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a b s t r a c t

The cofactor conditions, introduced in James and Zhang(2005), are conditions of compat-
ibility between phases in martensitic materials. They consist of three subconditions:
(i) the condition that the middle principal stretch of the transformation stretch tensor U
is unity (λ2 ¼ 1), (ii) the condition a � UcofðU2�IÞn¼ 0, where the vectors a and n are certain
vectors arising in the specification of the twin system, and (iii) the inequality
trU2þdet U2�ð1=4Þjaj2jnj2Z2. Together, these conditions are necessary and sufficient for
the equations of the crystallographic theory of martensite to be satisfied for the given twin
system but for any volume fraction f of the twins, 0r f r1. This contrasts sharply with the
generic solutions of the crystallographic theory which have at most two such volume
fractions for a given twin system of the form fn and 1�f n. In this paper we simplify the form
of the cofactor conditions, we give their specific forms for various symmetries and twin
types, we clarify the extent to which the satisfaction of the cofactor conditions for one twin
system implies its satisfaction for other twin systems. In particular, we prove that the
satisfaction of the cofactor conditions for either Type I or Type II twins implies that there are
solutions of the crystallographic theory using these twins that have no elastic transition
layer. We show that the latter further implies macroscopically curved, transition-layer-free
austenite/martensite interfaces for Type I twins, and planar transition-layer-free interfaces
for Type II twins which nevertheless permit significant flexibility (many deformations) of
the martensite. We identify some real material systems nearly satisfying the cofactor
conditions. Overall, the cofactor conditions are shown to dramatically increase the number
of deformations possible in austenite/martensite mixtures without the presence of elastic
energy needed for coexistence. In the context of earlier work that links the special case
λ2 ¼ 1 to reversibility (Cui et al., 2006; Zhang et al., 2009; Zarnetta et al., 2010), it is expected
that satisfaction of the cofactor conditions for Type I or Type II twins will lead to further
lowered hysteresis and improved resistance to transformational fatigue in alloys whose
composition has been tuned to satisfy these conditions.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper gives a precise derivation and implications of the cofactor conditions (James and Zhang , 2005), defined briefly
in the abstract. These conditions are appropriate to a material that undergoes an austenite to martensitic phase
transformation having symmetry-related variants of martensite. The cofactor conditions represent a degeneracy of the
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equations of the crystallographic theory of martensite (Lieberman et al., 1955; Bowles and Mackenzie, 1954a, 1954b), under
which this theory possesses solutions with any volume fraction 0r f r1 of the twins (James and Zhang , 2005).

For the special cases f¼0 and f¼1 the equations of the crystallographic theory reduce to the equations of compatibility
between austenite and the appropriate single variant of martensite. Hence, as also can be seen from the conditions
themselves (in particular, the condition λ2 ¼ 1), the cofactor conditions imply perfect compatibility between austenite and
each single variant of martensite. The solutions of the crystallographic theory for the intermediate volume fractions
0o f o1 imply the existence of the standard low energy transition layers between austenite and finely twinned martensite.

The main result of this paper is that in many cases, the cofactor conditions imply that the transition layer can be
eliminated altogether, resulting in the coexistence of austenite and twinned martensite with zero elastic energy. Examples
are shown in Figs. 2(right), 3, 4, 6 and 7. These include macroscopically curved austenite/martensite interfaces and natural
mechanisms of nucleation (Figs. 6, 7). The latter are continuous families of deformations in which the austenite grows from
zero volume in a matrix of martensite, or the martensite grows in a matrix of austenite, all having zero elastic energy. Said
differently, while the crystallographic theory implies that the energy due to elastic distortion can be reduced as close to zero
as desired by making the twins finer and finer, the elastic energy in the cases studied here is eliminated at all length scales.
From a physical viewpoint, the only remaining energy is then a small interfacial energy. We describe explicitly the cases in
which the transition layer can be eliminated in Section 4.

The value of λ2 can be modified by changing composition, and the special case λ2 ¼ 1 (up to experimental error in the
measurement of lattice parameters) has been achieved in many systems. As reviewed in detail below, satisfaction of only the
condition λ2 ¼ 1 has a dramatic effect on hysteresis and transformational fatigue (Cui et al., 2006; Zhang et al., 2009;
Zarnetta et al., 2010; Delville et al., 2009; Srivastava et al., 2010; see also Buschbeck et al., 2011; Meethong et al., 2007; Louie
et al., 2010; Srivastava et al., 2011). A theory for the width of the hysteresis loop that predicts this sensitivity was given in
Zhang et al. (2009), Knüpfer et al. (2011), and Zwicknagl (2013). It is based on the idea that transformation is delayed, say on
Fig. 1. Reduced hysteresis of Ti50Ni 50�x Pd x alloy system as the composition is tuned to achieve λ2 ¼ 1. A thermal hysteresis of 2 1C is obtained at x¼9.25.
The insets show a comparison of thermal hysteresis under repeated cycling through the transformation (30 cycles) measured by differential scanning
calorimetry at x¼9.25 vs. x¼10.75. A careful comparison of these graphs shows an average migration of transformation temperature of 0.16 1C/cycle at
x¼10.75 is reduced to 0.030 1C/cycle at x¼9.25. These values should be contrasted to ordinary TiNi which exhibits an average migration over 30 cycles of
about 0.6 1C/cycle.



Fig. 3. Zero elastic energy austenite/martensite interfaces for a material satisfying the cofactor conditions (Type I domain) at various f from 0 to 1.

Fig. 2. Left diagram is a schematic of three triple conjunctions using the deformation gradients in (33). A macroscopically curved austenite/martensite
interface with zero elastic energy is plotted on the right for a material satisfying the cofactor conditions (Type I domain).
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cooling, because the additional bulk and twin-boundary energy at the austenite/martensite interface has to be compensated
by a further lowering of the energy wells of the martensite phase, so as to have a free energy decreasing transformation
path. This bulk and interfacial energy is eliminated by tuning composition to make λ2 ¼ 1. Both this theory and broad
collection of measurements of hysteresis demonstrate extreme sensitivity of the width of the hysteresis to λ2 (and
composition), which also explains why this was not observed previously. For example, as shown in Fig. 1, 1/4% changes of
composition in the Ti50Ni50�xPdx system give a minimum width of the hysteresis loop at x¼9.25 with a remarkable value
ð1=2ÞðAf þAs�Mf�MsÞ ¼ 2 1C. This is accompanied by improvements of the reversibility of the phase transformation as
measured by the migration of the transformation temperature under repeated cycling.



Fig. 4. Zero elastic energy austenite/martensite interfaces for a material satisfying the cofactor conditions (Type II domain) at various f from 0 to 1.
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Tuning λ2 to 1 actually entails a reduction of the number of deformations that belong to solutions of the crystallographic
theory in many cases. This can be seen in the following way. In general, for λ2 near 1 but λ2a1, the crystallographic theory
implies the existence of four solutions per twin system (Ball and James, 1987), resulting in four average deformation
gradients of twinned laminates that participate in austenite/martensite interfaces. As λ2-1, these four solutions converge to
four perfect austenite/single-variant martensite interfaces. (This is consistent with the fact that when the middle eigenvalue
λ2 of a positive-definite symmetric tensor U is 1, there are two solutions R1;a1 � n1 and R2; a2 � n2 of the equation of
perfect compatibility RU�I¼ a � n, RA SO(3), a;nAR3, Ball and James, 1992.) However, some of these four also result from
other solutions of the crystallographic theory, because a variant can belong to many twin systems. In fact, a simple counting
exercise shows that the number of deformation gradients participating in exact interfaces equals the number of generic twin
systems (Pitteri and Zanzotto, 1998). For example, in a classic cubic to orthorhombic phase transformation (Zhang et al.,
2009) as in the material TiNiPd (Fig. 1), there are 6 variants of martensite, resulting generically in 30 twin systems and
24 (resp., 96) solutions of the crystallographic theory for λ2≲1 (resp., λ2≳1). If λ2 ¼ 1 in this case, there are only 30
deformation gradients corresponding to exact austenite/martensite interfaces.

Fewer deformation gradients mean fewer ways that nontransforming impurities, defects, triple junctions and
precipitates can be accommodated by a growing austenite/martensite interface. This intuition on the beneficial effects of
having more deformations, which is prevalent in the literature on phase transformations, is quantified in random
polycrystals by Bhattacharya and Kohn (1996). This line of thought also plays an important role in the concept of non-
generic twins of Pitteri and Zanzotto (1998). As summarized above, if the cofactor conditions are satisfied, there are
infinitely many deformation gradients participating in austenite/twinned-martensite interfaces. As mentioned above, in
some cases (Type I or Type II but generally not Compound twins, see below) the elastic transition layer can be eliminated.
Particularly in these cases, the demonstrated advantages with regard to hysteresis and reversibility of having no transition
layer are combined with the benefits of having a great many deformations. The precise nature of these possible benefits
with regard to the shape memory effect or transformational fatigue awaits further theoretical and experimental study.

This paper unifies the treatment of compatibility of variants of martensite, by including automatically Type I/II and
Compound twins, the “domains” of Li (Li and Wayman, 1995; Li and James, 1997), and the non-conventional and non-
generic twins of Pitteri and Zanzotto (1998) and Soligo et al. (1999). All of these cases can satisfy the cofactor conditions, and
all of these cases are analyzed here.



Fig. 5. Austenite/martensite interfaces for Compound twin system satisfying the cofactor conditions at various f from 0 to 1. The deformation is a plane
strain. In this case there is an elastic distortion near the habit plane.
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Geometrically linear theory is often used in the literature. We present a treatment of the cofactor conditions in that case.
They can be obtained either by direct linearization of the cofactor conditions of the geometrically nonlinear theory, or by
starting over and imposing the condition of “any volume fraction of the twins” in the geometrically linear form of the
crystallographic theory.

Notation and method of visualization: As general background for this paper, including most notation, see the book of
Bhattacharya (2003). R3�3 is the set of 3�3 real matrices, R3�3

þ is the subset of R3�3 with positive determinant, R3�3
þ sym is

positive-definite, symmetric real 3�3 matrices, and SO(3) denotes the group of all 3�3 orthogonal matrices with
determinant 1. The notation cof A denotes the cofactor of the matrix A: in components relative to an orthonormal basis,
ðcofAÞij ¼ ð�1Þiþ jdetðÂ ijÞ, where Â ij is the determinant of the submatrix obtained by removing the ith row and jth column of
A. The pictures of microstructures shown in this paper are plotted using the following algorithm: (a) A deformation yðxÞ
defined on a cube Ω and having the given values of ∇y, e.g., those arising from materials satisfying the cofactor conditions, is
constructed analytically.1 (b) Suitable rectangular arrays of points x1; x2;…A∂Ω are specified. (c) Dots at the points
yðx1Þ; yðx2Þ;… are plotted, colored by their phase or variant. This is a direct visualization via the Cauchy–Born rule.
2. Geometrically nonlinear theory of martensite and the crystallographic theory

The cofactor conditions arise as degeneracy conditions in the crystallographic theory of martensite, but they have wider
implications for the existence of energy minimizing microstructures within the geometrically nonlinear theory of
martensitic transformations. Thus we present a brief summary of the parts of the theory that are needed in this paper.
As general references we cite Bhattacharya (2003), James and Hane (2000) and Ball and James (1987).

The domain Ω�R3, interpreted as a region occupied by undistorted austenite at the transformation temperature, serves
as reference configuration for deformations y : Ω-R3 arising from transformation or elastic distortion. The total energy of
1 In cases that this deformation contains a transition layer at an interface, linear interpolation of the deformation across this layer is used, unless
otherwise noted.
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an unloaded body subjected to a deformation y : Ω-R3 at a temperature θ is given byZ
Ω
φð∇yðxÞ; θÞ dx: ð1Þ

The Helmholtz free energy per unit reference volume, φðF; θÞ, depends on the deformation gradient FAR3�3
þ and the

absolute temperature θ40. This energy density can be related to atomistic theory by the Cauchy–Born rule (Pitteri and
Zanzotto, 2003). In this scenario F is interpreted as a linear transformation locally mapping a Bravais lattice representing
undistorted austenite to the martensite lattice. If the austenite is represented by a complex lattice consisting of the union of
several Bravais lattices, all having the same lattice vectors but having different base points a1;…; am, the appropriate version
of the Cauchy–Born rule – the weak Cauchy–Born rule in the terminology of Pitteri and Zanzotto (1998) and Ericksen (2008)
– gives an energy density of the form φ̂ðF;am�a1;…; a2�a1; θÞ. In that case the free energy density given above is defined by

φðF; θÞ ¼ min
s1 ;…;sm�1

φ̂ðF; s1;…; sm�1; θÞ: ð2Þ

The free energy density φ is frame-indifferent, φðRF; θÞ ¼ φðF; θÞ for all θ40; RASOð3Þ and FAR3�3
þ , and its energy-well

structure is restricted by conditions of symmetry which are not repeated here.
The result is that there is a set of transformation stretch matrices U1;…;Un, each in R3�3

þ sym, that are related by symmetry,
Ui ¼Q iU1Q

T
i , i¼ 1;…;n, where P ¼ fQ1;…;Q ng; Q iA Oð3Þ is the point group of undistorted austenite at θc. U1;…;Un define

the energy wells of the variants of martensite. That is, there is a transformation temperature θc such that

φðU1; θÞ ¼⋯¼ φðUn; θÞrφðF; θÞ; θrθc: ð3Þ
The matrices Ui ¼Q iU1Q

T
i , i¼ 1;…;n depend weakly on temperature, due to ordinary thermal expansion, but this

dependence is suppressed.
For θ¼ θc, the identity I, representing the austenite, is also a minimizer

0¼ φðI; θcÞ ¼ φðU1; θcÞrφðF; θcÞ: ð4Þ
Without loss of generality we have put the minimum value of the energy at θc equal to zero. As θ is increased from θc the
austenite well persists, but it is perturbed slightly away from I due again to ordinary thermal expansion. U1;…;Un also can
be continued as local minimizers of the energy density for θ4θc. While there are various obvious generalizations of our
results, in this paper we nominally discuss energy minimizers and minimizing sequences at θc. In summary, the full set of
minimizers of the free energy density φ at θc includes

SOð3ÞI [ SOð3ÞU1 [ ⋯ [ SOð3ÞUn ð5Þ
for given symmetry-related tensors U1;…;Un in R3�3

þ sym. To avoid degeneracy we assume that I;U1;…;Un are distinct.
A general algorithm that can be used to obtain the transformation stretch matrices directly from x-ray measurements,
applicable also to complex lattices, is presented in a forthcoming paper (Chen and James, 2013).

2.1. Twins and domains

Accounting for frame-indifference, the equation of compatibility for two variants of martensite is

R̂Ui�RUj ¼ a � n; ð6Þ
which is to be solved for R̂ ;RASOð3Þ and a;nAR3. Without loss of generality, we can put R ¼ I and j¼1. The former is
accomplished by premultiplying (6) by R

T
(corresponding to an overall rigid rotation) and suitably redefining R̂ and a.

The latter is accomplished by subsequently pre- and post-multiplying (6) by Q j;…;Q T
j and using the symmetry relations

above. Thus we consider

R̂Ui�U1 ¼ a � n: ð7Þ
To recover the general case (6) we multiply (7) by Q j;…;Q T

j and then premultiply by an arbitrary RASOð3Þ and make the
obvious notational changes.

Because of results given in the Appendix and described in the following paragraphs, it is seen that the details of
symmetry relations, the number of variants, point groups, etc., do not play a direct role in the analysis. So we simplify the
notation. Let U¼U1AR3�3

þ sym and ÛAR3�3
þ sym. Let R̂ASOð3Þ; a;nAR3 satisfy

R̂Û�U¼ a � n: ð8Þ
It is known that the solutions of the equation of compatibility (8) between martensite variants can be classified into five

types: Type I, Type II, Compound, non-conventional but generic and non-generic twins. The terminology non-generic twins
and non-conventional twins was introduced by Pitteri and Zanzotto (1998) and Soligo et al. (1999) in the context of cubic to
monoclinic transformations. Briefly, Type I/II twins are the well-known solutions generated by a two-fold QAP such that
Uj ¼QU1Q

T aU1. Compound twins are possible when there are two distinct two-fold transformations relating Uj and U1

and can be considered as both Type I and Type II simultaneously. Non-conventional twins are solutions of (8) that are not
generated by a two-fold transformation in P but that persist under arbitrary small perturbations of U1, and non-generic
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twins are solutions of (8) that do not persist under arbitrary small perturbations of U1 and therefore can be considered as
associated to special choices of the lattice parameters. Both non-generic and non-conventional twins do not in general have
a mirror symmetry relation across the interface. Or, more precisely, if atom positions on each side of interface are
constructed using the Cauchy–Born rule and non-generic or non-conventional solutions of (8), then generally there will be
no mirror symmetry relating the atom positions across the interface. Noticing this fact from a purely experimental
viewpoint in LaNbO4, Li and Wayman (1995) referred to these structures as “domains” rather than twins in their thesis.

In the Appendix we show that all solutions of (8) can be expressed in a common form by simple formulas. In particular,
these formulas include Types I/II, Compound, non-conventional and non-generic twins, as well as cases that may occur with
other symmetries that have not yet been classified. Our analysis of the cofactor conditions below relies only on the presence
of these formulas, so we use this framework below. Our formulas have the same form as for Type I/II twins with an
associated two-fold rotation (which is given by an explicit formula), but this two-fold rotation is not generally in P. For this
reason we here use the terminology of Li and call these general solutions Type I domains and Type II domains (see also the
case of Compound domains defined below). It can be seen from the Appendix that these domains are twins with respect to a
mythical symmetry, not the symmetry of lattices of austenite and martensite consistent with the framework above.

The analysis, under the hypotheses on U; Û given above, that all solutions of (8) (and therefore of (6)) are Type I, Type II
or Compound domains is given in the Appendix. The proposition given there implies that if R̂ ; a;n satisfy (8), then there is a
unit vector ê such that

Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ; ð9Þ
and it therefore follows by standard results (see Bhattacharya, 2003) that there are two solutions ðRI ; aI � nIÞ and ðRII ; aII �
nIIÞ of (8) given by

Type I nI ¼ ê; aI ¼ 2
U�1ê

jU�1êj2
�Uê

 !
;

Type II nII ¼ 2 ê� U2ê
jUêj2

 !
; aII ¼Uê: ð10Þ

Following this specification of aI � nI and aII � nII , the corresponding rotations RI and RII can be calculated from (8). Note
that by changing a-ρa and n-ð1=ρÞn, ρa0, we do not change a � n, so these individual vectors are not uniquely
determined by the solution. This situation occurs widely below, and so statements about uniqueness or numbers of
solutions always refer to the diadic a � n rather than the individual vectors. This observation can be used to normalize n, up
to 7 , but we do not do that in this paper.

As seen from Corollary 13 of the Appendix, there are cases in which U and Û are related as in (9) by two nonparallel unit
vectors ê1; ê2. This apparently gives rise to four solutions of (8) via (10), but these solutions cannot be distinct due to the fact
that there are at most two solutions R̂ ;a � n of (8) according to Prop. 4 of Ball and James (1987). One solution can be
considered Type I for ê1 and Type II for ê2 and the other is Type II for ê1 and Type I for ê2. In the conventional cases of twins,
these degenerate solutions are interpreted as Compound twins. Corollary 13 and (10) show that the same situation can arise
in the general case of the Appendix. Therefore we use the following terminology throughout the rest of this paper. We call
the solutions given in (10) Type I/II domains in the case that there is one and only one unit vector ê satisfying (9) (up to 7)
and aI � nI=aII � nII is given by the first line/second line of (10). In cases where there are two nonparallel unit vectors
satisfying (9), we call the resulting pair of solutions Compound domains.

Compound domains are characterized below.

Proposition 1 (Compound domains). Assume that UAR3�3
þ sym. Let jê1j ¼ 1 be given, define Û ¼ ð�Iþ2ê1 � ê1ÞUð�Iþ2ê1 � ê1Þ

and suppose ÛaU. There is a second unit vector ê2, not parallel to ê1, satisfying Û ¼ ð�Iþ2ê2 � ê2ÞUð�Iþ2ê2 � ê2Þ if and
only if ê1 is perpendicular to an eigenvector of U. In the case that ê1 is perpendicular to an eigenvector of U, ê2 is unique up to 7
and is perpendicular to both ê1 and that eigenvector.
Supposing that ê1 is perpendicular to an eigenvector jvj ¼ 1 of U ðaÛÞ and ê2 ¼ v � ê1, then the two solutions a1C � n1

C ; a
2
C �

n2
C of (8) can be written as

n1
C ¼ ê1; a1C ¼ ξUê2; where ξ¼ 2

ê2 � U�2ê1

ê1 � U�2ê1
;

n2
C ¼ ê2; a2C ¼ ηUê1; where η¼�2

ê2 � U2ê1

ê1 � U2ê1
: ð11Þ

Proof. Suppose ê1 � v¼ 0 for some jvj ¼ 1 satisfying Uv¼ v. Define ê2 ¼ ê1 � v so that ê1; ê2; v¼ 0 is an orthonormal basis.
Then, ð�Iþ2ê1 � ê1Þð�Iþ2ê2 � ê2Þ ¼�Iþ2v � v. Since ð�Iþ2v � vÞUð�Iþ2v � vÞ ¼U, we have

ð�Iþ2ê2 � ê2ÞUð�Iþ2ê2 � ê2Þ ¼ ð�Iþ2ê1 � ê1ÞUð�Iþ2ê1 � ê1Þ: ð12Þ
Conversely, if there are two nonparallel unit vectors ê1; ê2 satisfying (12), then by Corollary 13 of the Appendix, ê1 � ê2 ¼ 0.

Let v¼ ê1 � ê2, so that jvj ¼ 1 and ð�Iþ2ê1 � ê1Þð�Iþ2ê2 � ê2Þ ¼�Iþ2v � v. Hence it follows from (12) that
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ð�Iþ2v � vÞUð�Iþ2v � vÞ ¼U. Operating the latter on v it is seen that v is an eigenvector of U, so ê1 is perpendicular to an
eigenvector of U.
Suppose that ê1 is perpendicular to an eigenvector jvj ¼ 1 of U and ê2 ¼ v � ê1. Then Û≔ð�Iþ2ê1 � ê1Þ

Uð�Iþ2ê1 � ê1Þ ¼ ð�Iþ2ê2 � ê2ÞUð�Iþ2ê2 � ê2ÞaU, so that there are by (9) and (10) apparently four solutions of (8):
a1I � n1

I , a
1
II � n1

II based on ê1 and a2I � n2
I , a

2
II � n2

II based on ê2. By Prop. 4 of Ball and James (1987) these must reduce to
two. This can happen in two possible ways:

a1I Ja
2
II ;n

1
I Jn

2
II ; a

1
II Ja

2
I ;n

1
II Jn

2
I or a1I Ja

1
II ;n

1
I Jn

1
II ;a

2
I Ja

2
II ;n

2
I Jn

2
II : ð13Þ

By direct calculation the latter cannot happen, as it contradicts ÛaU. The former leads to the simplification of the formulas
(10) given by (11). □

According to the results in the Appendix, there are at most two nonparallel unit vectors ê satisfying (9), if ÛaU.
The statement to the left of the “or” in (13) may be interpreted by saying that Compound domains are “both Type I and Type
II”, although our precise definitions above make Types I, II and Compound mutually exclusive.

2.2. Crystallographic theory of martensite

The crystallographic theory of martensite concerns conditions for which a twinned laminate and the austenite phase are
interpolated by a transition layer so that the energy in the layer tends to zero as the twins are made finer and finer.
The construction yields a sequence of deformations yðkÞ; k¼ 1;2;…, where k can be taken as the inverse width of the
transition layer, such thatZ

Ω
φð∇yðkÞðxÞ; θcÞ dx-0 as k-1: ð14Þ

Under the hypothesis of Ball and James (1987, Prop. 2), a suitable sequence yðkÞ satisfying (14) converges strongly in a
suitable function space to a deformation y, as k-1, such that

∇y¼ f ðUþa � nÞþð1�f ÞU; a:e: ð15Þ
in the vicinity of the austenite/martensite interface and on the side of martensite.

The equations of the crystallographic theory are built on a solution of (8). Assuming (8) holds, the equations of the
crystallographic theory of martensite are

R½f ðUþa � nÞþð1�f ÞU��I¼ b � m; ð16Þ
which are to be solved for the volume fraction 0r f r1 of the Type I/II or Compound domains, a possible rigid rotation
RASOð3Þ of the whole martensite laminate, and vectors b;mAR3.

3. Cofactor conditions

The cofactor conditions are necessary and sufficient that (16) has a solution ðf ;R;b � mÞ for every 0r f r1.

Theorem 2. Let UAR3�3
þ sym and define Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ for some jêj ¼ 1, so that there exist R̂ASOð3Þ and

a;nAR3 such that

R̂Û ¼Uþa � n: ð17Þ
Assume aa0; na0. Eq. (16) of the crystallographic theory has a solution RASOð3Þ, b;mAR3 for each f A ½0;1� if and only if
the following cofactor conditions are satisfied:

λ2 ¼ 1; where λ2 is the middle eigenvalue of U ðCC1Þ

a � U cofðU2�IÞn¼ 0; ðCC2Þ

tr U2�det U2�jaj2jnj2
4

�2Z0: ðCC3Þ

Proof. The proof follows Section 5 of Ball and James (1987). As is well known, e.g., Ball and James (1987, Prop. 4), given
UAR3�3

þ sym, there is a solution RASOð3Þ, c;dAR3 of RU�I¼ c � d if and only if the middle eigenvalue of U is 1. Since U has
middle eigenvalue equal to 1 if and only if U2 has a middle eigenvalue equal to 1, the satisfaction of (16) for every 0r f r1 is
equivalent to the condition that the middle eigenvalue of the positive-definite symmetric matrix ðUþ fn � aÞðUþ fa � nÞ is
1 for every 0r f r1. An eigenvalue of ðUþ fn � aÞðUþ fa � nÞ is 1 for every 0r f r1 if and only if g(f) vanishes identically
on ½0;1�, where

gðf Þ ¼ det½ðUþ fn � aÞðUþ fa � nÞ�I�: ð18Þ
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Taking the determinant of (17), we see that n � U�1a¼ 0. Hence, detðUþ fa � nÞ ¼ det Ua0 and

gðf Þ ¼ ðdet UÞdet½Uþ fa � n�ðUþ fn � aÞ�1�
¼ ðdet UÞdet½U�U�1þ f ða � nþU�1n � U�1aÞ�: ð19Þ

Since the matrix multiplying f is singular, then g(f) is at most quadratic in f. In addition, by the hypothesis (17), it follows that

ðUþn � aÞðUþa � nÞ ¼ Û
2 ¼ ð�Iþ2ê � êÞU2ð�Iþ2ê � êÞ: ð20Þ

Hence, putting Q ¼�Iþ2ê � ê, we have that

gð1Þ ¼ detðQU2Q T�IÞ ¼ det ðU2�IÞ ¼ gð0Þ: ð21Þ
A quadratic g satisfying gð0Þ ¼ gð1Þ is expressible in the form gðf Þ ¼ aðf ðf�1ÞÞþb. Hence, g vanishes identically on ½0;1� if and
only if a¼ b¼ 0. In particular, b¼0 is (CC1) and 0¼ a¼�g′ð0Þ is (CC2). We have therefore shown that (CC1) and (CC2) are
necessary and sufficient that an eigenvalue of ðUþ fn � aÞðUþ fa � nÞ is 1 for every 0r f r1. Let the eigenvalues of
ðUþ fn � aÞðUþ fa � nÞ be 1; λ1ðf Þ2; λ3ðf Þ2 with no particular ordering assumed. Taking the trace of (20) we have the identity
2n � Uaþjaj2jnj2 ¼ 0. Using this identity and the relations

1þλ1ðf Þ2þλ3ðf Þ2 ¼ trððUþ fn � aÞðUþ fa � nÞÞ
¼ trðU2Þþ2fn � Uaþ f 2jaj2jnj2; ð22Þ

and λ1ðf Þ2λ3ðf Þ2 ¼ det U2, we get

ð1�λ1ðf Þ2Þðλ3ðf Þ2�1Þ ¼ trðU2Þ�det U2þðf 2�f Þjaj2jnj2�2: ð23Þ
Assuming (CC1) and (CC2) are satisfied, (CC3) holds as a necessary condition that 1 is the middle eigenvalue at f ¼ 1=2. Since
f 2�f Z�1=4 it is then seen that (CC1), (CC2) and (CC3) are sufficient that the middle eigenvalue of ðUþ fn � aÞðUþ fa � nÞ
is 1, completing the proof. □

Noticed that λ1ðf Þ and λ3ðf Þ are chosen to be positive values for every 0r f r1. Then it is clear that 0oλ1 ¼ λ1ð0Þ and
λ3 ¼ λ3ð0Þ are eigenvalues of U.

Corollary 3. Assume the hypotheses of Theorem 2 and suppose the cofactor conditions are satisfied. Then the other two
eigenvalues λ1ðf Þ2r1rλ3ðf Þ2 of ðUþ fn � aÞðUþ fa � nÞ satisfy λ1ðf Þ2o1oλ3ðf Þ2 for 0r f r1 and fa1=2. In particular, the
eigenvalues λ1; λ3 of U satisfy λ1o1oλ3.

Proof. Suppose we have some 0r f nr1 such that λ1ðf nÞ2 ¼ 1 or λ3ðf nÞ2 ¼ 1. Then, the formula (23) gives

0¼ ð1�λ1ðf nÞ2Þðλ3ðf nÞ2�1Þ ¼ tr U2�det U2þððf nÞ2�f nÞjaj2jnj2�2 ð24Þ
That is

tr U2�det U2�jaj2jnj2
4

�2¼� ðf nÞ2�f nþ1
4

� �
jaj2jnj2: ð25Þ

Since f 2�f þ1
4

� �
40 for 0r f r1, f a1=2, then (25) violates (CC3) except at f n ¼ 1=2, completing the proof. □

This result above shows incidentally that the cofactor conditions cannot be satisfied in the classic cubic-to-tetragonal case, for
in that case the presence of a repeated eigenvalue would imply that either λ1 ¼ 1 or λ3 ¼ 1, contradicting Corollary 3.

Corollary 4. Assume the hypotheses of Theorem 2 and suppose the cofactor conditions are satisfied. There are two distinct
solutions ðRκ

f ASOð3Þ;bκ
f � mκ

f Þ, κAf71g, of Eq. (16) of the crystallographic theory for each 0r f r1; f a1=2. The solutions for
bκ
f ;m

κ
f are

bκ
f ¼

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ðf Þ2�λ1ðf Þ2

q λ3ðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�λ1ðf Þ2

q
v1ðf Þþκλ1ðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ðf Þ2�1

q
v3ðf Þ

� �

mκ
f ¼

1
ρ

λ3ðf Þ�λ1ðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ðf Þ2�λ1ðf Þ2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�λ1ðf Þ2

q
v1ðf Þþκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ3ðf Þ2�1

q
v3ðf Þ

� �
; ð26Þ

κAf71g, ρa0 and v1ðf Þ; v3ðf Þ are orthonormal. (Note that the presence of ρ does not affect bκ
f � mκ

f .)

Proof. The existence of a solution of (16) for each 0r f r1 follows from Theorem 2. The fact that there are two distinct
solutions for f a1=2 follows from Corollary 3. In particular, the conclusion λ1ðf Þ2o1oλ3ðf Þ2 for f a1=2, and the
explicit characterization (26) of the vectors bκ

f ;m
κ
f given by Prop. 4 of Ball and James (1987) shows that

ðRþ1
f ; bþ1

f � mþ1
f Þa ðR�1

f ; b�1
f � m�1

f Þ. □

Corollary 5. Assume the hypotheses of Theorem 2. In the cofactor conditions, (CC2) can be replaced by the simpler form

ða � v̂2Þðn � v̂2Þ ¼ 0; ðCC20Þ
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where v̂2 is a normalized eigenvector of U corresponding to its middle eigenvalue. That is, assuming the hypotheses of Theorem 2,
(CC1), (CC2), (CC3) ⟺ (CC1), (CC20), (CC3).

Proof. Assuming the hypotheses of Theorem 2 and (CC1), (CC2), (CC3), we write U¼ λ1v̂1 � v̂1þ v̂2 � v̂2þλ3v̂3 � v̂3 using
ordered eigenvalues, which, according to Corollary 3, satisfy λ1o1oλ3. Then (CC3) becomes

ðλ21�1Þðλ23�1Þða � v̂2Þðn � v̂2Þ ¼ 0; ð27Þ
implying (CC20). Trivially, (CC1), (CC20), (CC3) ⟹ (CC1), (CC2), (CC3). □

4. Microstructures possible under the cofactor conditions

Under the mild hypotheses of Theorem 2, the satisfaction of the cofactor conditions implies the existence of low energy
transition layers in austenite/martensite interfaces for every volume fraction 0r f r1, in the sense of (14), i.e., in the sense
of the crystallographic theory. In many cases the transition layer can be eliminated altogether, resulting in zero elastic
energy in these cases. These cases are identified here.

Let the hypotheses of Theorem 2 be satisfied and write the implied solutions of the crystallographic theory as above in
the form Rκ

f ASOð3Þ, bκ
f ;m

κ
f AR3, κAf71g, so we have

R̂Û�U¼ a � n; Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ; jêj ¼ 1;

Rκ
f ½f ðUþa � nÞþð1�f ÞU� ¼ Iþbκ

f � mκ
f ; 0r f r1; κ¼ 71: ð28Þ

At f¼0 we have

Rκ
0U¼ Iþbκ

0 � mκ
0; ð29Þ

which describes the implied austenite/single variant martensite interface. According to Corollary 4 specialized to the case
f ¼ 0a1=2, we know that there are two distinct solutions ðRκ

0ASOð3Þ, bκ
0 � mκ

0Þ, κ¼ 71 of (29). Values of bκ
0;m

κ
0 belonging

to these solutions can be written explicitly as

bκ
0 ¼

ρffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23�λ21

q λ3

ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
v1þκλ1

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
v3

� �

mκ
0 ¼

1
ρ

λ3�λ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23�λ21

q �
ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
v1þκ

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
v3

� �
; κA 71f g; ð30Þ

for some ρa0 by specialization of (26), where 0oλ1o1oλ3 are the ordered eigenvalues of U with corresponding
orthonormal eigenvectors v1; v2; v3.

4.1. Preliminary results for Types I and II domains

Proposition 1 says that if the cofactor conditions are satisfied for Type I or Type II domains, then Û ¼ ð�Iþ2ê � êÞ
Uð�Iþ2ê � êÞ holds for some ê with v2 � êa0. In fact, only one unit vector ê satisfies this condition up to 7 .

The condition v2 � êa0 implies that the main condition (CC20) (see Corollary 5) of the cofactor conditions simplifies for
Types I and II domains.

Proposition 6. Assume U¼ λ1v1 � v1þv2 � v2þλ3v3 � v3, 0oλ1o1oλ3, and Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞaU,
jêj ¼ 1. Recall Corollary 5.
1.
 For Type I domains ðaI � v2ÞðnI � v2Þ ¼ 0⟺aI � v2 ¼ 0⟺jU�1êj ¼ 1.

2.
 For Type II domains ðaII � v2ÞðnII � v2Þ ¼ 0⟺nII � v2 ¼ 0⟺jUêj ¼ 1.
Proof. By Proposition 1 and the definitions of Type I and II domains (which exclude the case of Compound domains), we
have ê � v2a0. The results then follow from (10) and the condition Uv2 ¼ v2. □

Proposition 6 shows that one of the two main cofactor conditions can be interpreted geometrically as the condition that
the vector ê which defines the twin system (or, more generally, the domain system) lies on the intersection of the strain
ellipsoid, or inverse strain ellipsoid, and the unit sphere.

4.2. Elimination of the transition layer in the austenite/martensite interface for some Type I domains

The removal of the transition layer in the case of Type I domains proceeds by proving the existence of a zero-energy
triple junction. The key is to prove that Rκn

1 ¼ Rκ
0 for suitable choices of κ; κnAf71g.
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Theorem 7 (Type I domains). Assume the hypotheses of Theorem 2 and suppose the cofactor conditions are satisfied using Type I
domains. There are particular choices of s; snAf71g such that Rsn

1 ¼ Rs
0 and bsn

1 ¼ ξbs
0 for some ξa0, so that

Rs
0U¼ Iþbs

0 � ms
0; Rs

0ðUþaI � nIÞ ¼ Iþbs
0 � ξmsn

1 ; ð31Þ
and therefore, by taking a convex combination of the equations in (31), one of the two families of solutions of the crystallographic
theory can be written as

Rs
0½Uþ faI � nI � ¼ Iþbs

0 � ðf ξmsn

1 þð1�f Þms
0Þ for all 0r f r1: ð32Þ

The three deformation gradients I; Rs
0U; Rs

0R̂Û can form a compatible austenite/martensite triple junction in the sense that

Rs
0U�I¼ bs

0 � ms
0; Rs

0R̂Û�I¼ bs
0 � ξmsn

1 ; Rs
0R̂Û�Rs

0U¼ Rs
0aI � nI : ð33Þ

There is a constant ca0 such that cnI ¼ ξmsn

1 �ms
0, so the three vectors ms

0;m
sn

1 , and nI lie in a plane.

Proof. By Proposition 6 we have for Type I domains under the cofactor conditions, aI � v2 ¼ 0 and jU�1êj ¼ jêj ¼ 1. The latter
can be written, alternatively, as

ê � ðU�2�IÞê ¼ 0⟺λ3

ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
ðv1 � êÞ ¼ 7λ1

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðv3 � êÞ: ð34Þ

Note in passing that v3 � êa0, because, if this was not the case, then it would follow by (34) and Corollary 3 that also
v1 � ê ¼ 0, so ê Jv2. But then it would follow that Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ ¼U which is forbidden.
By Corollary 4, we have two families of solutions of the crystallographic theory that can be written ðRκ

f ASOð3Þ;bκ
f � mκ

f Þ,
κAf71g, 0r f r1 and these are distinct if f a1=2. Thus, at f¼1

Rκ
1ðUþaI � nIÞ ¼ Rκ

1R̂Û ¼ Iþbκ
1 � mκ

1; κAf71g: ð35Þ
Using that Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ and pre- and post-multiplying (35) by the 1801 rotation Q̂ ¼ ð�Iþ2ê � êÞ ¼ Q̂

T
,

we have that

Q̂ Rκ
1R̂Q̂ U¼ IþQ̂ bκ

1 � Q̂mκ
1; κAf71g ð36Þ

Comparison of (36) with (29) shows that there is a map ŝ : f71g-f71g and δa0 such that Q̂ bŝðκÞ
1 ¼ δbκ

0; Q̂mŝðκÞ
1 ¼ ð1=δÞmκ

0,
i.e.,

bŝðκÞ
1 ¼ δ �Iþ2ê � ê

� �
bκ
0; mŝðκÞ

1 ¼ 1
δ
�Iþ2ê � ê
� �

mκ
0: ð37Þ

We note from (29), (30) and (34) that

bκ
0 � ê ¼ ρffiffiffiffiffiffiffiffiffiffiffiffiffi

λ23�λ21

q λ3

ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
ðv1 � êÞþκλ1

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðv3 � êÞ

� �

¼
ρλ1

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðv3 � êÞffiffiffiffiffiffiffiffiffiffiffiffiffi

λ23�λ21

q 71þκð Þ: ð38Þ

Hence there is a particular choice κ¼ sAf71g such that bs
0 � ê ¼ 0. Let sn ¼ ŝðsÞ. For these choices we have from (39) that

bsn

1 ¼�δbs
0; ð39Þ

so, in particular, bsn

1 � ê ¼ bsn

1 � v2 ¼ 0.
Take the determinant of (35) to observe that 1þbsn

1 �msn

1 ¼ det Rsn

1 R̂Û ¼ det U40. Premultiply (35) by ðRsn

1 ÞT , take the
transpose of the resulting equation, operate the result on v2, and use that Uv2 ¼ v2 and aI � v2 ¼ 0 (Proposition 6) to get

Rsn

1 v2 ¼ v2�ðbsn

1 � Rsn

1 v2Þmsn

1 : ð40Þ
Dot (40) with bsn

1 and use that 1þbsn

1 �msn

1 40:

bsn

1 � Rsn

1 v2 ¼
1

ð1þbsn

1 �msn

1 Þb
sn

1 � v2 ¼ 0: ð41Þ

(The latter follows from (39).) Eqs. (40) and (41) show that Rsn

1 v2 ¼ v2. Using this conclusion and nI ¼ ê, evaluate (35) at
κ¼ sn and operate the result on v2 to get

ðê � v2ÞRsn

1 aI ¼ ðmsn

1 � v2Þbsn

1 ¼�δðmsn

1 � v2Þbs
0: ð42Þ

Proposition 1 shows that ê � v2a0, so both sides of (42) are nonvanishing. Thus we can condense the constants by writing
Rsn

1 aI ¼ cbs
0 for some ca0. Substitution of the latter back into (35) (κ¼ sn) and use of (39) gives

Rsn

1 U¼ Iþbs
0 � ð�δmsn

1 �cnIÞ: ð43Þ
Comparison of (43) and (30) (note: bþ1

0 ∦b�1
0 under our hypotheses) we get that

Rsn

1 ¼ Rs
0 and δmsn

1 þcnI ¼�ms
0: ð44Þ
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We have proved Theorem 7 up to (31) and (32) is (1� f) (31)1 þ f (31)2. The three rank-one connections summarized in (33)
are from (31) and the basic rank-one relation (8)–(10). The planarity of the three vectors follows from (44). □

Several remarks are worth noting. First, the final statement about the planarity of the three vectors is important for
actually making the indicated triple junction. Second, the solutions of the crystallographic theory given by (32) do not
necessarily correspond to the choice κ¼ s for all 0r f r1 in Corollary 4. In fact, the numerical evidence supports the idea
that the solution found in Theorem 7 agrees with different choices of κ in Corollary 4 for different values of f, although this
can be fixed by choosing eigenvectors v1ðf Þ; v2ðf Þ; v3ðf Þ that change continuously with f (this, of course, is not done by most
numerical packages). Third, in the arguments of Theorem 7 we have nowhere used the inequality (CC3) of the cofactor
conditions. Hence, the particular family solutions of the crystallographic theory found here do not rely on explicitly
assuming this inequality. In fact, the inequality (CC3) can be proved as a necessary condition by use of (26) and (35).

The compatibility conditions given in (33) imply the existence of several interesting microstructures using the triple
junction as a building block. Fig. 2(left) gives a schematic of three triple junctions. Note that by (33) all the jump conditions
across all interfaces are satisfied. Satisfaction of all such jump conditions implies the existence of a continuous deformation
with these gradients. Examples of deformations constructed in this way (using the method of visualization described in the
introduction) are shown in Figs. 2(right), 3, 6 and 7. Fig. 3 shows the configurations of austenite/martensite interfaces having
zero elastic energy for f varying from 0 to 1.
4.3. Elimination of the transition layer in the austenite/martensite interface for some Type II domains

The reason for the elimination of the transition layer in the case of Type II domains is different – it arises from the
parallelism of a single variant martensite/austenite interface and a domain wall – but the mathematical argument is dual to
the argument for Type I domains.

Theorem 8 (Type II domains). Assume the hypotheses of Theorem 2 and suppose the cofactor conditions are satisfied using Type
II domains. There are particular choices of s; snAf71g such that Rsn

1 ¼ Rs
0 and msn

1 ¼ ξms
0 for some ξa0, so that

Rs
0U¼ Iþbs

0 � ms
0; Rs

0ðUþaII � nIIÞ ¼ Iþξbsn

1 � ms
0; ð45Þ

and therefore, by taking a convex combination of the equations in (45), one of the two families of solutions of the crystallographic
theory can be written

Rs
0½Uþ faII � nII� ¼ Iþðf ξbsn

1 þð1�f Þbs
0Þ � ms

0 for all 0r f r1: ð46Þ

The normal ms
0 to the austenite/martensite interface is independent of the volume fraction f and is parallel to the domain wall

normal: nII ¼ cms
0 for some ca0.
Fig. 6. Example of nucleation of austenite (red) in a band of martensite with zero elastic energy, under the cofactor conditions for Type I domains. The blue
and green are two compatible variants of martensite that can form a triple junction with austenite, as described by Theorem 7. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)



Fig. 7. Example of nucleation of martensite (blue/green bands) in austenite (red lattice) with zero elastic energy, with satisfaction of the cofactor
conditions for Type I domains. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Proof. By Proposition 6 we have for Type II domains under the cofactor conditions, nII � v2 ¼ 0 and jUêj2 ¼ jêj2 ¼ 1.
The latter can be written as

ê � ðU2�IÞê ¼ 0⟺
ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
ðv1 � êÞ ¼ 7

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðv3 � êÞ; ð47Þ

and, as above, v3 � êa0.
Recycling the notation of the Type I case, we have two families of solutions of the crystallographic theory that can be

written as ðRκ
f ASOð3Þ;bκ

f � mκ
f Þ, κAf71g, 0r f r1 and these are distinct if f a1=2. Thus, at f¼1

Rκ
1ðUþaII � nIIÞ ¼ Rκ

1R̂Û ¼ Iþbκ
1 � mκ

1; κAf71g: ð48Þ
Using that Û ¼ ð�Iþ2ê � êÞUð�Iþ2ê � êÞ and pre- and post-multiplying (35) by the 1801 rotation Q̂ ¼ ð�Iþ2ê � êÞ ¼ Q̂

T
,

we have that

Q̂ Rκ
1R̂Q̂ U¼ IþQ̂ bκ

1 � Q̂mκ
1; κAf71g ð49Þ

Comparison of (49) with (29) shows that there is a map ŝ : f71g-f71g and δa0 such that Q̂ bŝðκÞ
1 ¼ δbκ

0; Q̂mŝðκÞ
1 ¼ ð1=δÞmκ

0,
i.e.,

bŝðκÞ
1 ¼ δ �Iþ2ê � ê

� �
bκ
0; mŝðκÞ

1 ¼ 1
δ
�Iþ2ê � ê
� �

mκ
0: ð50Þ

We note from (29), (30) and (47) that

mκ
0 � ê ¼ 1

ρ

λ3�λ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23�λ21

q �
ffiffiffiffiffiffiffiffiffiffiffi
1�λ21

q
ðv1 � êÞþκ

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðv3 � êÞ

� �
;

¼ 1
ρ

ffiffiffiffiffiffiffiffiffiffiffi
λ23�1

q
ðλ3�λ1Þðv3 � êÞffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23�λ21

q 81þκð Þ; κA þ1;�1f g: ð51Þ

Hence there is a particular choice κ¼ sAf71g such that ms
0 � ê ¼ 0. Let sn ¼ ŝðsÞ. For these choices we have from (52) that

msn

1 ¼�1
δ
ms

0; ð52Þ

so, in particular, msn

1 � ê ¼msn

1 � v2 ¼ 0.
Following the dual of the Type I case, evaluate (48) at κ¼ sn and operate on v2 to get

Rsn

1 v2 ¼ v2þðmsn

1 � v2Þbsn

1 ¼ v2: ð53Þ
Using the formula (10) for aII , evaluate (48) at κ¼ sn and operate its transpose on v2 to get

ðaII � v2ÞnII ¼ ðbsn

1 � v2Þmsn

1 : ð54Þ
Lemma 1 shows that aII � v2 ¼ ê � v2a0, so both sides of (54) are nonvanishing. Thus we can condense the constants by
writing nII ¼ cms

0 for some ca0. Substitution of the latter back into (48) (κ¼ sn) and use of (52) gives

Rsn

1 U¼ Iþ �cRsn

1 aII�
1
δ
bsn

1

� �
� ms

0: ð55Þ
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Comparison of (55) and (30) (note: bþ1
0 ∦b�1

0 under our hypotheses) we get that

Rsn

1 ¼ Rs
0 and Rsn

1 aIIþ
1
δ
bsn

1 ¼�bs
0: ð56Þ

We have proved Theorem 8 up to (45) and (46) is (1� f) (45)1 þ f (45)2. The parallelism of nII and ms
0 is (54). □

Some of the remarks following the proof of Theorem 7 apply here as well. In a certain sense these results show that,
under the cofactor conditions, triple junctions are dual to parallel austenite/twin interfaces. The duality is that which maps
Type I into Type II twins.

4.4. The cofactor conditions for Compound domains

We assume in this section the hypotheses of Proposition 1 which gives the basic characterization of Compound domains.
Specifically, we assume that there are orthonormal vectors ê1; ê2 such that Û ¼ ð�Iþ2ê1 � ê1ÞUð�Iþ2ê1 � ê1Þ ¼
ð�Iþ2ê2 � ê2ÞUð�Iþ2ê2 � ê2ÞaU. The two solutions of (8) for Compound domains a1C � n1

C ; a
2
C � n2

C are then given by (11).

Lemma 9. Suppose that there are orthonormal vectors ê1; ê2 such that Û ¼ ð�Iþ2ê1 � ê1ÞUð�Iþ2ê1 � ê1Þ ¼
ð�Iþ2ê2 � ê2ÞUð�Iþ2ê2 � ê2ÞaU, and let a1C � n1

C ; a
2
C � n2

C be given by (11). The cofactor conditions are satisfied for either
of these solutions if and only if ê1 � v2 ¼ 0, ê2 � v2 ¼ 0, ê1 is not parallel to either v1 or v3, and the inequality (CC3) holds.

Proof. By Corollary 5, the condition (CC2) of the cofactor conditions for either solution a1C � n1
C or a2C � n2

C reduces to

ðê1 � v2Þðê2 � v2Þ ¼ 0: ð57Þ
Suppose the cofactor conditions are satisfied. According to Proposition 11 both ê1 and ê2 are perpendicular to an eigenvector
of U. But this eigenvector cannot be v1 or v3, because then (57) would force either ê1 or ê2 to be parallel to an eigenvector of
U which contradicts ÛaU. Therefore the eigenvector in question must be v2 and we have both ê1 � v2 ¼ 0 and ê2 � v2 ¼ 0. Of
course, it also follows from the hypothesis ÛaU that ê1 is not parallel to either v1 or v3. The remaining condition of the
cofactor conditions is the inequality (CC3). Clearly, these necessary conditions are also sufficient for the cofactor
conditions. □

This result says that we satisfy cofactor conditions for Compound domains by putting the orthonormal vectors ê1; ê2 in
the v1; v3 plane and satisfying the inequality (CC3), see Fig. 5. If U is given as above, then there is only one degree-of-
freedom, say, the angle θ between ê1 and v1, in the assignment of ê1; ê2. The left hand side of the inequality (CC3) then
becomes a function of λ1; λ3 and θ. Given θ, it can be seen from numerical examples that there is a domain in R2 of possible
values of λ1; λ3 at which (CC3), and therefore the cofactor conditions are satisfied. For many choices of θ this domain seems
to be quite large, including many potential alloys, but does not include all of λ1o1oλ3. We do not see any general
statements one can make about this domain, except the obvious point that if θ is fixed, then the left hand side of the
inequality (CC3) tends to 0 as jλ3�1jþj1�λ1j-0.

It should be noted that except for the possibility of a restricted domain for λ1; λ3, Compound domains can satisfy the
cofactor conditions merely by symmetry and λ2 ¼ 1. That is, if the lattice parameters of a potential alloy are first tuned to
satisfy λ2 ¼ 1, and the symmetry happens to be such that there are two 1801 rotations in the point group P with
perpendicular axes that lie in a plane perpendicular to v2, then the cofactor conditions are satisfied as long as the domain for
λ1; λ3 is suitable. See the example of VO2 in Section 8.

There seem to be no general statements about the elimination of the transition layer that one can make that are
independent of the choice of ê1 (satisfying Lemma 9), as was done in the cases of Types I and II domains. For example, the
main condition R0 ¼ R1 that eliminated the transition layer for Type I domains becomes a single scalar equation restricting
λ1; λ3 and θ in the case of Compound domains. It may well be possible for quite special choices of λ1; λ3 and θ to eliminate the
transition layer. For practical alloy development such a condition seems not so useful, as usually θ would be given, and the
resulting further restriction on λ1; λ3 would seem to be difficult to satisfy. But further investigation is warranted.

5. Simultaneous satisfaction of the cofactor conditions for different domain systems

In the Introduction we have argued that the cofactor conditions imply the existence of many deformations consistent
with the coexistence of austenite and martensite, and many of these cases also have zero elastic energy. Here we quantify
these statements for one of the two types of cubic to monoclinic phase transformations (see, e.g., Soligo et al., 1999; James
and Hane, 2000). This case is interesting with regard to applications (see Section 8), and is representative of other high-to-
low symmetry cases.

We consider symmetry change from cubic to monoclinic with 〈100〉a as the inherited 2-fold axis. There are 12 martensite
variants in this case with transformation stretch matrices given by

U1 ¼
α β 0
β δ 0
0 0 γ

2
64

3
75; U2 ¼

α �β 0
�β δ 0
0 0 γ

2
64

3
75; U3 ¼

δ β 0
β α 0
0 0 γ

2
64

3
75; U4 ¼

δ �β 0
�β α 0
0 0 γ

2
64

3
75;
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U5 ¼
γ 0 0
0 δ β

0 β α

2
64

3
75; U6 ¼

γ 0 0
0 δ �β

0 �β α

2
64

3
75; U7 ¼

α 0 β

0 γ 0
β 0 δ

2
64

3
75; U8 ¼

α 0 �β

0 γ 0
�β 0 δ

2
64

3
75;

U9 ¼
δ 0 β

0 γ 0
β 0 α

2
64

3
75; U10 ¼

δ 0 �β

0 γ 0
�β 0 α

2
64

3
75; U11 ¼

γ 0 0
0 α β

0 β δ

2
64

3
75; U12 ¼

γ 0 0
0 α �β

0 �β δ

2
64

3
75: ð58Þ

To avoid degeneracies, we assume for the rest of this section that αaδ and that the eigenvalues of U1 are distinct.
Between these martensite variants, there are 24 Type I twins, 24 Type II twins, 24 Compound twins, 24 Type I domains, 24
Type II domains and 12 Compound domains. These domains with labels of pairs of compatible variants are listed in Table 1.
The notation for variants is consistent with (58).

In the case of domains that are not conventional twins (Table 1), the rotation relating each pair of compatible variants is a
901 rotation. The 180 ○ rotation that necessarily relates these variants is given by formulas in the Appendix.

The boxes within the dark shaded region in Table 1 have the property that if one pair in the box satisfies the cofactor
conditions for a certain type of domain, then all pairs in the box satisfy the cofactor conditions for the same type of domain.
For example, if variants 1 and 6 have a Type I twin satisfying the cofactor conditions, then the Type I twin pairs (2,5), (1,5)
and (2,6) also satisfy the cofactor conditions. In each of these cases there are compatible triple junctions leading to
numerous zero elastic energy microstructures of austenite coexisting with martensite as discussed in Theorem 7.

The light shaded box is particularly interesting. If γ ¼ 1 (only) then the cofactor conditions are satisfied (Lemma 9). As can
be seen from Table 1 there are then a very large number of Compound domains that satisfy the cofactor conditions. For each
of these there are infinitely many deformation gradients of martensite that coexist with I in the sense of the crystallographic
theory. Thus, there is a huge collection of compatible deformations of austenite and martensite, although none of these have
zero elastic energy. Under our hypotheses, Compound twins with γa1 cannot satisfy the cofactor conditions, and the
numerical evidence suggests that this is also true for the Compound domains.

6. Nucleation under the cofactor conditions

The analysis given above suggests simple microstructures with zero elastic energy that allow a continuous increase of the
volume of the new phase, starting at zero volume, in a material satisfying the cofactor conditions. In a single crystal there
are obviously cases in which a layer of martensite can grow in austenite and vice versa, merely due to the condition λ2 ¼ 1.
We illustrate some cases in which the set onwhich nucleation takes place is lower dimensional, e.g., a line. As illustrated and
analyzed by Ball et al. (2011b,a) and Seiner and Landa (2009), the geometry of these nuclei is important for nucleation
phenomena.

An example of nucleation of austenite in martensite is given in Fig. 6. It is constructed from any Type I domain for which
the cofactor conditions are satisfied, and it uses the three deformation gradients I;Rs

0U;R
s
0R̂Û given in Theorem 7.
Table 1
List of all possible twin systems for cubic to monoclinic transformations with 〈100〉a as the inherited 2-fold axis. The notation ði; jÞ presents domains which

are symmetry related by Ui ¼RUjR
T, where RAP is characterized by the angle and rotational axis. See the text.



Table 2
Potential starting points for an alloy development program whose goal is to satisfy the cofactor conditions.

Candidates Cu69Al24Mn7
a Au25Cu30Zn45

b VO2
c

Crystal structure
Austenite DO3 L21 Rutile
Martensite 6 M M18R Rutile monocl.

Bravais lattice
Austenite FCC FCC Primitive tetragonal
Martensite Primitive monocl. Primitive monocl. Base-centered monocl.

Transformation stretch matrix U 1:1098 0:0279 0
0:0279 1:0062 0

0 0 0:8989

0
B@

1
CA

1:0508 0 0:0142
0 0:9108 0

0:0142 0 1:0059

0
B@

1
CA

1:0669 0 0:0421
0 0:9939 0

0:0421 0 0:9434

0
B@

1
CA

jλ2�1j 0.0008 0.0018 0.0061

1801 axis ê ½011� or ½011� ½101� ½001�

Cofactor conditions

Type I, jU�1êj�1 0.0256 0.0263

Type II, jUêj�1 0.0202 0.029
Compound Satisfied if λ2 ¼ 1

Inequality (CC3) 0.0016 0.0175 0.0144

a (Zhang, 2007).
b (Hiroshi and Shimizu, 1976) The lattice parameters of austenite, which are needed to calculate U, were not measured by these authors, so we have

supplied this measurement.
c (McWhan and Remeika, 1970).
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The regions on which these deformation gradients occur are shown as red, green and blue, respectively, in Fig. 6. Nucleation
in this case occurs on a line; four triple junctions are simultaneously emitted from this line.

Under the same conditions, a simple mechanism for boundary nucleation of martensite in austenite is shown in Fig. 7.
This is seen as a simplified version of Fig. 2.

7. Cofactor conditions in the geometrically linear case

A number of versions of the geometrically linear theory of martensite are in wide use for both fundamental theoretical
and computational studies (Khachaturyan and Shatalov, 1969; Roitburd, 1978; Barsch and Krumhansl, 1984; Kohn, 1989;
Bhattacharya, 1993; Knüpfer et al., 2011). There is a version of the cofactor conditions in the geometrically linear case. Since
the satisfaction of the cofactor conditions is expected to have a dramatic effect on predicted microstructure and behavior in
the geometrically linear theory, we give these conditions here.

The cofactor conditions in geometrically linear theory are different from the cofactor conditions in the geometrically
nonlinear theory, owing to the fact that the geometrically linear theory is obtained from the geometrically nonlinear theory
by Taylor expansion (Bhattacharya, 1993) or asymptotic analysis (Schmidt, 2008). As discussed below, the cofactor
conditions in the geometrically linear case should not be used for alloy development in materials with appreciable
transformation strain.

The cofactor conditions in the geometrically linear case can be obtained in two ways: (i) by formal linearization of the
cofactor conditions in the geometrically nonlinear case following the expansion given in Ball and James (1992), or (ii) by
writing down the equations of the crystallographic theory of martensite in the geometrically linear case, and imposing the
condition that they be satisfied for any volume fraction 0r f r1. The latter method is preferable because it proves the
existence of actual energy minimizing microstructures (or minimizing sequences) for a broad family of geometrically linear
theories of martensite. We therefore follow method (ii).

The geometrically linear version of the crystallographic theory of martensite in the cubic-to-tetragonal case first
appeared in a paper of Burkart and Read (1953) in the same issue of AIME Journal of Metals as the general version of the
crystallographic theory by Wechsler et al. (1953).

The basic kinematics of geometrically linear theory is the same as linearized elasticity: it is based on the displacement
gradient ∇u¼HAR3�3, which is decomposed into symmetric and skew parts H¼ SþW, S¼ ST ; W¼�WT representing
infinitesimal strain and rotation. A particular strain S¼ E is given as the transformation strain, and strains associated with the
variants of martensite are obtained by symmetry. As above, we consider another variant defined by the strain Ê ¼QEQ T

where Q ¼�Iþ2ê � ê, jêj ¼ 1. The basic compatibility condition for variants with displacement gradients ∇u¼ ÊþŴ and
∇u¼ E is

ÊþŴ�E¼ a � n: ð59Þ
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(This is also the direct geometric linearization of (8).) Taking the symmetric part of (59) we have the compatibility condition
of geometrically linear theory:

Ê�E¼ 1
2ða � nþn � aÞ: ð60Þ

By taking the trace, we have necessarily that a � n¼ 0. The basic lemma governing solutions of (60) is the following.

Lemma 10. Necessary and sufficient conditions that SAR3�3
sym is expressible in the form S¼ ð1=2Þða � nþn � aÞ for some

nonzero a;nAR3 is that the middle eigenvalue of S is zero. If S¼ s1e1 � e1þs3e3 � e3 with e1; e3 orthonormal and s1r0rs3,
then solutions a;n of S¼ ð1=2Þða � nþn � aÞ can be taken as

a¼ ffiffiffiffiffiffiffiffi�s1
p

e1þ
ffiffiffiffiffi
s3

p
e3; n¼� ffiffiffiffiffiffiffiffi�s1

p
e1þ

ffiffiffiffiffi
s3

p
e3: ð61Þ

These are unique up to switching a-n; n-a and scaling a-μa; n-ð1=μÞn, μa0.

Proof (See e.g., Bhattacharya (2003)). Briefly, it is clear that a necessary condition that S has the given form is that S has an
eigenvalue equal to zero. By examining the quadratic form z � Sz with z taken as a bisector of a and n, and as a vector in the
a;n plane that is perpendicular to this bisector, it is seen that the zero eigenvalue is the middle one. The converse is proved
by direct calculation using (61). □

In the special case that Ê ¼QEQ T as given above, an alternative representation of a solution of (60) is possible:

a¼ 4ððê � EêÞê�EêÞ; n¼ ê: ð62Þ
This form of the solution can be interpreted as the geometric linearization of the Type I/II domains. That is, due to the
switching invariance of Lemma 10, there exist infinitesimal rotations Ŵ I ¼�Ŵ

T
I and Ŵ II ¼�Ŵ

T
II such that, with a and n

defined by (62)

ÊþŴ I�E¼ a � n; ÊþŴ II�E¼ n � a; ð63Þ
i.e., either a or n can be considered the interface normal. Ŵ I ¼�Ŵ II as defined by these formulas is necessarily skew.

From these compatibility conditions and the comments of Section 2.2 it is seen that the equations of the crystallographic
theory of martensite in the geometrically linear case are the following. Given EAR3�3

sym and Ê ¼QEQ T as above, so that
Ê�E¼ 1

2 a � nþn � að Þ for some a;nAR3, find bf ;mf AR3 and 0r f r1 such that

f Êþ 1�fð ÞE¼ 1
2 bf � mf þmf � bf
� �

: ð64Þ
The cofactor conditions in geometrically linear theory are necessary and sufficient conditions that there exist bf ;mf AR3

satisfying (64) for every 0r f r1. An explicit form of these conditions is given in the following theorem.

Theorem 11 (Cofactor conditions in the geometrically linear theory). Let EAR3�3
sym and êAR3; jêj ¼ 1, be given. Define

Ê ¼QEQ T where Q ¼�Iþ2ê � ê, suppose that ÊaE, and define a;n by (62). There exist bf ;mf AR3 satisfying (64) for every
0r f r1 if and only if

ε2 ¼ 0; where ε2 is the middle eigenvalue of E; and rank E¼ 2; ðCCL1Þ

ða � v2Þðn � v2Þ ¼ 0; where Ev2 ¼ 0; jv2j ¼ 1; ðCCL2Þ

ðtrðEþ ÊÞÞ2�trððEþ ÊÞ2Þr0: ðCCL3Þ

Proof. Necessity of the conditions (CCL). Clearly ε2 ¼ 0 is a necessary condition at f¼0. Also, E cannot vanish because ÊaE.
Potentially, E could be of rank 1, E¼ g � ga0, but then we would have Ê ¼ ĝ � ĝ with jgj ¼ jĝj and g∦ĝ. The unique zero
eigenspace of f Êþð1�f ÞE for 0o f o1 would then be the 1-D subspace δ g� ĝ, δAR. The only possibility that the
corresponding zero eigenvalue of f Êþð1�f ÞE would be its middle eigenvalue is that it is a double eigenvalue, because the
quadratic form f z � Êzþð1�f Þz � Ez is clearly positive semidefinite. This contradicts that the zero eigenspace is one
dimensional. Hence, rank E¼ 2.
The necessity of (CCL2) follows by direct calculation of the determinant of f Êþð1�f ÞE. That is, if we write E¼ diagðε1;0; ε3Þ

for ε1o0oε3 (using (CCL1)), a direct calculation gives

detðf Êþð1�f ÞEÞ ¼ detðEþðf =2Þða � nþn � aÞÞ ¼ 4f ð1�f Þε1ε3ða � v2Þðn � v2Þ: ð65Þ
The remaining necessary condition is that the implied zero eigenvalue is the middle one. Assume (CCL1) and (CCL2) and let
εf1;0; ε

f
2 be the eigenvalues of f Êþð1�f ÞE, with no particular ordering. If 0 is the middle eigenvalue, then εf1ε

f
2r0 for

0r f r1. The quantity εf1ε
f
2 is the second invariant of f Êþð1�f ÞE. This invariant is quadratic in f and has the same values at

f ¼ 0;1, and so it has the form IIf ¼ αf ð1�f Þþε1ε3. The coefficient α can be evaluated from α¼ dIIf ð0Þ=df ¼�a � En. Also, αZ0
by a � En¼ E � ðÊ�EÞ and the Cauchy–Schwarz inequality, Ê � Er jEjjÊj ¼ jEj2 ¼ E � E. Therefore, the largest value of εf1ε

f
2r0

occurs at f ¼ 1=2, and so we have the necessary condition II1=2r0 which is (CCL3). The conditions (CCL1), (CCL2) and (CCL3)
are also sufficient for (64) to be satisfied for every 0r f r1, since they imply that the middle eigenvalue of f Êþð1�f ÞE is
zero for all 0r f r1. □
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The explicit form of the conditions (CCL1)–(CCL3) in the eigenbasis of E is

E¼ diagðε1;0; ε3Þ; ε1o0oε3; ðCCL10Þ

n2
2ðn2

1ε1þn2
3ε3Þ ¼ 0; ðCCL20Þ

ε1ε3þn2
1n

2
3ðε3�ε1Þ2r0 if n2 ¼ 0;

ε1ε3þn2
3ε3ðε3�ε1Þr0 if n2

1ε1þn2
3ε3 ¼ 0:

(
ðCCL30Þ

As expected, the elastic transition layer can also be eliminated in the geometrically linear case. This occurs if
n2
1ε1þn2

3ε3 ¼ 0. It follows from n2
1ε1þn2

3ε3 ¼ 0 and (CCL10) and (CCL20) that b0 Jb1 or m0 Jm1, which in turn lead to triple
junctions or parallelism, analogous to the nonlinear case.

As mentioned above, one should be cautious on applying the cofactor conditions of geometrically linear theory in alloy
development because of the errors of geometric linearization. As a particular example, we can consider the main condition
(CC20) in the case of Types I and II domains. According to Proposition 6, the condition (CC20) is jU�1êj ¼ 1 for Type I domains
and jUêj ¼ 1 for Type II domains under the general hypotheses given there. Both of these conditions linearize to the same
condition ê � Eê ¼ n2

1ε1þn2
3ε3 ¼ 0 of (CCL20) (recall from (62) that n¼ ê). If we use the standard way of evaluating the

transformation strain of linearized theory, E¼U�I, we have

Geometrically nonlinear; Type I :
1
λ21
�1

 !
n2
1þ

1
λ23
�1

 !
n2
3 ¼ 0:

Geometrically nonlinear; Type II : ðλ21�1Þn2
1þðλ23�1Þn2

3 ¼ 0:

Geometrically linear : ðλ1�1Þn2
1þðλ3�1Þn2

3 ¼ 0: ð66Þ
As a numerical example, we can take typical twin systems in a cubic to monoclinic case discussed in Section 5, which is also
represented by the particular alloys identified in Section 8 as good starting points for alloy development. For example, we
take n¼ ê ¼ ð1;1;0Þ=

ffiffiffi
2

p
(in the cubic basis). We take a typical measured value of λ3 ¼ 1:08. Then, the exact satisfaction of

the cofactor conditions in the three cases of (66) gives

Geometrically nonlinear; Type I : λ1 ¼ 0:936;
Geometrically nonlinear; Type II : λ1 ¼ 0:913;
Geometrically linear : λ1 ¼ 0:920: ð67Þ

In light of the sensitive dependence of hysteresis on the middle eigenvalue seen on the horizontal axis of Fig. 1, the
discrepancies seen in (67) may be significant. Of course, it is no more difficult to use the geometrically nonlinear conditions.
The present situation with regard to the linearization of the cofactor conditions is similar to a number of other special lattice
parameter relationships discussed by Bhattacharya (1993). In geometrically linear theory the elastic energy near the habit
plane can also be eliminated in some cases.

8. Implications of the results for alloy development

Although the theory justifying and explaining the cofactor conditions is intricate, the conditions themselves are simple
and easy to implement (Table 2). One first chooses a domain system, which is the choice of a unit vector ê relating two
variants as in (9). Then one calculates a and n from (10) or (11), depending on whether the domain system is Type I/II or
Compound.
As explained in Section 2.1, this choice also covers the cases of non-conventional and non-generic twins, thus the
terminology “domain” throughout this paper. From these choices one identifies whether the domain is Type I, Type II or
Compound.

A convenient form of the cofactor conditions for alloy development is then (CC1) and (CC20) (as further simplified by Proposition
6). The inequality (CC3) also has to be checked. Among the systems identified below that are near to satisfying the cofactor
conditions, it seems that this inequality will be automatically satisfied. A useful alloy development procedure is by interpolation:
1.
 From X-ray measurements determine the transformation stretch matrix U and unit vector ê relating two variants:
Û ¼QUQ T , Q ¼�Iþ2ê � ê. See Chen and James (2013) for an algorithm that automates this part. Identify the type of
domain. Below, for definiteness, it is assumed that we wish to find an alloy satisfying the cofactor conditions for a Type I
twin system. U depends on composition, and we assume there are two compositional variables x and y.
2.
 Determine a one-parameter family of alloys satisfying λ2 ¼ 1. We have found the following procedure to be useful. For
each x, find and alloy with composition ðx; y1Þ having λ2≳1 and another alloy ðx; y2Þ having λ2≲1. Then interpolate to find
a family of alloys with composition ðx; yðxÞÞ with λ2 ¼ 1.
3.
 Among alloys with composition ðx; yðxÞÞ, find an alloy with composition ðx1; yðx1ÞÞ with jU�1êj≳1 and another alloy with
composition ðx2; yðx2ÞÞ satisfying jU�1êj≲1. Then interpolate to find an alloy with composition ðx⋆; yðx⋆ÞÞ satisfying
jU�1êj ¼ 1, where x⋆ is between x1 and x2. This alloy satisfies (CC1) and (CC2).
4.
 Check that the inequality (CC3) is satisfied for the alloy ðx⋆; yðx⋆ÞÞ.



This procedure relies on the lattice parameters changing smoothly with composition, as in Vegard's law. This is often the
case in a suitable domain. It also relies on having good starting points.
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Appendix A. Twin domains

Here it is proved that general solutions of the equation of compatibility (8) between martensite variants are represented
as Type I or Type II domains.

Proposition 12. Let A¼ AT and B¼ BT be 3�3 positive-definite matrices satisfying B¼ RART for some RAOð3Þ. Suppose A
and B are compatible in the sense that there is a matrix QASOð3Þ such that

QB�A¼ a � n; ðA:1Þ
a;nAR3. Then there is a unit vector êAR3 such that

B¼ ð�Iþ2ê � êÞAð�Iþ2ê � êÞ: ðA:2Þ
Conversely, if 3�3 matrices A and B satisfy (A.2) for some unit vector ê, then there is QASOð3Þ so that (A.1) is satisfied. A
formula for ê can be given as follows. Under the hypotheses, there is an orthonormal basis fe1; e2; e3g such that

A�1B2A�1 ¼ μ1e1 � e1þe2 � e2þμ3e3 � e3; ðA:3Þ
where 0oμ1r1rμ3 and the following identities hold:

μ1μ3 ¼ 1; e1 � A2e1 ¼ μ3 e3 � A2e3; ðe2 � A2e1Þ2 ¼ μ3ðe2 � A2e3Þ2: ðA:4Þ
In the case μ341 all unit vectors ê satisfying (A.2) are given by

ê ¼ 7ðδ1Ae1þδ3Ae3Þ; ðA:5Þ
where

δ1 ¼ 2 e1 � A2e1þs
ffiffiffiffiffi
μ3

p
e3 � A2e1

� �� ��1=2
and δ3 ¼ s

ffiffiffiffiffi
μ3

p
δ1 ðA:6Þ

and sAf71g satisfies s ffiffiffiffiffi
μ3

p ðe2 � A2e3Þ ¼�e2 � A2e1. In the case μ3 ¼ 1 necessarily B¼A and ê can be chosen as a normalized
eigenvector of A.

In words: for stretch matrices related by orthogonal similarity as we have for variants of martensite, necessary and
sufficient conditions for compatibility are that these matrices are related by a 1801 rotation.

Proof. Without loss of generality, by replacing R by �R if necessary, we can assume RASOð3Þ. The condition (A.3), which
under the given hypotheses is necessary and sufficient for (A.1), has been proved in Ball and James (1987), Prop. 4. We can
assume without loss of generality that 0oμ1o1oμ3. That is, if, say, μ3 ¼ 1, then by taking det of (A.3) and using
det A¼ det B we would get necessarily μ1 ¼ 1. This would lead to A2 ¼ B2. Then by taking the positive-definite square root,
we would have A¼ B. This, in turn, would imply that (A.2) is satisfied, for example, with ê equal to an eigenvector of A. Thus,
below we will assume μ1o1oμ3.
There are several identities satisfied by the quantities on the right hand side of (A.3). These follow from the hypothesis

that B¼ RART which implies that A and B have the same eigenvalues and therefore det A¼ det B, tr A2 ¼ tr B2 and
tr A4 ¼ tr B4. These in turn yield the following necessary conditions:
1.
 det A¼ det B⟹μ1μ3 ¼ 1. Obvious by taking det of (A.3).

2.
 tr A2 ¼ tr B2⟹e1 � A2e1 ¼ μ3e3 � A2e3. This follows by subtracting the identity matrix from (A.3) and then pre- and post-

multiplying by A to get

B2�A2 ¼ ðμ1�1ÞAe1 � Ae1þðμ3�1ÞAe3 � Ae3: ðA:7Þ
Taking the trace and using μ1μ3 ¼ 1 and μ3a1, we get e1 � A2e1 ¼ μ3e3 � A2e3.
3.
 tr A4 ¼ tr B4⟹ðe2 � A2e1Þ2 ¼ μ3ðe2 � A2e3Þ2. This follows from (A.3) by pre- and post-multiplying by A to get B2 ¼ μ1Ae1 �
Ae1þAe2 � Ae2þμ3Ae3 � Ae3 then squaring this to get B4. Now write A2 ¼A I A¼Aðe1 � e1þe2 � e2þe3 � e3ÞA and
square this to get A4. Put tr A4 ¼ tr B4 and simplify using items 1 and 2 and μ3a1 to get the result.



Substituting provisionally the expression (A.2) for B into (A.3), we get the necessary condition
�1 2 �1
A ð�Iþ2ê � êÞA ð�Iþ2ê � êÞA ¼ μ1e1 � e1þe2 � e2þμ3e3 � e3: ðA:8Þ

Multiplying out the tensor products in (A.8) we derive

�2Aê � A�1ê�2A�1ê � Aêþ4ðê � A2êÞA�1ê � A�1ê ¼ ðμ1�1Þe1 � e1þðμ3�1Þe3 � e3: ðA:9Þ
To solve this equation, we try to find a unit vector ê of the form

ê ¼ s1A
�1e1þs3A

�1e3 ¼ δ1Ae1þδ3Ae3: ðA:10Þ
The condition 1¼ ê � ê ¼Aê � A�1ê implies that

s1δ1þs3δ3 ¼ 1: ðA:11Þ
Substituting the expressions for Aê and A�1ê into Eq. (A.9), we get

�2ðs1e1þs3e3Þ � ðδ1e1þδ3e3Þ�2ðδ1e1þδ3e3Þ � ðs1e1þs3e3Þ
þ4ðs21þs23Þðδ1e1þδ3e3Þ � ðδ1e1þδ3e3Þ ¼ ðμ1�1Þe1 � e1þðμ3�1Þe3 � e3: ðA:12Þ

Rearranging similar terms in the above equation results in the following:

ð�4δ1s1þ4ðs21þs23Þδ21Þe1 � e1
þð�2s1δ3�2δ1s3þ4ðs21þs23Þδ1δ3Þðe1 � e3þe3 � e1Þ
þð�4δ3s3þ4ðs21þs23Þδ23Þe3 � e3 ¼ ðμ1�1Þe1 � e1þðμ3�1Þe3 � e3: ðA:13Þ

Comparing the 13 terms on both sides of (A.13) and using (A.11), we get the following expression connecting r1; r3; δ1
and δ3:

ðs1δ3�δ1s3Þð1�2s3δ3Þ ¼ 0: ðA:14Þ
The vanishing of the first factor, s1δ3�δ1s3 ¼ 0, leads to the trivial case μ1 ¼ μ3 ¼ 1 which has been excluded above. The
vanishing of the second factor gives that s3δ3 ¼ 1

2 and then from (A.11), s1δ1 ¼ 1
2. This shows that none of the unknowns

δ1; s1; δ3; s3 vanish. Now the e1 � e1 and e3 � e3 terms in Eq. (A.13) give

4s23δ
2
1 ¼ μ1 ⟹

δ21
δ23

¼ μ1;

4s21δ
2
3 ¼ μ3 ⟹

δ23
δ21

¼ μ3: ðA:15Þ

These equations are consistent with μ1μ3 ¼ 1, and we only need to retain one of them. In summary, (A.8) is satisfied for a
unit vector ê of the form (A.10) if and only if s1; s3; δ1; δ3 satisfy

s1δ1 ¼ 1
2 ; s3δ3 ¼ 1

2; δ23 ¼ μ3δ
2
1: ðA:16Þ

A useful way to write this solution is

δ3 ¼ s
ffiffiffiffiffi
μ3

p
δ1; s1 ¼

1
2δ1

; s3 ¼
s

2 ffiffiffiffiffi
μ3

p
δ1
; s¼ 71: ðA:17Þ

So far, δ1a0 and s¼ 71 are free parameters.
Although we have solved (A.8) by the choice (A.17), we have to be sure that these values of δ1; δ3; s1; s3 satisfy (A.10). This

is a vector equation in 3D and therefore is equivalent to the three equations one gets by dotting it with the three linearly
independent vectors, Ae1;Ae2;Ae3. This gives the three equations

s1 ¼ δ1ðe1 � A2e1Þþδ3ðe3 � A2e1Þ;
s3 ¼ δ1ðe1 � A2e3Þþδ3ðe3 � A2e3Þ;
0¼ δ1ðe2 � A2e1Þþδ3ðe2 � A2e3Þ: ðA:18Þ

If we square the last equation and use (A.17) and the nonvanishing of δ1, we get

ðe2 � A2e1Þ2 ¼ μ3ðe2 � A2e3Þ2: ðA:19Þ
This is satisfied by virtue of Item 3 above. Hence, the square of the third equation of (A.18) is an identity. So, we can satisfy
the third of (A.18) by an appropriate choice of s¼ 71 of (A.17). In particular, there exists sAf71g satisfying

s
ffiffiffiffiffi
μ3

p ðe2 � A2e3Þ ¼�e2 � A2e1: ðA:20Þ
This uniquely determines s unless it happens that e2 � A2e3 ¼ 0, in which case also e2 � A2e1 ¼ 0 and s can be either 71. Now
we further note that the first two equations in (A.18) are not independent. That is, multiply the first of these by δ1a0
and the second by δ3a0, subtract the equations and use the conditions s3δ3 ¼ s1δ1 ¼ 1

2. This leads to

e1 � A2e1�μ3e3 � A2e3 ¼ 0: ðA:21Þ
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This is automatically satisfied, by virtue of Item 2 above. Hence, there is only one independent equation in (A.18), that we
can take to be the first one:

1
2δ1

¼ δ1 e1 � A2e1
� �

þs
ffiffiffiffiffi
μ3

p
δ1 e3 � A2e1
� �

; ðA:22Þ

that is

2δ21ððe1 � A2e1Þþs
ffiffiffiffiffi
μ3

p ðe3 � A2e1ÞÞ ¼ 1: ðA:23Þ
We claim that, under our hypotheses, (A.23) can always be solved for δ1a0. That is, by the positive definiteness of A2, we

have e1 � A2e140; e3 � A2e340, ðe1 � A2e1Þðe3 � A2e3Þ4 ðe3 � A2e1Þ2. Hence, eliminating ffiffiffiffiffi
μ3

p using (A.21) (see Item 2), we
have for either choice s¼ 71

e1 � A2e1
� �

þs
ffiffiffiffiffi
μ3

p
e3 � A2e1
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � A2e1
e3 � A2e3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � A2e1Þðe3 � A2e3Þ

q
þse3 � A2e1

� �
40: ðA:24Þ

Hence, δ1 given by (A.6) is well-defined. Eqs. (A.(23) and A.17) imply that the vector ê given by (A.10) is a unit vector and
satisfies (A.8) and therefore (A.2).
The sufficiency of the condition (A.2) for compatibility is a standard result, see Bhattacharya (2003) or (10) above. The

formula for ê follows from (A.10), (A.17) and (A.23) above. □

Corollary 13 (Compound domains). Assume the hypotheses of Proposition12. There are two unit vectors êþ∦ê� satisfying (A.2)
if and only if

e2 � A2e3 ¼ e2 � A2e1 ¼ 0: ðA:25Þ
If (A.25) is satisfied and μ341, there are precisely two such nonparallel unit vectors (up to a premultiplied 7) that satisfy (A.2),
and in fact these vectors are orthonormal, êþ � ê� ¼ 0. They are given by the formulas

ês ¼ δs1Ae1þδs3Ae3; s¼ 7 ; ðA:26Þ
where

δs1 ¼ 2ðe1 � A2e1þs
ffiffiffiffiffi
μ3

p
e3 � A2e1Þ

� ��1=2
and δs3 ¼ s

ffiffiffiffiffi
μ3

p
δs1; s¼ 7 : ðA:27Þ

In the case μ3 ¼ 1 necessarily B¼ A and the solutions ê of (A.2) consist of unit vectors in the eigenspace of A.

Proof. The proof follows immediately from the statement s ffiffiffiffiffi
μ3

p ðe2 � A2e3Þ ¼�e2 � A2e1 of Proposition 12, which does not
uniquely determine sAf71g if and only if (A.25) is satisfied. The fact that the two solutions e71 are nonparallel is seen from
their forms (A.6), and the fact that these are the only possible solutions up to premultiplied 7 follows from Proposition 12.
The orthonormality of êþ and ê� follows by direct calculation using (A.26) and (A.27). □
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