φ(rij ), rij = ‖xi − xj‖, (A1)

where xi represents the coordinates of the ith atom. From the
definitions above, it follows that

∂rij

∂xk

= xi − xj

rij

∂(xi − xj )

∂xk

. (A2)

For the case i ∈ FD and j ∈ FD, i.e., both atoms are in the
fundamental domain, we have

∂rij

∂xk

= xi − xj

rij

(δik − δjk),

(A3)

δik =
{

1, k = i

0, k �=i.

Thus, the pair interaction Eij will contribute to the forces on
atoms i and j :

−∂Eij

∂xk

= −φ′(rij )
xi − xj

rij

(δik − δjk) =
⎧⎨
⎩

fij , k = i

−fij , k = j

0, k �= i,j

(A4)

where

fij = −φ′(rij )
xi − xj

rij

. (A5)

Now, consider the case where atom j is outside the FD
and lies in one of the image molecules J = −nimg, . . . , −
1,1, . . . ,nimg. Its position xJ,j is given by Eq. (9) which is
repeated here for convenience:

xJ,j = xc + Q
(

αJ

nFD

)
· (xFD,j − xc) + lJ Q

(
αJ

2nFD

)
· d,

(A6)

with j = 1, . . . ,M . We introduce the following notation for
the force on atom i in the FD due to the presence of atom j in
molecule J :

f(J )
ij ≡ f(xi ,xJ,j ) = −φ′(r (J )

ij

)xFD,i − xJ,j

r
(J )
ij

. (A7)

The subscript “FD” for xi ∈ FD is dropped here and below for
notational simplicity.

For the case where atoms i,k ∈ FD, atom j /∈ FD, and all
atoms have the same mass, using Eq. (A2) we obtain

−∂E
(J )
ij

∂xk

=

⎧⎪⎪⎨
⎪⎪⎩

f(J )
ij − 1

M

[
I − Q

(− αJ
nFD

)] · f(J )
ij , k = i

−Q
(− αJ

nFD

) · f(J )
ij − 1

M

[
I − Q

(− αJ
nFD

)] · f(J )
ij , k = j

− 1
M

[
I − Q

(− αJ
nFD

)] · f(J )
ij , ∀k ∈ FD,k �= i,k �= j

(A8)

where I is the identity matrix, M is the number of atoms in the
FD. In the case of atoms with different masses, the term 1/M

should be replaced by mk/
∑

mk where mk is the mass of atom
k. In the derivation of Eq. (A8), the orthogonality property of
the matrices Q(α) was used.

Taking into account that the positions of the left image
atoms J < 0 are related to the positions of the right image
atoms J > 0 [refer to Eqs. (A6) and (A7)], it is easy to derive
the following connection between the force terms:

f(J<0)
ij = −Q

(
− αJ

nFD

)
· f(J>0)

ji with f(J )
ji ≡ f(xj ,xJ,i).

(A9)

From Eq. (A8) it follows that any atom k ∈ FD is influenced
by the pair interaction between atoms i ∈ FD and j /∈ FD in
the form of an additional contribution to its force:

− 1

M

[
I − Q

(
− αJ

nFD

)]
· f(J )

ij . (A10)

The energy of the FD could be written as

EFD =
∑
i∈FD

∑
j ∈ FD
j>i

Eij + 1

2

∑
i∈FD

∑
j /∈ FD

j ∈ (J>0)

Eij

+ 1

2

∑
i∈FD

∑
j /∈ FD

j ∈ (J<0)

Eij . (A11)

Using Eqs. (A4) and (A8)–(A11), we conclude that the total
force on atom k in the FD can be written as

fFD,k = − ∂EFD

∂xFD,k
=

∑
j ∈ FD
j �=k

fkj + 1

2

∑
j /∈FD

f(J )
kj + f(OS)

FD,k, (A12)

where

f(OS)
FD,k = − 1

M

∑
i∈FD

∑
j /∈FD

(
f(J>0)
ij + f(J<0)

ij

)
. (A13)
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Thus, in addition to usual summation of terms fkj (used in
periodic boundary conditions cases for example), there is an
additional force term f(OS)

FD,k when objective boundary conditions
are applied. The presence of this additional term is due to
the symmetry of the OS, which is reflected in the objective
boundary conditions specified in Eq. (9).

Equation (A12) is also correct for EAM potentials with the
force term fkj given in Eq. (A5) for a pair potential, replaced
with the following EAM expression:

fkj = −[φ′
kj (rkj ) + U ′

k(ρk)g′
j (rkj ) + U ′

j (ρj )g′
k(rkj )]

xk − xj

rkj

.

(A14)

The force term in Eq. (A13) vanishes in the following cases:
(1) under a state of axial loading where

∑
i∈FD

∑
j /∈FD f(J>0)

ij =
−∑

i∈FD

∑
j /∈FD f(J<0)

ij ; and (2) in pure bending [Eq. (16)]
with length of FD > rcut (>2rcut in case of EAM potential),
where

∑
i∈FD

∑
j /∈FD f(J>0)

ij = 0 and therefore from Eq. (A9),

also
∑

i∈FD

∑
j /∈FD f(J<0)

ij = 0. The proof of the statement
(2) is as follows. Since the nanobeam is subjected to pure
bending, a single OQC element is sufficient to model the
response and the total potential energy follows from Eq. (14)
as

� = EFD(z1,β1,z2,β2,{xFD,k}k=1,...,M ) − Mβ2. (A15)

Following the derivation above and using Eqs. (A11) and (A6),
we arrive at

∂EFD

∂zp

=
∑
i∈FD

∑
j /∈FD

∂Eij

∂zp

=
∑
i∈FD

∑
j /∈FD

∂lJ

∂zp

Q
(

− αJ

2nFD

)
· f(J )

ij , p = 1,2 (A16)

where α = β2 − β1, and from Eqs. (10) and (8) we have

∂lJ

∂zp

= ∂L

∂zp

sin αJ
2nFD

sin α
2

. (A17)

Substituting this into Eq. (A16) and separating the sum into
contributions for J > 0 and J < 0, we obtain

∂EFD

∂zp

= ∂L

∂zp

∑
i∈FD

⎛
⎝∑

j /∈FD

sin α|J |
2nFD

sin α
2

Q
(

− α|J |
2nFD

)
· f(J>0)

ij

−
∑
j /∈FD

sin α|J |
2nFD

sin α
2

Q
(

α|J |
2nFD

)
· f(J<0)

ij

⎞
⎠ . (A18)

Next, using the connection between the force terms in Eq. (A9),
we finally arrive at

∂EFD

∂zp

= 2
∂L

∂zp

∑
i∈FD

∑
j /∈FD

sin αJ
2nFD

sin α
2

Q
(

− αJ

2nFD

)
· f(J>0)

ij . (A19)

Thus, due to the energy minimization condition in Eq. (21)
and noting that for the case of pure bending ∂W/∂zp = 0, we
have

∂EFD

∂zp

= 2
∂L

∂zp

∑
j /∈FD

sin αJ
2nFD

sin α
2

Q
(

− αJ

2nFD

)
·
∑
i∈FD

f(J>0)
ij = 0.

(A20)

For the case where J = 1, i.e., the length of the FD is more
than rcut (or 2rcut in case of an EAM potential), which is a
common choice in computations (including the pure bending
computations performed here), we have∑

i∈FD

∑
j /∈FD

f(J>0)
ij = 0, (A21)

and thus from (A9) also∑
i∈FD

∑
j /∈FD

f(J<0)
ij = 0. (A22)

Referring to the above two equations, we see from Eq. (A13)
that

f(OS)
FD,k = 0, (A23)

which proves statement (2).
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