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Bragg–von Laue diffraction generalized to twisted
X-rays
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A pervasive limitation of nearly all practical X-ray methods for the
determination of the atomic scale structure of matter is the need to crystallize
the molecule, compound or alloy in a sufficiently large (!10 " 10 " 10 mm)
periodic array. In this paper an X-ray method applicable to structure
determination of some important noncrystalline structures is proposed. It is
designed according to a strict mathematical analog of von Laue’s method, but
replacing the translation group by another symmetry group, and simultaneously
replacing plane waves by different exact closed-form solutions of Maxwell’s
equations. Details are presented for helical structures like carbon nanotubes or
filamentous viruses. In computer simulations the accuracy of the determination
of structure is shown to be comparable to the periodic case.

1. Introduction

Since its discovery by von Laue (Friedrich et al., 1912) and its
early exploitation as a method for the determination of the
structures of simple crystals by the Braggs (Bragg, 1913),
X-ray diffraction as a method of structure determination has
dominated structural research in materials science and
biology. However, many of the most important materials
whose structure is unknown do not readily crystallize as three-
dimensional periodic structures and, furthermore, a crystal-
lized protein or nanostructure may lose critical function due to
confinement or processing conditions for crystallization. Even
well known simple nanostructures, such as carbon nanotubes,
do not have accurately characterized lattice parameters due to
the combined effects of mixed chiralities and long period cells.

The more recent method of coherent diffractive imaging
(CDI) (Miao et al., 1999) is applicable to general structures,
but the absence of constructive/destructive interference gives
lower resolution than classical X-ray methods. This short-
coming is shared by fiber diffraction methods (Cochran et al.,
1952; Stubbs, 2001) for helical structures, which lead to sharp
signals only in an axial but not angular direction. Structure
reconstruction from non-sharp signals was recently reviewed
by Keen & Goodwin (2015).

The fundamental reason periodic X-ray diffraction is so
remarkably effective, and conventionally gives diffraction
patterns with peaks that differ from the background by two to
four orders of magnitude, arises from the conspiring effects of
constructive and destructive interference. Constructive inter-
ference arises because a large fraction of atoms in the sample
are positioned to resonate with the incoming wave. Destruc-
tive interference, which results in unexpectedly dramatic
cancellation of the outgoing field of even slightly off-
resonance incoming waves, is more subtle, and is explained
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mathematically by a fundamental theorem in Fourier analysis,
the Poisson summation formula (Strichartz, 2003).

For noncrystalline but symmetric structures suitable radia-
tion can be designed by exploiting a powerful mathematical
analogy that has not been previously noticed. To explain this
analogy, we first focus on the periodic case. Based on the
Bragg picture, constructive/destructive interference occurs
because the incoming wave is periodic, and also the structure
is periodic. A closer examination reveals that, in fact, the
hypothesis of periodicity is not fundamentally what is being
used, but rather a group structure. The key point is that the
structure being interrogated is the orbit of a discrete symmetry
group, and the incoming radiation has a matching symmetry.
Here ‘matching symmetry’ of the radiation means not just the
same discrete symmetry as the structure, but a symmetry
related to a larger, continuous, symmetry group, so as to give
destructive interference when the radiation parameters or
structure constants are tuned such that the outgoing waves are
off-resonance. This leads to ‘design equations’ for the
incoming radiation [equations (4), (6) in Appendix A].

Our method of radiation design works in principle for any
structure that is the orbit of one to thousands of atom posi-
tions under a discrete subgroup of the Euclidean group of
rotations (proper or improper) and translations. Remarkably,
some of the most important structures in biology, and a
strikingly disproportionate number of structures emerging in
nanoscience, are of this type. Examples include buckyballs and
many fullerenes, the parts of many viruses, actin, carbon
nanotubes (all chiralities), graphene and a large collection of
other two-dimensional structures, such as the currently
important structures black phosphorus and the dichalcogen-
ides. It is not understood from a fundamental viewpoint why
such structures (the orbits of a few atoms under a discrete
Euclidean group) occur so frequently, but it is likely to be
related to the invariance exploited here. The associated
mathematical problem is the celebrated, and far from solved,
‘crystallization problem’.

In this paper we do not report the design and construction
of an X-ray machine suitable for the production of the rele-
vant incoming radiation and the sensing of the peaks.
However, our theoretical results are completely explicit,
without undetermined parameters, and could be used as a

basis for contemplating an actual design. Our goal is to explain
the basic theory in a form intended to motivate the search for
possible designs among groups with expertise in experimental
design.

2. Twisted X-rays

We now present the details for the important special case of
helical structures, choosing suitable radiation according to our
design. The general solution of our design equations [equation
(7)] for these helical structures is

Eðr; ’; z; tÞ ¼ exp½ið!’þ "z ( !tÞ)
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where Eðr; ’; z; tÞ is the electric field at the point defined by
cylindrical coordinates r; ’; z at time t, n ¼ ðn1; n2; n3Þ is a
(generally complex) vector satisfying n * ð0; #;"Þ ¼ 0, J$ is a
Bessel function of order $, ! is the frequency, and the integer
! and real numbers ", # > 0 are parameters closely analogous
to the wavevector k of plane waves. These parameters are
related to the frequency by ð#2 þ "2Þ1=2 ¼ !=c, where c is the
speed of light. We call waves given by equation (1) twisted
waves. Fig. 1 shows a picture of a generic twisted wave with the
electric field vectors plotted along the direction of energy
flux. Together with the associated magnetic field, which is
also of the form of equation (1) but with n replaced by
ð1=!Þð0; #;"Þ " n, twisted waves are exact solutions of time-
harmonic Maxwell’s equations in free space.

These twisted-wave solutions have the fascinating property
of exhibiting orbital angular momentum (OAM). This, toge-
ther with the fact that we need a large set of twisted waves to
obtain a sufficient number of peaks in the scattered radiation
to fully recover any helical structure, provides additional
motivation for ongoing research on OAM beams and photons
(Allen et al., 1992; Arlt & Dholakia, 2000; Molina-Terriza et
al., 2007). Related research is underway in electron micro-
scopy following the recent creation of electron vortex beams
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Figure 1
A twisted wave with angular, axial and radial wavenumbers (!, ", #) = (2, 1.63, 1). The electric field vectors are plotted along a helix whose tangent is the
Poynting vector, i.e. the direction of energy flux. Twisted waves are general solutions of our design equations and therefore are suitable for structure
determination of helical structures.
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(Uchida & Tonomura, 2010; Verbeeck et al., 2010; Juchtmans
et al., 2015; Juchtmans & Verbeeck, 2015; van Veenendaal &
McNulty, 2007). The waveform (1) differs somewhat from
previously reported OAM waveforms. Scalar high-order
Bessel beams as reported in Arlt & Dholakia (2000) describe
the individual twisted-wave components but not their inter-
play. The Laguerre–Gauss vector beam reported in Allen et al.
(1992) exhibits a different variation of the polarization
direction with cylindrical angle. If one neglects localization
effects (as justified in our context of atomic scale X-ray
imaging) the latter beam reduces to a Hansen harmonic
(Hansen, 1937) curl a exp½ið!’þ "z ( !tÞJ!ð#rÞ. Interestingly,
if in addition one replaces the transversal (Allen et al., 1992)
choice of a by an axial one, the resulting Hansen harmonic can
be written in the form of equation (1); but any other choice of
a does not yield a twisted wave, and conversely any other
twisted wave is not of this Hansen form. Such differences will
influence some details of the diffraction signals, but our
analysis shows that they will not undermine the basic
phenomenon of discrete diffraction peaks.

There remain two key tasks. First, we have to demonstrate
that the scattered radiation exhibits constructive/destructive
interference by precisely the same mechanism as plane waves
do for crystals, as claimed above. Second, we have to give an
explicit procedure for recovery of the structure by measure-
ment of the peaks in the scattered radiation.

3. Bragg/von Laue condition for twisted X-rays

To find the condition for constructive interference, we first
note that the twisted wave (1) contains contributions with the
three angular wavenumbers ! + 1, ! ( 1 and ! [equation (8)].
Consider the ! + 1 component and two atoms on a helix,
labeled 1 and 2, separated by a rotation angle !’ and an axial
displacement !z. Interference is related to the additional path
in Fig. 2 that the incoming and outgoing wave must travel to
pass through atom 2 as compared to atom 1. In the classical
Bragg law, incoming and outgoing waves have the same
wavelength and so the phase difference can be expressed in
terms of the total path length.

But here two wavelengths are present: the wavelength % of
the outgoing plane wave, and the ‘effective wavelength’ %eff of
the incoming twisted-wave component when viewed as a plane
wave on the (’, z) coordinate plane. The total phase difference
along the path is 2&½ðdeff=%effÞ þ ðd=%Þ), where deff is the
distance of the two atoms in the (’, z) plane and d is the
distance in the direction of the outgoing wavevector (e.g. when
the latter agrees with the axial direction, axial distance).
Resonance occurs when the phase difference is an integer
multiple of 2&, that is to say if

deff

%eff

þ d

%
¼ n for integer n: ð2Þ

We note that the resonance, which came from a twisted-wave
component with one angular wavenumber, cannot be canceled
by the contributions from the other two angular wavenumbers
because these are associated with different polarization
directions. The von Laue form of equation (2) is
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Figure 2
The twisted Bragg/von Laue condition. (a) Incoming twisted-wave
component restricted to a cylindrical surface containing atoms 1 and 2.
(b) Diffraction at the two atoms in the axial direction, projected onto the
axis/angle coordinate plane. When diffracted from atom 2, incoming and
outgoing radiation must travel an additional path in this coordinate plane
relative to atom 1. Resonance occurs when the phase shift along this path
is an integer multiple of 2&.

Figure 3
View down the axis of a twisted wave (parameters of Fig. 1). Electric field
vectors evaluated at the red atoms also shown in red. Simultaneous
resonance of all the atoms is seen by noting that the projections of the red
vectors on a plane perpendicular to the axis are all parallel.
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where keff = (! + 1, ") is the effective wavevector of the
incoming twisted-wave component on the (’, z) plane, k0 is the
three-dimensional wavevector of the outgoing (far-field) plane
wave, and (!’, !z) and (!x, !y, !z) are, respectively, the
difference vectors between atom 2 and atom 1 in the (’, z)
plane and in three-dimensional space.

In Fig. 2 we have only pictured two atoms. But for any
helical structure, condition (3) or equation (2) is satisfied
simultaneously for all pairs of atoms provided the outgoing
wavevector points in an axial direction and the incoming
twisted-wave parameters are chosen appropriately (see
Appendix A). Resonance is illustrated in Fig. 3. The electric
field vectors at all atoms, projected onto a plane perpendicular
to the axis, are parallel. If, instead of considering a structure
that is the orbit of a single atom under the helical group, we
had considered the orbit of a collection of atoms, each atom in

the collection would be in resonance with all its copies. This is
precisely analogous to the situation in crystal diffraction.

4. Structure determination

The remarkable resonance effects of twisted waves with
helical structures suggest a promising X-ray method of struc-
ture determination. Send twisted waves onto a helical struc-
ture. When the twisted waves and the helical structure are
axially aligned, and the outgoing radiation is recorded in the
axial direction, the radiation exhibits sharp discrete peaks with
respect to the radiation parameters ! and ". Fig. 4 shows such
a simulated diffraction pattern on parameter space, for a
typical helical protein crystal of interest, the Pf1 virus. In the
simulation we assumed elastic (Thomson) scattering. The
pattern is seen to consist of double peaks arranged on a
certain lattice. The location of the peaks can be easily derived,
in closed form, from the twisted von Laue condition (see
Appendix A). The vanishing of the signal elsewhere can be
explained by a generalization of the Poisson summation
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Figure 4
Structure prediction with twisted X-rays. (a) Hypothetical setup of twisted X-ray source, structure and detector. (b) Simulated axial diffraction signal of
Pf1 virus depending on the incoming twisted-wave parameters ! and ". The (!, ") plane is the analog of the Ewald sphere. (c) Theoretical peak locations
from the twisted von Laue condition. (d) Model of the true electron density of Pf1 based on data from the Protein Data Bank, PDB entry 1pfi (Liu &
Day, 1994). (e) Reconstructed electron density obtained from the diffraction data as in (b) via a phase retrieval algorithm based on work by Elser (2003).
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formula due to Weil (1964) which originated from questions in
number theory (see Friesecke et al., 2015).

The left (or right, respectively) part of the double peaks
arises from the (! + 1) [or (! ( 1), respectively] component of
the twisted wave. The ! component does not contribute
because it is axially polarized and – as is familiar from classical
X-ray theory – the outgoing signal in the direction of the
incoming polarization vanishes. We remark that scalar models
of the incoming radiation as customary in discussions of OAM
beams do not suffice to fully understand twisted X-ray
diffraction. For example, modeling a twisted wave (1) by a
scalar cylindrical wave of angular wavenumber ! would
predict, instead of double peaks, single peaks at their
midpoint. The double peaks reflect the nontrivial vectorial
nature of twisted X-rays.

Structure prediction from the diffraction pattern now works
in exactly the same way as in the crystal case. The electron
density of the unit cell is decomposed into scalar cylindrical
waves instead of plane waves [see Appendix A, equation (12)],
and is completely determined by its complex expansion
coefficients whose magnitude can be inferred from the
diffraction peak intensities. As in X-ray crystallography, the
phases of these coefficients are lost. This phase problem can
be overcome by adapting sophisticated phase retrieval algo-
rithms developed for the crystal case. In Fig. 4 we obtained the
structure of the Pf1 virus from its simulated diffraction pattern
to a remarkable level of detail and accuracy, using a modest
number of peak intensities, bias-free random initial phases,
and no prior structural information.

5. Conclusions

We have shown on the level of simulation that twisted X-rays,
which carry orbital angular momentum, would be a very
promising tool for determining the detailed atomic structure
of compounds with helical architecture. Incoming twisted
X-rays, unlike the incoming plane waves used in X-ray fiber
diffraction, resolve not just the axial but also the angular
symmetry into sharp peaks.

While it is beyond the scope of this paper to speculate about
X-ray machine design, we note that axial detection may
necessitate the use of alignment by magnetic fields, as
currently used in fiber diffraction, or confinement in a capil-
lary. A temporal analog of the powder method may be useful,
in which resonance only occurs occasionally. We note the
important point that rotation of the structure about its axis
does not change the diffraction pattern for our method, unlike
in fiber diffraction.

APPENDIX A
Methods

A1. Modeling and design equations

The waveform in equation (1) was obtained from our design
equations, which we present in this section. We do this in the

general context of an arbitrary discrete Abelian group, so it
applies to net (i.e. two-dimensional), rod (i.e. one-dimensional
with an axial translation) or helical structures.

The incoming radiation is modeled as a time-harmonic
solution E0ðxÞ expð(i!tÞ of Maxwell’s equations, i.e.

!E0 ¼ (ð!2=c2ÞE0; div E0 ¼ 0; ð4Þ

which is to be designed to resonate with the (unknown)
structure.

Consider any electronic density '(y), y 2 R3, and a classical
model of the electrons driven by the incoming fields and
producing the well known outgoing Lienard–Wiechert fields
(Griffiths, 1999). Pass to the non-relativistic limit, superpose
fields from all the electrons and make the far-field approx-
imation X-ray wavelength , sample diameter , distance
between sample and detector, Fresnel number , 1. Under
these assumptions, the outgoing radiation in the far-field is
given by

Eoutðx; tÞ ¼ (ce‘

expfi½k0ðxÞ * x ( !t)g
jx ( xcj

" I ( k0ðxÞ
jk0ðxÞj-

k0ðxÞ
jk0ðxÞj

# $ Z

R3

E0ðyÞ'ðyÞ exp½(ik0ðxÞ * y) dy; ð5Þ

with the outgoing wavevector familiar from standard X-ray
theory, k0ðxÞ ¼ ð!=cÞðx ( xcÞ=jx ( xcj. [The diffraction model
(5) is standard though only special cases are usually given in
textbooks.] Here, ce‘ is a universal constant depending on the
charge and mass of the electron, xc is a typical point in the
illuminated region of the sample, I is the 3 " 3 identity matrix
and a - b denotes the 3 " 3 matrix A with entries Aij = aibj.
When the electrons are modeled by point charges, (5) reduces
to geometric scattering as underlying the derivation of the
twisted Bragg/von Laue condition. For incoming plane waves,
the integral is the usual scattering factor (Fourier transform of
') multiplied by the incoming polarization, and can be derived
from non-relativistic quantum electrodynamics (Santra, 2009).
Note that |k0| = |k| which implies that the photon energy is
conserved. Therefore, the model (5) describes elastic or
Thomson scattering.

The remarkable discrete diffraction patterns of crystals
under plane-wave radiation come mathematically from the
behavior of the above integral term, as captured by the
Poisson summation formula. The fundamental reason, which
we note and exploit in this paper, is that plane waves have a
continuous symmetry which mirrors the discrete translation
symmetry of crystals, namely that for any vector a, E0ðx þ aÞ
differs from E0ðxÞ by just a phase factor.

Translations are a special case of isometries of three-
dimensional space. The Euclidean group of isometries consists
of elements g = (R|c) acting on points in R3 according to the
rule g(x) = Rx + c and on vector fields via (gE0)(x) = RE0[RT

(x ( c)], where R is any orthogonal 3 " 3 matrix and c 2 R3.
The translation symmetry of plane waves has a natural analog
for any subgroup G of the Euclidean group, namely that

ðgE0ÞðxÞ ¼ (gE0ðxÞ ð6Þ
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for some complex number (g and all g in G. Equation (6)
together with (4) are our design equations. In words, the
incoming radiation is simultaneously an eigenfunction of the
group (with eigenvalues (g) and a divergence-free eigen-
function of the Laplacian (with eigenvalue (!2/c2). For the
translation group G ¼ fðIjaÞ : a 2 R3g the design equations
(4), (6) give plane waves. They are the right waves for
analyzing crystals, i.e. structures whose atomic positions are
generated by a discrete translation group. Analogously, solu-
tions to the design equations for another continuous group G
are right when the atomic positions are generated by some
discrete subgroup of G. Of particular relevance for this paper
is Volume E of the International Tables for Crystallography
which contains the subperiodic groups, i.e. those that lack
three linearly independent translations.

A2. Twisted waves

We now consider the case of the (continuous) helical group
G, which yields the right radiation for helical structures and
consists of the elements ðRjcÞ with R any rotation about a
fixed axis and c any translation along the axis. The design
equations require that

R)E0ðr; ’( ); z ( *Þ ¼ ();*E0ðr; ’; zÞ ð7Þ

for all real ) and *, where ðr; ’; zÞ are cylindrical coordinates
with respect to the axis and R) is a rotation matrix like the one
appearing in equation (1) but with ’ replaced by ). Combining
two group elements and applying equation (7) either to the
combined element or to both elements separately shows that
()þ)0;*þ*0 ¼ ();*()0;*0 , and hence ();* ¼ exp½(ið!) þ "*Þ) for
some integer ! and some real ". Evaluation of equation (7) at
’ = ), z = * gives E0ðr; ’; zÞ ¼ exp½ið!’þ "zÞ)R’E0ðr; 0; 0Þ.
Maxwell’s equations for this waveform reduce to a system of
three coupled ordinary differential equations which decouple
by a unitary transformation into three Bessel equations,
leading to equation (1). For more details see Friesecke et al.
(2015). Calculating the associated magnetic field is elementary,
thanks to the general formula B ¼ (ði=!Þ curl E. The result is

that B is also of the form of equation (1) but with n replaced
by ð1=!Þð0; #;"Þ " n.

A3. Twisted Bragg condition

The derivation of equations (2)–(3) rests on the following
decomposition of the twisted-wave equation (1) into angular
wavenumbers !þ 1;!( 1;!:

Eðr; ’; z; tÞ ¼ exp½ið"z ( !tÞ)
n

exp½ið!þ 1Þ’)nþ J!þ1ð#rÞ

þ exp½ið!( 1Þ’)n(J!(1ð#rÞ þ expði!’Þn0J!ð#rÞ
o

ð8Þ

where the polarization vectors n+, n(, n0 are the columns of
the second matrix in equation (1). Equation (8) follows from
an easily checked ‘intertwining relation’ between the rotation
matrix in (1), which we shall denote R’, and its diagonalization
D’ = diag ½expði’Þ; expð(i’Þ; 1), namely that R’N ¼ ND’,
where N is the second matrix in equation (1). We note that the
three contributions in equation (8) are not themselves solu-
tions to Maxwell’s equations because only their sum is diver-
gence-free.

A4. Von Laue form of the twisted Bragg condition

Let us express the twisted Bragg condition in the von Laue
form, i.e. in terms of the wavevector keff ¼ ð!þ 1;"Þ of the
incoming twisted-wave component on the ð’; zÞ plane and the
three-dimensional wavevector k0 of the outgoing (far-field)
plane wave. The wavelengths are %eff ¼ 2&=jkeffj and
% ¼ 2&=jk0j. The distance deff in the plane (Fig. 2) is the
projection of the dashed line onto the direction of the effective
incoming wavevector, i.e. deff ¼ ðkeff=jkeffjÞ * ð!’;!zÞ, where
the latter is the difference vector between atom 2 and atom 1
in this plane. Likewise, d ¼ (ðk0=jk0jÞ * ð!x;!y;!zÞ, where
ð!x;!y;!zÞ is the difference vector between atom 2 and
atom 1 in three-dimensional space. Substitution into (2) gives
equation (3).

A5. Predicted peak locations

The pattern in Fig. 4(c) was obtained in closed form from
the twisted von Laue condition equation (3), as follows. We
give the formula for general helical structures of infinite
length. The atom positions of such a structure are obtained by
applying the integer powers of an n-fold rotation and a screw
displacement to a finite set of atoms. The screw displacement
consists of a rotation by some angle )0 about the helical axis
and a displacement by some distance *0 along the axis. In
cylindrical coordinates, the positions of all copies of the +th
atom are r = r+ and

’
z

! "
¼ ’+

z+

! "
þ i

2&=n
0

! "
þ j

)0

*0

! "
mod

2&
0

! "
; ð9Þ

where i, j are integers, ðr+; ’+; z+Þ are the coordinates of the +th
atom and ~’’mod 2& denotes the angle in the interval
0 . ’< 2& which differs from ~’’ by an integer multiple of 2&.
The signals of these atoms induced by the ð!þ 1Þ component
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Figure 5
Predicted peak locations, equation (11), with indices ði0; j0Þ for Pf1 virus.
The reciprocal basis vectors in (11) are b1 and b2.
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of an incoming twisted wave (8) and emitted in an axial
direction interfere constructively when the twisted von Laue
condition (3) holds for all differences ð!’;!zÞ of two atom
positions (9). Here the effective incoming wavevector is
keff ¼ ð!þ 1;"Þ and the outgoing wavevector is k0 =
ð0; 0; 2&=%Þ, with % being the wavelength. Thus constructive
interference holds if and only if

!þ 1
"( 2&=%

! "
* i

2&=n
0

! "
þ j

)0

*0

! "# $
¼ 2&nij; ð10Þ

where nij is an integer for all integer choices of i and j. Note
that the vectors in the square brackets form the helical lattice
of the structure, which is a subset of the ð’; zÞ coordinate
plane. Analogously, constructive interference of the signals
induced by the ð!( 1Þ component of the twisted wave occurs
when equation (10) holds with !þ 1 replaced by !( 1. The
solutions to equation (10) and its ð!( 1Þ analog are easily
computed, yielding the peak locations

!þ $
"( 2&=%

! "
¼ i0

n
(n)0=*0

! "
þ j0

0
2&=*0

! "
; ð11Þ

where i0 and j0 are integers and $ ¼ /1. The vectors on the
right form the reciprocal helical lattice of the structure. The
integers i0; j0 are analogous to Miller indices, and $ indicates
the twisted-wave component causing the peak. Fig. 4(c) shows
the peak locations (11) for the structure parameters )0, *0 and
n ¼ 1 of Pf1 virus and the incoming wavelength % = 0.1925 Å
used in the simulation. Note that, conversely, the peak loca-
tions (11) uniquely determine the structure parameters )0, *0

and n (Fig. 5 ).

A6. Reconstruction

The reconstruction of Pf1 virus from simulated diffraction
data (Fig. 4e) rests on the following expansion of any electron
density 'e‘ with helical symmetry into cylindrical waves (which
replaces the familiar Fourier expansion of a periodic electron
density into plane waves):

'e‘ðr; ’; zÞ ¼
X

i0;j0

Z1

0

# d# Gi0j0ð#Þ Ji0nð#rÞ

" exp iði0b1 þ j0b2Þ *
’

z

! "# $
: ð12Þ

Here b1, b2 are the basis vectors of the reciprocal helical
lattice appearing in equation (11), the Gi0 j0 ð#Þ are complex
expansion coefficients, and helical symmetry of 'e‘ means
that 'e‘ðr; ’( a1; z ( a2Þ ¼ 'e‘ðr; ’; zÞ for all vectors ða1; a2Þ
belonging to the underlying helical lattice [square brackets in
equation (10)]. The magnitude of Gi0 j0ð#Þ is directly propor-
tional to the measurable diffraction peak intensities, # is the
radial wavenumber of the incoming twisted wave, and i0; j0 are
peak labels analogous to Miller indices. As shown in Friesecke
et al. (2015), the scattering amplitude of the peak with index
ði0; j0Þ and $ ¼ þ1 in equation (11) is proportional to
jnþjjGi0 j0 ð#Þj, and that of the peak with $ ¼ (1 to jn(jjGi0 j0 ð#Þj.

This reduces structure prediction from twisted X-ray patterns
to numerically solving a scalar phase problem, just as in the
crystal case.

The method of reconstruction of the structure of the Pf1
virus from the simulated diffraction pattern was as follows: we
initialized the phases with bias-free random numbers and
applied 5000 steps of Elser’s difference map algorithm (Elser,
2003) followed by 100 steps of a Gerchberg–Saxton algorithm
(Gerchberg & Saxton, 1972). The incoming twisted X-rays
were restricted to wavelengths above % = 0.1925 Å and
angular wavenumbers up to ! ¼ 8, and the simulations were
carried out using MATLAB. The resulting reconstructed virus
is shown in Fig. 4(e).
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