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We present conceptual designs of viscometers corresponding to our new exact
molecular simulation method (Dayal & James, J. Mech. Phys. Solids, vol. 58 (2), 2010,
pp. 145–163). The molecular simulation method is a generalization of the method of
Lees & Edwards (J. Phys. C: Solid State Phys., vol. 5, 1972, p. 1921), and includes
a three-parameter family of incompressible flows, as well as compressible flows and
unsteady flows exhibiting vortex stretching. All fluids are allowed. The method gives
a way to simulate these flows using relatively few molecules, in the absence of a
constitutive relation describing the fluid. This paper presents conceptual designs for
viscometers that produce large families of these flows. The basic theme of this paper is
that the flows discussed here are a better way to characterize the properties of complex
fluids than the currently available methods, such as those based on viscometric flows.

Key words: complex fluids, computational methods, non-continuum effects

1. Introduction
In Dumitrica & James (2007) and Dayal & James (2010) we have recently given

a method for simulation of fluid flows at the molecular level. It is a significant
generalization of the method of Lees & Edwards (1972) for simple shearing flows.
Like in Lees & Edwards, only a finite number of atoms are simulated, but all atoms
filling all of space satisfy exactly the equations of molecular dynamics. There is no
restriction on atomic forces in this method, and it is applicable to classical empirical
molecular models up to very general quantum mechanical models, for example, in
the most general case, full Born–Oppenheimer quantum mechanics. This method
can be used to simulate flows of unusual fluids for which there does not exist a
constitutive relation, fluids in regimes currently inaccessible to theory or experiment,
fluids undergoing chemical reactions, or fluids for which it is desired to study
systematically the influence of the constituents or molecular architecture on properties
such as viscosity – in short, the materials science of fluids.

While the method is capable of simulating the dynamics of nanostructures (Dayal &
James 2010), the fluid flows that can be simulated by this method have macroscopic
Eulerian velocity fields given by the formula

v(x, t)= A (I + tA)−1 x, (1.1)
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where A is any 3 × 3 matrix and t is time, i.e. they are the Eulerian description
of so-called affine motions. They can also be considered homogeneous flows with
a particular time dependence of the coefficient matrix. In this paper we use the
terminology universal flows because, as explained below, they are exact solutions of
the equations of motion of every fluid, subject to zero body force. These flows are
generally unsteady, but some special choices of A 6= 0 give steady flows.

While multiscale methods like ours would seem to bypass the need for experimental
measurement of fluid properties, this is far from true. Experiment has taken on a
new urgency with the appearance of this and other multiscale methods. The need
for experiment arises from many sources. Most fundamentally, there are significant
gaps in the understanding of what level of atomic modelling is needed to simulate
a given property in a given fluid accurately, for example, whether pair potentials
(with or without a repulsive part), many-body potentials, density functional theory,
or full quantum mechanics are required, whether a Langevin approach is adequate,
or whether the dynamics of electrons or excited states have to be considered, as is
essential in some high-speed flows. Second, there are typically significant length and
time scale limitations that remain even after a multiscale method has been designed.
It is typically unknown whether, for example, a simulation that delivers a viscosity at
a certain shear rate is transferable to lower rates. In our multiscale method there is a
trade-off between the number of simulated atoms and the rates that can be achieved
under given computational resources.

While our method simulates flows with velocity fields of the form (1.1), we argue
that these flows, since they are possible in any fluid (even under extreme conditions as
mentioned above), are a fundamental validation tool for all multiscale methods. Since
the velocity field is prescribed, then, from an experimental viewpoint, one can design
the testing machine without beforehand knowing the properties of the fluid.

The presence of multiscale methods also drives the need for new characterization
techniques that directly probe the dynamics of molecules in ways that can validate
or refute a dynamic multiscale method. As an example of such a molecular-level
prediction, our method implies that the non-equilibrium statistics of molecular motion
for these flows, expressed in terms of a molecular density function f (t, x,v), which
gives the probability density of finding a molecule at (t, x) with velocity v, satisfies
the restriction

f (t, x,v)= g(t,v− A (I + tA)−1 x) (1.2)

for some function g(t,w). Hence, the statistics of the velocity distribution of molecules
in the flow (1.1) at one point x1 at time t uniquely determines its statistics at any other
point x2 at time t. A related consequence of our solutions is that, in the case of a flow-
induced chemical reaction, all (macroscopic) points of the fluid reach the initiation
point of the reaction at the same time. We use the terminology ‘viscometers’ for
traditional reasons, but it is a comprehensive set of stress measurements and molecular
diagnostics that are of interest. An interesting recent example (Chan, Chen & Dunstan
2009) of such an experimental probe that goes beyond stress measurements is the
study of molecular shape in Couette flow by the method of fluorescence resonance
energy transfer (FRET).

The terminology ‘conceptual design’ refers to the caveat that we do not give final
designs of viscometers. Rather, we describe how best to look at these flows, write
their forms in compressible and incompressible cases, consider various interesting
phenomena that can be seen in special cases, and discuss what to measure. We identify
the surfaces on the boundaries of such flows that undergo simple motions that could be
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forced, and, finally, we give some suggestions for the design of viscometers in special
cases that we think are most likely to be reducible to practice. We also record the
stress and temperature present in such flows, according to some standard continuum
theories (Navier–Stokes, viscoelastic, viscous heat-conducting fluid, kinetic theory gas)
to give an idea of what stresses are expected on the boundaries in some simple cases.
In general, a substantial effort would be required to build and instrument a viscometer
that accurately simulates these flows. This effort would be justified by the presence
of the universal molecular simulation method and the related fact that the flows
produced are exact solutions of the equations of motion for all accepted continuum
and mesoscale models of fluids.

As illustrated by Taylor vortices in circular Couette flow, motions of the form (1.1)
may not be stable over all rates, i.e. all choices of A. The interpretation of this fact
for our molecular-level solutions is that the general form of the solution remains
the same, but the number of atoms needed to simulate the motion of such a flow
beyond the instability becomes very large, too large to be realistically simulated by a
molecular-level calculation.

There is a large literature on generalizations of the method of Lees & Edwards
(1972). In cases that this literature treats flows other than plane Couette flow, there is
no overlap with our method: different flows are treated. Reviews of this literature are
given by Todd & Daivis (2007) and Evans & Morriss (2008).

Objective molecular dynamics (OMD) as presented here uses no thermostats. Thus
the temperature varies in OMD simulations. An advantage of this is that thermostats
are fitted to near-equilibrium behaviour, while OMD can simulate far-from-equilibrium
behaviour, such as chemical reactions, combustion and high rates of shear, in which
there are substantial temperature changes. A disadvantage of this is that one has to be
careful in comparing the results of simulation to experiment where the boundary of the
viscometer, say, is being cooled. So, careful consideration of rate, time of simulation
and sample size is needed when comparing OMD to experiment. As discussed in
Dayal & James (2010), OMD can be used in some thermostatted simulations, but the
thermostat has to satisfy the invariance conditions needed for atomic forces in OMD.

Many viscometers embody approximations: not all the surfaces in contact with the
fluid produce precisely the desired motion. Free surfaces of small area are often
present. For the production of universal flows, we could also study approximations.
In this first attempt we allow some free surfaces but otherwise try as much as
possible to produce the exact motions. Previous experience building testing machines
has suggested that rigorous attention to exact predictions is a valuable principle.

2. Objective molecular dynamics
While our molecular simulation method can be developed in the same way for

any discrete group of isometries – the main application explored in Dayal & James
(2010) was to the stretching of carbon nanotubes at constant strain rate – the main
group of interest for fluid mechanics is the time-dependent translation group. Thus our
presentation will concern only that group. The method is termed objective molecular
dynamics (OMD) because it relies fundamentally on the frame indifference of the
formula for the force on an atom due to all other atoms.

For our purposes the time-dependent translation group is defined as follows. Let
e1, e2, e3 be any three linearly independent vectors and let A be any linear
transformation. Group elements gp,q,r are parametrized by three integers p, q, r. Any
such triple corresponds uniquely to a group element. The group elements also depend
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on t, e1, e2, e3 and A, but this dependence is suppressed. The ‘multiplication’ rule is

gp,q,r gu,v,w = gp+u,q+v,r+w (2.1)

for any triples of integers p, q, r and u, v,w. Group elements can also act on points x
in three-dimensional space at time t: the rule for this action is

gp,q,r(x, t)= x+ (I + tA)(pe1 + qe2 + re3). (2.2)

Geometrically, this represents a time-dependent translation, the time dependence being
affine. To simplify the notation below, we write gν for gν1,ν2,ν3 , where ν = (ν1, ν2, ν3)
are integers. The element g0 = g0,0,0 is the identity element.

OMD is a consequence of a fundamental (time-dependent) invariant manifold of the
equations of molecular dynamics, but it is more easily explained as a computational
algorithm. Consider a collection of M atoms termed the simulated atoms with time-
dependent positions x1(t), . . . , xM(t), t > 0. The (infinitely many) remaining atoms are
labelled by a double index ν, k, where ν ∈ Z3 and k ∈ {1, . . . ,M}. The position of
atom ν, k is given at each t > 0 in terms of the simulated atoms by applying the group
to the simulated atoms using the action (2.2), i.e.

xν,k(t)= gν(xk(t), t)= xk(t)+ (I + tA)(ν1e1 + ν2e2 + ν3e3). (2.3)

Thus the simulated atoms are extended using the instantaneous periodicity defined by
the three vectors ((I + tA)e1, (I + tA)e2, (I + tA)e3). In the double-index notation the
positions of the simulated atoms are given by x0,k(t)= xk(t).

The basic theorem of OMD says that, if the simulated atoms satisfy the equations
of molecular dynamics (with forces given by all the atoms), then, even though the
positions of the non-simulated atoms are given by the explicit formula (2.3), they also
satisfy exactly the equations of molecular dynamics. To explain this result, we first
note that the molecular forces are general but they must satisfy the basic invariances
of quantum mechanics. We denote the force on atom ν, k suggestively by the notation
−∂ϕ/∂xν,k. In the general case, the formula for atomic forces is required to satisfy the
condition of frame indifference, i.e. for all orthogonal Q and c ∈ R3,

Q
∂ϕ

∂xν,k
(. . . , xν1,1, . . . , xν1,M, . . . , xν2,1, . . . , xν2,M, . . .)

= ∂ϕ

∂xν,k
(. . . ,Qxν1,1 + c, . . . ,Qxν1,M + c, . . . ,Qxν2,1 + c, . . . ,Qxν2,M + c, . . .), (2.4)

and also the condition of permutation invariance,

∂ϕ

∂xΠ(ν,k)
(. . . , xν1,1, . . . , xν1,M, . . . , xν2,1, . . . , xν2,M, . . .)

= ∂ϕ

∂xν,k
(. . . , xΠ(ν1,1), . . . , xΠ(ν1,M), . . . , xΠ(ν2,1), . . . , xΠ(ν2,M), . . .), (2.5)

where Π is any permutation that preserves species. Here, preservation of species
means that, if (µ, k) = Π(ν, `), then the species (i.e. atomic mass and number)
of atom µ, k is the same as the species of atom ν, `. Note that, unlike most
treatments of continuum mechanics, quantum mechanics exhibits frame indifference
under the full orthogonal group. The conditions of frame indifference and permutation
invariance are satisfied for all atomic positions, not just those given by an OMD
simulation: hence in (2.4) and (2.5) the subscripts are simply labels of atoms. These
invariances are formally satisfied by every accepted model of atomic forces in the
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non-relativistic case. As a very general example, they are formally satisfied by
the Hellmann–Feynman force formula based on full quantum mechanics under the
Born–Oppenheimer assumption. Finally, it is assumed that the mass mk of simulated
atom k is the same as the mass of atom ν, k for any triple of integers ν.

The basic theorem of OMD states that, if x1(t), . . . , xM(t) satisfy the equations of
molecular dynamics with any initial conditions, i.e.

mkẍk(t) = − ∂ϕ

∂x0,k
(. . . , xν1,1(t), . . . , xν1,M(t), xν2,1(t), . . . , xν2,M(t), . . .)

= − ∂ϕ

∂x0,k
(. . . , gν1(x1(t), t), . . . , gν1(xM(t), t), gν2(x1(t), t),

. . . , gν2(xM(t), t), . . .), (2.6)

xk(0)= x0
k, ẋk(0)= v0

k, k = 1, . . . ,M, (2.7)

then it follows that all the atoms satisfy the equations of molecular dynamics,

mkẍν,k(t)=− ∂ϕ

∂xν,k
(. . . , xν1,1(t), . . . , xν1,M(t), xν2,1(t), . . . , xν2,M(t), . . .),

t > 0, k = 1, . . . ,M, ν ∈ Z3. (2.8)

The initial conditions for the non-simulated atoms are obtained from (2.3) and its time
derivative at t = 0. The proof of these facts is given in Dayal & James (2010).
Both the frame indifference and permutation invariance are used in an essential
way. Note that from (2.7), the equations for the simulated atoms comprise a (non-
autonomous) finite system of ordinary differential equations in standard form. There
are no restrictions on the number of simulated atoms or their the initial conditions.
The only restriction on t, A, e1, e2, e3 is the condition that (I + tA)ei remain linearly
independent; this restriction is discussed in more detail below. At the present time,
without introducing approximations of spurious forces, we know of no more general
time dependence that can be introduced into the group elements than that given in
(2.2).

The multiscale method implied by this theorem is to solve for the simulated atoms
only, and keep explicit track of other atoms only insofar as they are needed to
calculate the forces on the simulated atoms. Any time that the motion of another atom
ν, k is needed, it can be obtained from (2.3). It is expected that a more representative
simulation will be obtained with a larger number of simulated atoms. The terminology
‘universal’ indicates that the number of simulated atoms can be arbitrarily large, and
their initial conditions and the atomic forces essentially arbitrary, all associated with a
given macroscopic velocity field.

The only conditions on the atomic forces are those that justify the basic existence
theorems for equation (2.7) – for example, with typical models for atomic forces, two
atoms cannot occupy the same initial position, so initial conditions would have to
respect this condition. The possibility of coincidence of atoms is prevented by the
repulsive singularity that is built in to typical semi-empirical models of atomic forces.
For quantum mechanical descriptions under the Born–Oppenheimer approximation, the
nucleus is modelled as a point charge/mass and coincidence of two nuclei is prevented
by strong repulsive interactions of the nucleus plus inner electrons. This repulsion
does not prevent interaction of valence electrons, which is responsible for bonding and
chemical reactions.

The ideas of Kraynik & Reinelt (1992) are useful also in the context of OMD.
Although there is no simulation cell in OMD, the simulated atoms can get rather
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interspersed with non-simulated atoms, which means that one has to keep track of
a large number of non-simulated atoms (i.e. the neighbours). The number can be
reduced by using lattice-invariant deformations of the theory of Bravais lattices, as
done by Kraynik & Reinelt in simulations of multiphase fluids.

3. Macroscopic motion and statistics of objective molecular dynamics
solutions

Despite the fact that the motions of the simulated atoms will vary widely depending
on initial conditions and atomic forces, there is certain deterministic information
that can be deduced concerning OMD solutions. This deterministic information is
independent of the number of simulated atoms and their initial conditions.

We first show that, under a mild additional condition on atomic forces, the centre
of mass of the simulated atoms moves with constant velocity. As preparation, we first
note that the force on a particular simulated atom xk is the same as the force on each
of its images xν,k. To prove this, choose a fixed triple of integers µ = (µ1, µ2, µ3),
evaluate the conditions of frame indifference and permutation invariance at the atomic
positions (2.3), use permutation invariance (2.5) with Π(ν, k) = (ν + µ, k), then use
frame indifference (2.4) with Q = I and c=−µifi, where fi = (I + tA)ei:

∂ϕ

∂xν+µ,k
(. . . , xν1,1, . . . , xν1,M, . . . , xν2,1, . . . , xν2,M, . . .)

= ∂ϕ

∂xν,k
(. . . , xν1+µ,1, . . . , xν1+µ,M, . . . , xν2+µ,1, . . . , xν2+µ,M, . . .)

= ∂ϕ

∂xν,k
(. . . , xν1+µ,1 − µifi, . . . , xν1+µ,M − µifi, . . . , xν2+µ,1 − µifi,

. . . , xν2+µ,M − µifi, . . .)

= ∂ϕ

∂xν,k
(. . . , xν1,1, . . . , xν1,M, . . . , xν2,1, . . . , xν2,M, . . .). (3.1)

Now we add an additional mild hypothesis on the atomic forces that rules out
what at continuum level are considered body forces. We assume that, in any atomic
configuration consistent with the ansatz (2.3) of OMD, the force on a region divided
by the volume tends to zero as the region gets larger and larger, i.e.

1
P3

∣∣∣∣∣∣
P∑

ν1=1

P∑
ν2=1

P∑
ν3=1

M∑
k=1

∂ϕ

∂x(ν1,ν2,ν3),k

(. . . , xµ1,1, . . . , xµ1,M, . . . , xµ2,1, . . . , xµ2,M, . . .)

∣∣∣∣∣∣
→ 0 (3.2)

as P→∞. Now we note that by (3.1) the innermost sum over k in (3.2) is
independent of ν = (ν1, ν2, ν3). Thus the outer sums over ν cancel exactly 1/P3,
and so (3.2) implies that

M∑
k=1

∂ϕ

∂x0,k
(. . . , xµ1,1, . . . , xµ1,M, . . . , xµ2,1, . . . , xµ2,M, . . .)= 0, (3.3)
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i.e. the total force on the simulated atoms is zero. Summing the equations of motion
for simulated atoms and using the definition of the centre of mass xcm(t), we have that

Mẍcm =
M∑

k=1

mkẍk =−
M∑

k=1

∂ϕ

∂x0,k
= 0, (3.4)

where M = ∑kmk. All classical models of atomic forces (pair potentials with
typically assumed decay at infinity, Tersoff potentials, embedded atom potentials,
Stillinger–Weber potentials, any atomic forces with a cut-off) satisfy the condition
(3.2). It is expected that (3.2) is also satisfied in a very general quantum mechanical
case, too. Equation (3.4) implies that the centre of mass of the simulated atoms moves
with constant velocity. It can also be easily seen (using again the invariance) that
the equations for the simulated atoms are Galilean invariant. By choosing the initial
conditions so that ẋcm(0) = 0, then the velocity of the centre of mass remains zero for
t > 0. We assume below that this has been done.

During a typical simulation, the simulated atoms slowly diffuse into the sea of
non-simulated atoms, exhibiting typical molecular diffusion. However, their centre of
mass remains fixed. The relationship of all other atoms to the simulated atoms is
given by (2.3). We can think of (2.3) at t = 0 as defining a periodic Lagrangian
grid, ν1e1 + ν2e2 + ν3e3, with ν1, ν2, ν3 integers, having typical period of the order
of tens of intermolecular dimensions. According to (2.3), this grid is deformed by
x(z, t) = (I + tA)z, z = ν iei. Even though all atoms undergo diffusion relative to this
deformed grid, the centres of mass of all images of the simulated atoms follow exactly
this Lagrangian motion. It is therefore evident that the macroscopic motion in the
Lagrangian description of this flow is x(z, t) = (I + tA)z and therefore the velocity in
the Eulerian description is

v(x, t)= ẋ(z−1(x, t), t)= A (I + tA)−1 x. (3.5)

This velocity field includes some but not all viscometric flows, and it includes many
flows that are not viscometric flows.

However, what is of interest here is the connection between these macroscopic
motions and atomic-level processes. To examine this in more detail, we note
that the equations of motion of the simulated atoms represent a 3M-dimensional
system of highly nonlinear ordinary differential equations. With typical numbers of
simulated atoms from 10 to 1000, these are expected to have highly erratic solutions
xk(t), k = 1, . . . ,M, that would be modelled statistically at mesoscopic level. However,
certain relationships between simulated and non-simulated atoms are deterministic.

To examine this in more detail, we first make an observation about simulated atoms.
Initially, these can have any positions and velocities. However, one can redefine the
initial positions of the simulated atoms to lie in the unit cell U = {λiei : 0 6 λi < 1}.
That is because each simulated atom has an image in this cell, by periodicity, and
the image can be taken as the simulated atom. As time proceeds, U is deformed into
Ut = (I + tA)U . At some time t? it may (and typically does) happen that a simulated
atom passes out of Ut? . At that instant, by periodicity, an image of that atom enters the
cell from a neighbouring cell. (The velocity of the entering atom xν,k is different from
that of the departing atom xk because of the time dependence on the right-hand side
of (2.3).) Now the entering atom can be redefined as a simulated atom. As long as the
velocity of the entering atom is taken from (2.3) at t?, and the simulation restarted at t?

with the new set of simulated atoms, the full set of atomic motions will be exactly the
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same as if this redefinition had not been done. In this way, the simulated atoms can
always be assumed to be in the deformed cell Ut.

With this method of handling simulated atoms, it follows from (2.3) that, while the
velocities of the simulated atoms ẋk(t), k = 1, . . . ,M, are erratic, the velocities of
atoms in the cell Ut + (I + tA)ν iei are determined by those in the cell Ut according
to the following rule: there is an atom in the cell Ut + (I + tA)ν iei with velocity
v+ Aν iei if and only if there is an atom in the cell Ut with velocity v. This statement
is independent of the number of simulated atoms, their initial conditions or the atomic
forces. If we pass to mesoscopic level as above by thinking of z= ν iei as a Lagrangian
position, then this statement becomes: there is an atom near (I + tA)z with velocity
v+ Az if and only if there is an atom near 0 with velocity v. This has implications for
various mesoscale descriptions, but, for example, in the language of the kinetic theory
of gases, it says that for these flows the probability of finding an atom at x= (I + tA)z
with velocity v + Az = v + A (I + tA)−1 x is the same as the probability of finding an
atom at 0 with velocity v. In terms of the molecular density function f (t, x,v), this
statement is: f (t, x,v + A (I + tA)−1 x) = f (t, 0,v). Rearranged, this gives the ansatz
(1.2). As noted in Dayal & James (2010) and discussed in more detail below, this
ansatz gives an exact reduction of the Boltzmann equation. That is, even though the
Boltzmann equation does not inherit everything about molecular dynamics – notably,
molecular dynamics is time reversible but the Boltzmann equation is not, see (5.37)
– it does inherit precisely the invariant manifold that is the basis of the simulation
method described here.

We finish this section with a remark about the singularities of universal flows. The
conditions det A= 0, (tr A)2 > 2 tr(A2) are necessary and sufficient for the avoidance of
singularities at all t, i.e. for the condition det(I + At) 6= 0. To see this, write

det(I + tA)= det(tI) det
(

1
t

I + A

)
= (det A)t3 + 1

2
((tr A)2−tr A2)t2 + (tr A)t + 1. (3.6)

The conditions above are necessary and sufficient that this cubic polynomial has no
roots for all t.

4. Conceptual design of viscometers
4.1. Relation to other experimental methods used to study fundamental properties of

fluids
We briefly survey some important methods for determination of properties of fluids
and their relation to (1.1). The most commonly used flows used to study fundamental
properties of complex fluids are viscometric flows. A subset of these, called
controllable viscometric flows, are exact solutions of the equations of motion for
so-called simple fluids, but not, as is the case of (1.1), for all fluids. From a general
perspective (Coleman, Markovitz & Noll 1966; Pipkin & Tanner 1972) viscometric
flows are flows in which the relative deformation gradient Ft(x, τ ) is expressible in the
form

Ft(x, τ )= Qt(x, τ )(I + (τ − t)Mt(x)), M2
t = 0, QT

t Qt = I, τ 6 t, t > 0. (4.1)

The relative deformation gradient is like the ordinary deformation gradient but based
on the present configuration as reference: mathematically, it is the gradient with
respect to x of y(y−1(x, t), τ ) where y(z, t) is the ordinary Lagrangian description
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of motion. Viscometric flows have the geometric interpretation as motions that locally
look like simple shearing flows, but the shearing direction and the normal to the
slip surfaces can change from point to point. The controllable viscometric flows (Yin
& Pipkin 1970) consist of simple shearing flow, shearing between tilted planes, and
a certain flow in a sector between concentric cylinders. If macroscopic inertia is
neglected, there are two additional controllable flows: helicoidal flows and a certain
flow with slip surfaces that curl up (Yin & Pipkin 1970). One example of helicoidal
flows is torsional flow, used in the parallel-plate viscometer. Many viscometers, such
as the widely used cone-and-plate viscometer, produce controllable flows with inertia
neglected, but have velocity fields that are not known beforehand. However, typically,
the slip surfaces are known, and this, together with suitable measurement of the
velocities of these known slip surfaces, is sufficient to measure one or more of the
viscometric functions that characterize the stress response (Pipkin & Tanner 1972).

We now determine if there are any viscometric flows that are universal flows. In
the definition (4.1), the condition M2

t = 0 implies that Mt is expressible in the form
Mt = at ⊗ bt 6= 0, with at · bt = 0. It then follows from (4.1) that such flows are
incompressible, det Ft = 1. On the other hand, the relative deformation gradient of a
universal flow (1.1) is

Ft(x, τ )= (I + τA) (I + tA)−1 (4.2)

by direct calculation. Now compare F T
t Ft from (4.2) with that from the definition of

viscometric flows, evaluated at t = 0:

(I + τM0)
T(I + τM0)= (I + τA)T(I + τA), τ < t. (4.3)

Differentiating this once at τ = 0 and then twice with respect to τ gives the pair of
necessary and sufficient conditions,

A+ AT = a0 ⊗ b0, ATA= |a0|2 b0 ⊗ b0. (4.4)

The first of these implies the existence of a skew tensor W satisfying A=W + a0 ⊗ b0.
Then the second of (4.4) becomes

W 2 =−Wa0 ⊗ b0 − b0 ⊗Wa0. (4.5)

Operate (4.5) on a0 and use b0 · a0 = a0 ·Wa0 = 0 to get W 2a0 = 0. A non-zero skew
tensor has a unique axis, so we must therefore have Wa0 = 0. Together with (4.5) this
implies that W = 0, and we finally get that A= a0 ⊗ b0, a0 · b0 = 0.

However, we can now see that the intersection between viscometric flows and
universal flows is only simple shearing flows. That is, A = a0 ⊗ b0 implies that
(I + ta0 ⊗ b0)

−1 = I − ta0 ⊗ b0, and, since a0 · b0 = 0, these flows are therefore

v(x, t)= A (I + tA)−1 x= (b0 · x)a0, a0 · b0 = 0. (4.6)

It also can be shown (Dayal & James 2010) that the intersection of universal flows
with so-called motions with constant principal relative stretch histories is also (4.6).
In summary, though viscometric flows have been the workhorse of experimental fluid
mechanics of complex fluids, it can be argued that universal flows are better for
various reasons: (a) there is an exact molecular-level simulation method; (b) unlike
viscometric flows, they are exact solutions for all continuum and mesoscale models of
fluids (see § 5); and (c) there are more free parameters than viscometric flows that can
be used to test continuum, mesoscale or atomistic models.

An interesting apparatus invented by Taylor (1934) is the four-roll mill. It has been
used to study drop deformation and breakup (Taylor 1934), rheology of viscoelastic
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liquids (Parlato 1969), flow-induced changes in the conformation of macromolecules
(Crowley et al. 1976) and shear-induced crystallization (Torza 1975), and has been
developed extensively by Leal and collaborators (Bentley & Leal 1986). This device
produces – ideally, but see Giesekus (1962) and Lagnado & Leal (1990) – two-
dimensional flows of the form v(x, t)= Gx, where

G = E

2

 1+ λ 1− λ 0
−(1− λ) −(1+ λ) 0

0 0 0

 (4.7)

in a rectangular Cartesian coordinate system. To find the intersection of these flows
with universal flows, we first note that they are all steady. This intersection is
characterized by the equation A (I + tA)−1 = G, i.e. A = G(I + tA). This in turn is
equivalent to G = A, A2 = 0. As noted above in a different context, this is equivalent
to A = a ⊗ b, a · b = 0, and therefore these lead back to simple shearing flows. (This
argument also shows that the only steady universal flows are simple shearing flows.)
The simple shearing flows are included in (4.7) as the case λ= 0.

In summary, except for simple shearing flows, universal flows seem to be
unexplored in devices to measure fundamental properties of fluids.

4.2. Universal flows confined by rigid surfaces
The design of devices to study fundamental properties of fluids is greatly aided by
having (possibly curved) surfaces that move as rigid bodies on which the no-slip
condition can be imposed. We analyse this possibility here. Obviously, simple shearing
flow is an example.

At each time t > 0, such a surface must consist of the same material particles of the
fluid, and therefore will have to be independent of time in the Lagrangian description.
In the notation of this paper, it will therefore be describable in the form

z(u1, u2), u1, u2 ∈D, (4.8)

where D is a domain in two dimensions and the derivatives z,1 and z,2 are linearly
independent. Let the universal flow be given by x(z, t) = (I + tA)z for some 3 × 3
matrix A. The surface described by (4.8) undergoes a rigid motion if and only if there
is the time-dependent rotation matrix R(t) and translation c(t) such that

(I + tA)z(u1, u2)= R(t)z(u1, u2)+ c(t). (4.9)

Evaluating this at, say, z0 = z(0, 0) we get a formula for c(t):

c(t)= (I + tA)z0 − R(t)z0. (4.10)

Replacing this back into (4.9) and differentiating with respect to u1, u2, we have

(I + tA)z,1 = R(t)z,1, (4.11a)
(I + tA)z,2 = R(t)z,2. (4.11b)

Dot these equations by themselves and get

|R(t)z,1|2 = |z,1|2 = |(I + tA)z,1|2 = |z,1|2+2tz,1 ·Az,1 + t2 |Az,1|2, (4.12a)
|R(t)z,2|2 = |z,2|2 = |(I + tA)z,2|2 = |z,1|2+2tz,2 ·Az,2 + t2 |Az,2|2 . (4.12b)

The left-hand sides are independent of t. Clearly, then, the right-hand sides are
independent of t if and only if Az,1 = Az,2 = 0. Since z,1 and z,2 are linearly
independent, this is equivalent to the statement that A is a matrix of rank one, that is,
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it is expressible in the form A = a ⊗ n. The null space of A is a plane (perpendicular
to n) and z,1 and z,2 lie on this plane for all choices of u1, u2 ∈ D . This shows that
the surface z(u1, u2) itself must be a plane with normal n, |n| = 1. Without loss of
generality we can reparametrize this plane and write

z(u1, u2)= u1e1 + u2e2 + z0, e1 ·n= e2 ·n= 0, (4.13)

with e1, e2 orthonormal. Now (4.11) becomes

e1 = R(t)e1, (4.14a)
e2 = R(t)e2, (4.14b)

implying that R = I: the plane just translates. The only remaining freedom of the
choice of the plane is the choice of the constant vector z0. Thus there are a family
of parallel planes with normal n that are translated by the flow. The motion of these
planes is given by the formula

x(u1, u2, t)= (I + tA)z(u1, u2)= u1e1 + u2e2 + z0 + t(z0 ·n)a. (4.15)

The planes are translated in the direction a at constant speed |a|z0 ·n.
There are two subcases.

4.2.1. Simple shearing (a ·n= 0)
If A= a⊗ n with a ·n= 0 we can write a= |a|e1, n= |n|e3 for orthonormal vectors

e1, e3 (consistent with the description of the plane above) and put κ = |a||n|, so that
A= κe1 ⊗ e3. In the Eulerian description the velocity field is

v(x, t)= A (I + tA)−1 x= (κe1 ⊗ e3)(I − κe1 ⊗ e3)x= κx3e1. (4.16)

This is simple shearing flow, with κ being the shear rate. This needs no further
analysis.

4.2.2. Pressure shear (a ·n 6= 0)
If A= a⊗ n with a ·n 6= 0 we have (I + tA)−1 = I − ((a ·n)t/(1+ (a ·n)t))a⊗ n and

so the velocity field is

v(x, t)= 1
1+ (a ·n)t (n · x)a, t > 0. (4.17)

This unsteady, compressible flow has a singularity at t = −1/a · n if a · n < 0. Using
(4.15), it is seen that this velocity field is consistent with the homogeneous flow
between two parallel plates with normal n moving towards (a · n < 0) or away from
(a · n > 0) each other. The fluid velocity is always in the direction a of motion of the
plates. The singularity that occurs in the case a · n < 0 is associated physically with
the plates striking each other. Obviously, a viscometer could only produce a reasonable
representation of such a flow up to a time somewhat less than t = −1/a · n > 0 when
this singularity occurs.

Schematically, a viscometer that produces this flow is shown in figure 1 and can be
termed a pressure-shear viscometer. The case pictured is with a · n < 0. Referring to
figure 1, the key feature that such a viscometer must exhibit is that the leading edge of
plate 1 must move at constant velocity.

Referring to figure 1 we distinguish two regimes.

(a) Low-speed regime. For pressures not too far from room pressure and velocities
less than tens of metres per second, wave propagation effects are suppressed and
one can consider a relatively simple design. A commercially available solution is
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Schematic pressure-shear
viscometer: vectors a and n as in the text. The leading edge of plate 1 moves at constant
velocity in the direction a towards plate 2, which is stationary. Both plates are in general
oblique to the velocity as shown.

a high-rate servohydraulic testing machine. These have feedback control systems
that can be used to keep the velocity of plate 1 constant. The duration of the
test would then be determined by practical considerations relating to the constancy
of this velocity, i.e. machine performance. It is extremely interesting in such
experiments to run series of tests that vary independently both the magnitude of
the speed |a||n| as well as the obliqueness a ·n.

(b) High-speed regime. In this regime, wave propagation effects become important
and completely different design considerations are needed. The challenges can be
divided into two categories: (i) the management of transients and (ii) strategies
to maintain the approximate constancy of velocity of the leading edge of plate
1. The solution of (i) has been considered in great detail in the shock physics
community, and concerns the assignment of dimensions and velocities so that,
early in the test, a sufficient number of wave reflections occur in the material to
‘shock it up’ to a homogeneously deforming state. As far as we can determine,
(ii) has not been considered in the shock physics community, even though the
solutions described here are also valid in all solids and the advantages of having
a corresponding molecular-level simulation are arguable in that case too. A naive
solution in the case of compressible fluids is the following: use high-strength
plates, ignore the deformation of the plates themselves, and make them so massive
that, for the duration of the test, the reaction force of the fluid on plate 1 causes
a negligible slow-down. To briefly examine this possibility, write Newton’s laws
for the incoming plate with force produced by the compressing fluid in the gap.
For the simplest model of a monatomic gas being compressed adiabatically, the
dimensionless form of the equation of motion of the incoming plate is

ξ̈ = cξ−γ , ξ(0)= 1, ξ̇ (0)=−1, c= (a ·n)p0x0

ρhv2
0 |a||n|

, (4.18)

where γ = 5/3, p0 is the initial pressure, x0 < 0 is the initial position of the
leading edge of the plate, v0 is its initial velocity, ρ is the density of the plate
material, h is the thickness of the plate, the dimensionless position is ξ = x/x0

and the dimensionless time is τ =−(v0/x0)t. As a particular example, a steel plate
of 1 cm thickness at 45◦ with initial velocity 1000 m s−1 and initial gap of 1 cm

http://journals.cambridge.org/flm


Design of viscometers 473

only slows down by 1.3 m s−1 after travelling through 99.9 % of the gap, at which
point the pressure is up to about 10 GPa. A more sophisticated analysis takes
into account wave propagation in the plates. We have noticed (not presented here)
that, by designing an elastically inhomogeneous flyer plate with spatial variation
of Young’s modulus matched to the properties of the gas, it is possible to maintain
approximately constant velocity of the leading edge of plate 1, even while its
centre of mass slows down.

Because it is applicable to high-speed flows and compressible fluids, and it
has the potential to produce extreme conditions of temperature, chemical reactions,
dissociation and excited electronic states, this case is quite interesting. It also
provides an interesting experimental method to study, from an atomistic viewpoint,
the processes occurring in an internal combustion engine. However, the motion of a
cylinder in an internal combustion engine does not occur at constant velocity, so, for
accurate simulation, a device of the type discussed is needed.

4.3. General incompressible universal flows
For many liquids or highly elastic solids, the constraint of incompressibility is
reasonable. The case of simple shearing flow is incompressible. Here, we find all
universal flows that are incompressible and consider the possibility of viscometers
based on them.

We impose the condition of incompressibility, which in Lagrangian form is
det(I + tA) = 1 for all t > 0. Divide this by t3 and consider the characteristic equation.
One sees immediately that necessary and sufficient conditions for det(I+At)= 1 for all
t > 0 are that det A = tr A = tr A2 = 0. By direct calculation in a suitable orthonormal
basis in which the second vector is a null vector of A, necessary and sufficient
conditions that det A= tr A= tr A2 = 0 are that

A=

 0 0 κ

γ1 0 γ3

0 0 0

 (4.19)

in this basis. Generally, this is a rank-two matrix, so there are many universal
flows that are not viscometric flows. In its general (most interesting) rank-two form,
universal incompressible flows do not rigidly deform any surfaces, by the results of
§ 4.2.

In abstract form, (4.19) is A = κe1 ⊗ e3 + e2 ⊗ g, where e1, e2, e3 are orthonormal
and g = γ1e1 + γ3e3. A short calculation shows that A (I + tA)−1 = A − κtγ1e2 ⊗ e3.
Therefore the Eulerian description of this motion is

v(x, t)= Ax− κtγ1y3e2. (4.20)

The velocity gradient is A− κtγ1e2 ⊗ e3 and the vorticity is

curlv= (γ3 − κγ1t)e1 − κe2 − γ1e3. (4.21)

Hence, if κγ1 6= 0 the vorticity grows linearly in time, an interesting feature not
produced by other viscometers, to our knowledge. This can be attributed to vortex line
stretching. The vorticity is, of course, independent of position.

To visualize this motion, it seems simplest to consider a rectangular solid with faces
normal to the axes e1, e2, e3. It may be desirable to choose particular edge lengths of
this solid, but for further simplicity we consider the unit cube. A typical motion of this
cube corresponding to choices of κ, γ1, γ3 is shown in figure 2.
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x1

x3

x2

FIGURE 2. (Colour online) Universal flow of the unit cube having outer normals e1, e2, e3.
The values of the parameters are κ = 1.4, γ1 = 0.9, γ3 = 0.7. The figure shows the same set
of material particles at successive instants of time. Time between pictures is 0.5 in consistent
units.

x1

x3

x2

FIGURE 3. (Colour online) Motion of the two planes with normal e3 with parameters chosen
as in figure 2. Time between pictures is 0.2 in consistent units.

Note that e3 ·(I+ tA)z= e3 ·z. Thus, in the macroscopic description, material particles
in planes with normal e3 remain in those planes. In particular, the two faces of the
unit cube with normals ±e3 remain in their planes. The motion is homogeneous, so
that each of these square faces becomes a parallelogram. Again, from the formula
x(z, t) = (I + tA)z, the face on the particular plane z · e3 = 0 undergoes the motion
(I + te2 ⊗ g)z, i.e. simple shearing. Otherwise, the in-plane motions generally differ
in each plane. Typical motions of the two faces with normal e3 (corresponding to the
same choice of parameters as in figure 2) are shown in figure 3.

Consider points in a plane x3 = c = const., for example, the four corners of
one of the initial squares shown in figure 3. Such points undergo the motion
z→ z + t(cκe1 + (g · z)e3). As do all points in a universal flow, such points move
with constant velocity in a straight line. But this formula has an additional feature
that may facilitate construction of a device: all points on the plane x3 = c have the
same velocity in the e1 direction. Thus, to produce the motion of the top plate, one
could conceive of a rigid body moving in the e1 direction (to the right in figure 3)
with constant velocity, and tracks attached to it with various velocities (each of value
g · z) in the perpendicular e2 direction: this idea is developed in the next subsection. A
second simplifying feature of the motion of any subset of the plane x3 = const. is that
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FIGURE 4. (Colour online) Conceptual viscometer for universal flows in the incompressible
case: (a,b) top views; (c,d) side views; (a,c) at t = 0; (b,d) at t > 0. Deformable membranes
are in dark grey (red). The fluid to be tested is confined to the gap between the dark grey (red)
membranes. The parameters w, h are assignable dimensions and κ, γ1, γ3 are the elements of
the matrix A in the representation (4.19).

it is area-preserving. Planes not of the form x3 = const. can undergo substantial area
changes, as seen in figure 2.

4.3.1. A conceptual viscometer for incompressible universal flows
Every viscometer has surfaces that do not impose the intended motion on the fluid.

In successful designs, these are typically confined to small areas far from the place
where measurements are taken. As explained above, general incompressible universal
flows are not bounded by any surfaces that undergo rigid motions. Thus, we infer
that it is essential that some surfaces bounding the flow are deformable. To achieve
the large motions desirable for a viscometer, the obvious choices of such surfaces are
highly elastic membranes.

For the same reason that universal flows are possible in every fluid, they are exact
solutions for theories of (uniform) membranes, for example, the dynamic membrane
theory of nonlinear elasticity. This is also true for membranes loaded by the same
uniform stress on each side.

One possible concept is pictured in figure 4. It consists of two membranes, each
stretched between two rigid blocks. The blocks are required to move in a precise
manner so that the membranes shear, and the distance between membranes also
changes, as shown. The labelling of values κ, γ1, γ3 corresponds to the entries in
the matrix A of (4.19) that corresponds to this flow.

To attain large shearing of the fluid under modest stretching of the membrane, the
dimension w can be small. If there is substantial stress imposed on the membrane by
the fluid, it should be backed up by a stiff plate. A constant velocity can be imposed
on the whole structure to keep a portion of the fluid in a fixed viewing region.
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x1

x2

x3

FIGURE 5. (Colour online) Vortex-like structure; κ = −1.3, γ1 = 1.3, γ3 = 0.7, t = 0.1.
The velocity field on the plane x2 = const. is shown, and this velocity field is independent
of x2. The line perpendicular to this plane passing through the centre of this structure is a line
of zero velocity.

4.3.2. Vortex-like structures
The vector fields of some incompressible velocity fields given by (4.19) and (4.20),

restricted to suitable planes, appear to show a vortex. An example on one such plot
viewed from the (1.3,−2.4, 2) direction is seen in figure 5. According to all the
standard definitions, this is not a vortex. The various definitions in common usage,
together with their evaluation for the present motion with general choices of the
parameters, are summarized in table 1. These are easily obtained from the formulae

∇v=

 0 0 κ

γ1 0 γ3 − κγ1t
0 0 0

 , D = 1
2
(∇v+∇vT), W = 1

2
(∇v−∇vT), (4.22)

M = ∂D

∂t
+ (∇D)v+ D∇v+ (∇v)T D, Z = {e : e ·De= 0}. (4.23)

Hence, it is seen that this is not a vortex, though it is a limiting case of a vortex
according to all the definitions (so is simple shearing flow), except the MZ criterion.
All the eigenvalues of ∇v are zero, so the criteria of Chakraborty, Balachandar &
Adrian (2005) are also not satisfied. In summary, in the incompressible case, our
method does not give a way to simulate vortex motion, as vortices are usually
defined.

In compressible cases of universal flows, there are a great many vortices satisfying
all of these definitions. More generally, every example in the general classification
of critical points of flows of Chong et al. (1990) can be achieved at a given
time by a particular choice of A. For example, the choice A = (I − D)−1 D, where
D = diag(λ1, λ2, λ3) , gives the velocity gradient ∇v= diag(λ1, λ2, λ3) at t = 1.
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Name Criterion for a vortex Value Reference

Q criterion Q= (1/2)(|W |2− |D|2) > 0 Q= 0 Hunt, Wray & Moin
(1988)

∆ criterion ∆= (Q/3)3+ (det∇v/2)2 >
0

∆= 0 Chong, Perry &
Cantwell (1990)

λ2 criterion λ2(D2 +W 2) < 0 λ2 = 0 Jeong & Hussain
(1995)

MZ criterion e ·Me indefinite on Z e ·Me> 0 on Z Haller (2005)

TABLE 1. Evaluation of various criteria for the presence of a vortex based on the motion
v(x, t)= Ax− κtγ1y3e2, with A given by (4.19), for general choices of parameters κ, γ1, γ3.

5. Stresses according to some conventional continuum and mesoscopic
theories

While the primary purpose of the proposed devices are to give experimental tests
of atomic-level simulations, it is useful to calculate the stresses given by these
motions for several familiar continuum and mesoscale theories. As explained above,
v(x, t) = A (I + tA)−1 x identically satisfies the equations of motion of all accepted
continuum theories of fluid (and solid) mechanics. In most cases below this is easily
seen from the calculation

ρ(vt +∇vv)= ρ
(−A (I + At)−1 A (I + At)−1 x+ A (I + At)−1 A (I + At)−1 x

)
= 0 (5.1)

and the observation that the stress only depends on t so that div σ = 0. In the case
of incompressible fluids, the pressure can be taken as constant. It can be stated that
all accepted theories of fluid behaviour faithfully inherit the invariant manifold of
molecular dynamics described in § 2. For thermodynamic theories, again motivated
by the results in § 2, add the condition that the temperature only depends on
time, θ = θ(t). Unlike the velocity field, the temperature θ(t) is material-dependent,
or, in the atomic-level setting of § 2, dependent on the expression for the atomic
forces. In continuum theories it is determined by the energy equation, which reduces
to an ordinary differential equation parametrized by A. In OMD calculations, if
the mean kinetic energy of the atoms (after subtraction of the mean velocity) is
taken to represent the temperature, then the temperature is obtained by a simple
sum

∑M
k=1(1/2)mk |ẋk|2 over the simulated atoms, assumed that the normalization

ẋcm(0) = 0 described after (3.4) has been done (see the remark about units following
equation (8.3) of Dayal & James 2010). For mixture theories, one adds that the
diffusive fluxes vanish.

5.1. Incompressible fluids

In this case we express all components in the basis e1, e2, e3 in which A has the
form (4.19). The top and bottom plates refer to planes with outward normals ±e3,
respectively, as pictured in figures 2 and 3. For these incompressible materials, the
Cauchy stress is denoted T = −pI + σ . From the equations of motion, the pressure p
for all these motions is a constant (on a connected region). The components of the
extra stress in this basis are denoted σij.
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5.1.1. Navier–Stokes fluid
In this situation, σ = 2µD, D = (1/2)(∇v + ∇vT), ∇v = A − κtγ1e2 ⊗ e3. The

viscosity is µ. This gives the non-zero stresses

σ12 = µγ1, σ13 = µκ, σ23 = µ(γ3 − tγ1κ). (5.2)

Thus, aside from the hydrostatic pressure, the top and bottom plates support only
shear stress. The component of shear stress in the 2 direction on these plates changes
linearly in time. There is the interesting relation σ12σ13 = −µσ̇23. Note that σ23 can
change sign and is unbounded. This unboundedness can be understood in terms of the
unsteadiness of incompressible universal flows, or, from a more physical viewpoint, a
comparison of the distance between the membranes in figures 4(c) and 4(d).

5.1.2. Viscoelastic fluids
We treat several typical models of viscoelastic fluids. While there is significant

scepticism that any continuum model gives an accurate description of any viscoelastic
fluid in a broad range of flows – in some sense justifying the molecular approach – it
is interesting to observe that universal flows give unusually strong tests of the standard
continuum models, also in cases in which inertia is not neglected and the flow is
unsteady.

(a) Grade-2 fluid, with σ = α1A1 + α2A2 + α3A2
1. Here A1 and A2 are the first

two Rivlin–Ericksen tensors (Ericksen & Rivlin 1955; Pipkin & Tanner 1972).
The Rivlin–Ericksen tensors Ai, i = 1, 2, . . ., are objective tensors defined by
the formula Ai = ∂ i(Ft (τ )

T Ft(τ ))/∂τ
i|τ=t, where Ft(τ ) is the relative deformation

gradient (see the line after (4.1), and (4.2)). A grade-n fluid carries this expansion
out to order n in the rate. An interesting feature of universal flows is that
Ai = 0 for i > 3. Thus, a grade-n fluid, n > 2, cannot be distinguished from a
corresponding grade-2 fluid for universal motions. (This feature is also shared by
some viscometric flows. This fact was noticed by Rivlin (1956), who then used
it to find some exact solutions in the case of simple shearing and helical flow.)
Therefore, all statements made below about universal flows of grade-2 fluids apply
to fluids of any grade. The grade-2 model has been widely useful to analyse
viscometric data, but, regarded as a general constitutive equation, it exhibits some
unfavourable stability results when the coefficients have typical values obtained
from experiment (Ting 1963; Dunn & Fosdick 1974). A reasonable view (e.g.
Pipkin & Tanner 1972, p. 295) in the present case would be to regard grade-2
fluids as a good model for the stress in universal flows, because far more general
models of fluids reduce to the grade-2 fluid for these flows, but not to use it
to give the stress in more general flows as would necessarily arise in a stability
analysis. The two non-zero Rivlin–Ericksen tensors for universal flows are

A1 =

 0 γ1 κ

γ1 0 γ3 − κγ1t
κ γ3 − κγ1t 0

 ,
A2 = 2

 γ 2
1 0 γ1(γ3 − κγ1t)
0 0 0

γ1(γ3 − κγ1t) 0 κ2 + (γ3 − κγ1t)2

 ,


(5.3)

expressed in the same orthonormal basis as (4.19). The coefficients α1, α2, α3 can
be expressed as functions of κ, γ1, γ3 − tγ1κ . As in viscometric flows, universal
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flows have two (typically) non-zero normal stress differences, σ11 − σ22 and
σ33 − σ22, which vanish for the Navier–Stokes fluid. It is also worth noting that for
universal flows: (a) σ22 depends on the material only through the coefficient α3;
(b) the normal stress differences are independent of α1 and their dependence on α2

and α3 is linear. This linear system is(
σ11 − σ22

σ22 − σ33

)
=
(

2γ 2
1 κ2 − (γ3 − κγ1t)2

−2(κ2 + (γ3 − κγ1t)2) γ 2
1 − κ2

)(
α2

α3

)
. (5.4)

It is seen that this linear system can be extremely useful for partial determination
of the coefficients α2, α3. Even better, if this linear system is solved for α2, α3

and the result is substituted back into the formula for the stress, and then α1

is eliminated in favour of, say, σ12, then two universal relations emerge for the
extra stresses irrespective of the type of fluid in this class. In summary, universal
flows reduce general viscoelastic fluids to grade-2 fluids, and give significant
information about material response not contained in ordinary measurements of
viscosity and normal stress differences because of the presence of three free
parameters κ, γ1, γ2 rather than only one.

(b) Upper convected Maxwell (UCM), Oldroyd-B (Oldroyd 1950), Phan–Thien–
Tanner (Thien & Tanner 1977) and Giesekus (Giesekus 1982) models. These
models can be summarized by the constitutive equation for the extra stress,

σ = α(∇v+ (∇v)T)+ (1− α)S, (5.5)

where the viscoelastic contribution to the stress satisfies the differential equation

w(Ṡ + (v ·∇)S − (∇v)S − S (∇v)T)+ S + g(S)=∇v+ (∇v)T, (5.6)

where w is the Weissenberg number and the various cases are given in table 2.
Under the assumption that the flow is homogeneous, S = S(t) only, the differential
equation is easily solved for universal flows. (This assumption is widely adopted
for viscometric flows as well.) For UCM and Oldroyd-B fluids, the solution of the
linear equation (5.6) can be obtained analytically. For initial data beginning from
the S = 0 state, the solution is

S(t)=

a(t) b(t) c(t)
b(t) d(t) e(t)
c(t) e(t) 0

 , (5.7)

where

a(t)= 2((1− e−t/w)wκ2 − e−t/wtκ2), (5.8a)
b(t)= (1− e−t/w)(γ1 + 6w2γ1κ

2 + 2wγ3κ)− e−t/w(2tγ3κ + t2γ1κ
2)

− 2(1+ 2e−t/w)twγ1κ
2, (5.8b)

c(t)= (1− e−t/w)κ, (5.8c)
d(t)=−2

(
(t(γ 2

1 + γ 2
3 )+ t2γ1γ3κ)e

−t/w + (e−t/w − 1)(wγ 2
1 + wγ 2

3

+ 6w2γ1γ3κ + t2wγ 2
1 κ

2 + 12w3γ 2
1 κ

2)

+ 2(1+ 2e−t/w)twγ1γ3κ + 6(1+ e−t/w)tw2γ 2
1 κ

2
)
, (5.8d)

e(t)=−(e−t/w + 1)tγ1κ + (1− e−t/wt)(2wγ1κ + γ3). (5.8e)
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Model Value of α Function g(S)

Upper convected Maxwell 0 0
Oldroyd-B 0< α < 1 0
Phan–Thien–Tanner 0< α < 1 k(tr S)S
Giesekus 0< α < 1 kS2

TABLE 2. Constitutive models of viscoelastic fluids.

Note the interesting facts about these models that a(t) and c(t) are independent of
γ1, γ3 and S33 = 0 for universal flows, something that could be easily tested by a
general viscometer of the type described in § 4.3.1. One also sees quite unusual
behaviour in these models as t→∞: while a(t) and c(t) asymptote to constant
values, b(t) and e(t) have affine dependence on time and d(t) is quadratic in time,
implying lots of unbounded stresses in these flows.

(c) A general kind of incompressible viscoelastic fluid that includes many models is
the simple fluid of Coleman et al. (1966), in which the stress is assumed to be
a functional of the history of the relative deformation gradient Ft(z, τ ), τ 6 t.
Universal flows are again exact solutions. The extra stress in a simple fluid
reduces to a function of A and t, because the history of the relative deformation
gradient up to time t is determined by A and t. In the case where two out of three
of the constants κ, γ1, γ3 vanish, the theory of simple fluids restricted to universal
flows reduces to the theory of viscometric flows, but otherwise these motions
produce new information about material response, not contained in the shear rate
dependence of the viscosity and the two normal stress differences.

5.2. Compressible heat-conducting gas
For the compressible case, we choose a workhorse of gas dynamics, the heat-
conducting viscous gas with constant specific heats. The conservation laws of mass,
momentum and energy are

ρt + div(ρu)= 0, (5.9)
ρ(vt +∇vv)= div T , (5.10)

ρ(et +∇e ·v)= T ·∇v− div q, (5.11)

where ρ is density, e is the internal energy, T is the Cauchy stress and q is the heat
flux.

All accepted constitutive relations for heat-conducting gases have the property that,
when the motion and temperature field are v(x, t) = A (I + tA)−1 x, θ = θ(t), then
T = T (t), e = e(t), q = q(t). (In Dayal & James (2010) we advocate that this
should be a general principle satisfied by all constitutive relations.) For the motion
v(x, t) = A (I + tA)−1 x, a temperature field that only depends on t, and constitutive
equations for which T = T (t), e = e(t), q = q(t), the balance of linear momentum is
an identity, and the balances of mass and energy become

ρt + ρ tr A (I + tA)−1 = 0, (5.12)
ρet − T ·A (I + tA)−1 = 0. (5.13)

The first of these determines the density, ρ(t) = ρ0 exp(−∫ t
0 tr A (I + sA)−1 ds), and,

under mild conditions on the constitutive equation for the internal energy, the latter
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determines the temperature. Common constitutive equations for e and T , incorporating
the Stokes relation, are

e= cvθ, (5.14)
T =−pI + µ (∇v+∇vT − 2

3(divv)I
)
, p= ρ R θ, (5.15)

with cv being the specific heat at constant volume and R the specific gas
constant. For air from room temperature to around 800 K, an accepted model is
cv = (5/2)R, R= 287.06 J kg−1 K−1, µ= µ(θ)= 1.458 × 10−6 θ 3/2/(θ + 110.3) Pa s.
Substitution of (5.14) and (5.15) into (5.12) and (5.13) gives an ordinary differential
equation for θ(t) depending parametrically on A:

dθ
dt
= R

cv
tr A (I + tA)−1 θ(t)+ µ(θ(t))

ρ0cv

(
|A (I + tA)−1 |2+ tr((A (I + tA)−1)

2
)

− 2
3
(tr(A (I + tA)−1))

2
)

e
∫ t

0 tr A (I+sA)−1 ds, (5.16)

θ(0)= θ0. (5.17)

5.3. Maxwell–Boltzmann equation

The Maxwell–Boltzmann equation is the following equation for the molecular density
function f (t, x,v):

∂f

∂t
+ v · ∂f

∂x
=
∫

R3

∫
S

(f ′? f ′ − f?f ) dS dv?. (5.18)

The notation is

f ′? = f (t, y,v′?)= f (t, y,v? − ((v? − v) · e)e), (5.19a)
f ′ = f (t, y,v′)= f (t, y,v+ ((v? − v) · e)e), (5.19b)

f? = f (t, y,v?), (5.19c)
f = f (t, y,v), (5.19d)

where |e| = 1 depends on two angles 0< θ 6 π/2, 0 6 ζ < 2π and on v? − v:

e= e
(
θ, ζ,

v? − v
|v? − v|

)
, |e| = 1. (5.20)

The integration dS = dS(θ, ζ ; |v? − v|) on the right-hand side of (5.18) is, more
explicitly, ∫

S

· · · dS=
∫ 2π

0

∫ π/2
0
· · · sin θ S(θ, |v? − v|) dθ dζ, (5.21)

where S is the scattering factor.
As noted in § 3, OMD solutions imply not only a macroscopic velocity field but

also particular statistics of the velocity distribution. Translated into a condition on the
molecular density function, this statistical relation is

f (t, x,v)= g(t,v− A (I + tA)−1 x). (5.22)
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Direct substitution of this ansatz into the Maxwell–Boltzmann equation (5.18) yields
the following equation for g(t,w):

∂g

∂t
− ∂g

∂w
·A (I + tA)−1 w=

∫
R3

∫
S

(g′?g
′ − g?g) dS dw?. (5.23)

It would be extremely interesting to study this substantially simplified equation for g.
We record the macroscopic fields that follow from the ansatz (5.22) according to the

basic definitions of the kinetic theory.

(a) Density

ρ(t, x)= m n(t, x)= m
∫

R3
f (t, x,v) dv= m

∫
R3

g(t,w) dw= ρ(t), (5.24)

where, m is the molecular mass.
(b) Velocity

v(t, x)= 1
n

∫
R3

vf (t, x,v) dv= 1
n

∫
R3

vg(t,v− A (I + tA)−1 x) dv

= 1
n

∫
R3
(w+ A (I + tA)−1 x)g(t,w) dw

= v0(t)+ A (I + tA)−1 x, (5.25)

where v0(t)= (1/n)
∫

R3 wg(t,w) dw.
(c) Internal energy

e(t, x)= 1
n

∫
R3

1
2
|v− v(t, x)|2 f (t, x,v) dv

= 1
n

∫
R3

1
2
|v− v(t, x)|2 g(t,v− A (I + tA)−1 x) dv

= 1
n

∫
R3

1
2
|w− v0(t)|2 g(t,w) dw

= 1
n

∫
R3

1
2
|w|2 g(t,w) dw− 1

2
|v0|2 = e(t). (5.26)

(d) Cauchy stress

T (t, x)=−m
∫

R3
(v− v(t, x))⊗ (v− v(t, x))f (t, x,v) dv

=−m
∫

R3
(w− v0(t))⊗ (w− v0(t))g(t,w) dw

=−m
∫

R3
(w⊗ w)g(t,w) dw+ ρ(t)v0(t)⊗ v0(t)= T (t). (5.27)

(e) Pressure

p(t, x)=− 1
3 tr T (t, x)= 2

3ρe(t), (5.28)

which follow from the definitions for stress and internal energy above. Since
temperature is proportional to internal energy in the kinetic theory, the latter is the
ideal gas law.
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(f ) Heat flux

q(t, x)= m
∫

R3

1
2
|v− v(t, x)|2(v− v(t, x))f (t, x,v) dv

= m
∫

R3

1
2
|w− v0(t)|2(w− v0(t))g(t,w) dw

= m
∫

R3

1
2
|w|2 wg(t,w) dw+ Tv0 − ρev0 − 1

2
ρ |v0|2 v0 = q(t). (5.29)

Formally, the balance laws of continuum mechanics are satisfied by these quantities,
i.e.

ρt + div(ρv)= 0, (5.30)
ρ(vt +∇vv)= div T , (5.31)

ρ(et +∇e ·v)= T ·∇v− div q. (5.32)

For the invariant solutions, these become, using the evaluations above,

ρt + ρ tr A (I + tA)−1 = 0, (5.33)
ρ(v0 t + A (I + tA)−1 v0)= 0, (5.34)
ρet − T ·A (I + tA)−1 = 0. (5.35)

The quantities ρ,v0, e, T in (5.33)–(5.35) are functions of t only.
Equations (5.33)–(5.35) have the same structure as (5.12) and (5.13), except for the
balance of linear momentum. However, by direct calculation we note that the solution
of the balance of linear momentum in (5.33)–(5.35), subject to v0(0)= c, is

v0(t)= c− tA (I + tA)−1 c. (5.36)

To simplify things we can take c = 0. At the level of the molecular density
function g, this is equivalent to noticing that if g(t,w) satisfies (5.23) then so does
g(t,w + tA (I + tA)−1 c − c). Thus, without loss of generality we can assume that
the first moment of the initial datum for g vanishes:

∫
wg(0,w) dw = c = 0. Then,

by (5.36), it will vanish for all time. With v0(t) = 0 the quantities ρ, e, T , q are
interpretable as various moments of g, and (5.33)–(5.35) become (5.12) and (5.13).

While (5.33)–(5.35) are now formally identical to those of a compressible heat-
conducting gas, there is the significant difference that there are no exact constitutive
equations in the kinetic theory. However, in view of the ideal gas law (5.28),
equation (5.35) gives an interesting universal relation between various stresses for
universal solutions. More generally, the reduced equation (5.23) may well be amenable
to analytical or simple numerical solution. The argument could well be made, however,
based on the ability to use more accurate models of atomic force than possible with
the kinetic theory, that a direct attack at the molecular level using OMD would be
better.

There is a simple H-theorem for universal flows. Defining the H function (often
interpreted as the negative of the entropy) by H(t, x) = ∫ f log f dv = ∫ g log g dw, it
follows by a variant of the usual argument (i.e. multiply the Maxwell–Boltzmann
equation by log f , integrate over v ∈ R3 and use monotonicity of the log function) that
the following simple form of the H-theorem emerges:

∂H

∂t
+ tr(A (I + tA)−1 H 6 0. (5.37)
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For incompressible flows the trace term vanishes and we get the simple statement
that the H function (defined in this way) increases. Typically, there is strict inequality
in (5.37). It is interesting to note that, despite the fact that the kinetic theory is not
time-reversible, as follows from strict inequality in (5.37), while molecular dynamics
(2.6) and (2.7) is time-reversible, the kinetic theory inherits exactly the invariant
manifold of molecular dynamics that is the basis of OMD.

This invariant manifold is also faithfully inherited by the Langevin equation for
beaded chains in a shear flow, by the large eddy simulation equations of turbulence
(Dayal & James 2010) and by the Liouville equation of non-equilibrium statistical
mechanics (author’s unpublished observations).

6. Summary
The purpose of this paper is to suggest a certain nine-parameter family of flows

as an alternative basis for the determination of fundamental properties of complex
fluids. The main reason behind this suggestion is that, at atomic level, there is a
corresponding molecular simulation method having a form that can be prescribed
independent of the details of atomic forces, and, at continuum level, the associated
macroscopic flows v(x, t) = A (I + tA)−1 x are exact solutions of the equations of
motion for every accepted model of fluid. Since this goal is primarily experimental in
nature but the arguments are largely theoretical, we collect in this summary practical
recommendations that may be of use to the experimental rheology community.

In § 4.2 we solved the problem of whether, for any choice of the assignable 3 × 3
matrix A, such a flow could be confined by (possibly curved) surfaces moving as
rigid bodies, this being a simplifying design feature. In all cases that such rigid
surfaces confine these flows, A is necessarily a matrix of rank one, i.e. A = a⊗ n. (In
rectangular Cartesian components, Aij = ainj. Without loss of generality take |n| = 1.)
The generic case of such a flow is illustrated in figure 1. Besides the special case
of plane Couette flow (a · n = 0), all such cases correspond to compressible flows.
Evidently, the associated devices are best suited to a variety of interesting questions
that arise in aerodynamics and combustion. Referring to figure 1, the main practical
consideration is to move the leading edge of plate 1 at constant velocity towards (or
away from) the stationary plate 2. For slow motions there is an issue of preventing
the fluid escaping at the top and bottom. This could be handled by confining plates as
shown, or, more accurately, by deformable membranes attached to the edges of plates
1 and 2 and backed up by lubricated stiff plates. For relatively slow flows in which
wave propagation effects are not important, a natural suggestion is to use a feedback
control system, such as those built in to standard servohydraulic testing systems, to
control the motion of plate 1.

The main important parameters for the device pictured in figure 1 are the speed |a|
of plate 1 and the angle arccos(a · n/|a|). As an example of an explicit continuum-
level solution corresponding to these flows, the solution of the equations of mass,
momentum and energy for a simple heat-conducting ideal gas with constant specific
heats and a typical explicit temperature-dependent viscosity is given in § 5.2. More
interesting cases are pressure-induced dissociation or combustion of a suitable gas
mixture. It is still expected that the temperature is only a function of time in those
cases, as well as quantities such as the extent of reaction. This pure time dependence,
independent of position, is particularly attractive for diagnostics. Such cases are
within the scope of molecular dynamics simulations using OMD with reasonably
sophisticated atomic forces.
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We have discussed briefly the high-speed case in which plate 1 approaches Mach 1
or higher. This interesting case needs further study because of the management
of transients and the impossibility of using a standard control system. There is a
potentially useful literature (e.g. Kim, Clifton & Kumar 1977) on the pressure-shear
impact experiment in solids where these two problems have been overcome by clever
design.

The general incompressible case is analysed in § 4.3. Except for the choice of
orthonormal basis (which only matters for anisotropic fluids such as liquid crystals),
there are three free parameters in this case, κ, γ1, γ3. If κγ1 6= 0 such flows exhibit
vortex stretching. These flows do not rigidly deform any surfaces. However, the
general case of such flows can be pictured as in figure 4, where the shear rates
γ1, γ3, τ are illustrated. Panels (a) and (b) of figure 4 give a top view, while (c) and
(d) are end views. In our view the key design aspects are: obtaining high-quality,
uniform, highly stretchable membranes; backing the membranes up by stiff plates or
possibly density-matched fluids to prevent unwanted out-of-plane motions of these
membranes; and arranging that the gap w between membranes at t = 0 is sufficiently
small so that substantial shearing occurs. As a technically simpler special case that still
retains vortex stretching, one could put γ3 = 0. To simplify diagnostics, note that a
suitable Galilean transformation keeps the midpoint of the membranes in figure 4(c,d)
stationary. Explicit forms of stresses in these flows from some standard models of
incompressible complex fluids are given in § 5.1. A rheometer of the type sketched
in figure 4 would give major new critical tests that could sort out the applicability of
these models.
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