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Abstract

We derive a hierarchy of plate models from three-dimensional nonlinear elastic-
ity by �-convergence. What distinguishes the different limit models is the scaling
of the elastic energy per unit volume ∼ hβ , where h is the thickness of the plate.
This is in turn related to the strength of the applied force ∼ hα . Membrane theory,
derived earlier by Le Dret and Raoult, corresponds to α = β = 0, nonlinear bend-
ing theory to α = β = 2, von Kármán theory to α = 3, β = 4 and linearized vK
theory to α > 3. Intermediate values of α lead to certain theories with constraints.
A key ingredient in the proof is a generalization to higher derivatives of our rigidity
result [29] which states that for maps v : (0, 1)3 → R

3, theL2 distance of ∇v from
a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of
all rotations.
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1. Introduction

A fundamental problem in nonlinear elasticity is understanding the relation
between the three-dimensional theory and theories for lower-dimensional objects
(plates, shells, rods, ...). There are many such theories (see, e.g., [50, 2, 17]) and
their derivation and validity has been the subject of many discussions. In particular
the von Kármán plate equations, first formulated almost a hundred years ago [43],
have been a subject of heated controversy in the continuum mechanics and applied
mathematics communities. On one hand these equations have been very widely
used by engineers and nonlinear analysts alike; on the other hand their derivation
has faced harsh criticism. Truesdell [74] writes about von Kármán’s theory: “Ana-
lysts seem to love it, and it makes no sense to critical students of mechanics”. His
main criticisms (which he attributes to S.S. Antman) are: approximate geometry,
assumptions on the way the stresses vary over the cross-section, commitment to
some specific linear constitutive relation, neglect of some components of the strain
and an apparent confusion of the referential and the spatial descriptions. These five
criticisms are also quoted in [16] and we discuss them in more detail in Section 9.
Villaggio [76] refers to the von Kármán theory as a typical example of a “bad
theory” in the introduction of his text book on structural analysis, and Ciarlet

writes in his three volume treatise on nonlinear elasticity, plate and shell theories:
“The two-dimensional von Kármán equations for nonlinearly elastic plates, origi-
nally proposed by T. von Kármán in 1910, play an almost mythical role in applied
mathematics” [17, p. 367].

In this paper we show that the von Kármán (vK) equations arise as a rigorous
variational limit (or �-limit) of the equations of nonlinear three-dimensional elas-
ticity in the limit of vanishing thickness. In fact we derive a hierarchy of limiting
theories which include the vK theory (see Table 1 in Section 2.6 for an overview).
The different limiting theories are distinguished by different scaling exponents of
the energy as a function of the thickness. The scaling of the energy in turn is
controlled by the scaling of the applied forces.

Our approach begins with the elastic energy

Eh(v) =
∫

�h

W(∇w(z))dz (1)
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of a deformation

w : �h = S ×
(

−h
2
,
h

2

)
→ R

3.

It is natural to consider the energy per unit volume Eh/h, see (2) below.
Heuristically we expect that deformations with Eh/h ∼ 1 correspond to a

stretching of the midplane S leading to a membrane theory, while Eh/h ∼ h2

corresponds to a bending deformation (where S remains unstretched) leading to
nonlinear plate theory (first proposed by Kirchhoff [42]). If Eh/h ∼ h4, we
expect that the relevant rotations would vary only by order h and that we could
linearize around a rigid motion. Scaling the in-plane and the out-of-plane deviation
differently, we are formally led to the von Kármán theory of plates.

Membrane theory was rigorously justified in [45–47] in the sense of �-conver-
gence [22, 21] (for related work see also [1, 3] and for connections with the classical
tension field theory in mechanics [78, 68, 69] see [63, 64]). The bending theory of
plates and shells was recently obtained as a �-limit [28, 29, 31], see also [60, 61].
It is more delicate since the limit problem involves higher derivatives and hence
the limit h → 0 corresponds to a singular perturbation. (The earlier work [12] also
uses �-convergence, but the authors needed to impose additional constraints on the
admissible three-dimensional deformations to get enough compactness to complete
the argument).

In this paper we study limiting theories corresponding to the scalingEh/h ∼ hβ ,
β > 2, and we rigorously derive a hierarchy of theories by �-convergence. For
β = 4 we obtain the vK theory, for β > 4 we obtain the usual linear theory (leading
to the biharmonic equation for the out-of-plane component for isotropic energies)
and for 2 < β < 4 we obtain a theory with constraints. From the point of view
of vK theory the constraint is that the vK stretching energy has to vanish, whereas
from the point of view of nonlinear bending theory the constraint can be seen as
a geometrically linear version of the isometry constraint. The famous expression
(1/2)[∇′u+ (∇′u)T +∇′v⊗∇′v] for the membrane strain with its dependence on
the in-plane and out-of-plane displacement, which leads to the nonlinearity in the
vK equations, was used earlier in Föppl’s work [25]. Consequently, in the physics
literature we also find frequently the term Föppl-von-Kármán theory. In contrast to
von Kármán, however, Föppl considers only a membrane contribution to the energy
and no bending contribution. In Section 2.5 we briefly discuss how (a relaxed version
of) Föppl’s theory arises if clamped boundary conditions are assumed. The different
scalings and the corresponding limiting theories are summarized in Tables 1 and 2
in Section 2.6 below.

Various hierarchies of theories have been previously suggested in the literature
based on formal asymptotic expansions or extra assumptions on the kinematics
of the three-dimensional deformations; for recent contributions see, e.g., [27, 51].
However, the constrained theory we obtain for 2 < β < 4 and which involves
non-integer scaling exponents seems to be new among theories derived either rig-
orously or formally. One typical problem with formal expansions is that they can
miss important effects if the class of ansatz functions is not rich enough. One
example is the membrane theory considered in [27], which misses the fact that
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membranes have no resistance to compression (due to lack of bending energy they
show “crumpling”). We do not discuss here the huge literature on the derivation of
lower-dimensional theories starting from geometrically linear three-dimensional
elasticity; rigorous convergence results go at least back to [52], see [17] for an
extensive discussion of the literature.

That suitable bounds on the scaled displacements imply rigorous �-conver-
gence of the energy to the vK functional has been shown by A. Raoult [67]. For a
different rigorous approach to the von Kármán equations based on a clever use of
the implicit function theorem see [54]. A justification of the von Kármán equations
through formal asymptotics was given by Ciarlet [16]. Some of the results proved
here were announced in [30].

2. Main results

2.1. Setup

To state our results it is convenient to work in a fixed domain� = S× (− 1
2 ,

1
2 ),

change variables x = (z1, z2,
z3
h
) and rescale deformations according to y(x) =

w(z(x)) so that y : � → R
3. We abbreviate x′ = (x1, x2) and use the notation

∇′y = y,1 ⊗ e1 + y,2 ⊗ e2 for the in-plane gradient so that

∇w =
(

∇′y, 1

h
y,3

)
=: ∇hy

and

1

h
E(w) = Ih(y) :=

∫

�

W(∇hy) dx. (2)

We assume that the stored energyW is Borel measurable with values in [0,∞]
and satisfies

W(QF) = W(F) ∀Q ∈ SO(3), (3)

W = 0 on SO(3), (4)

W(F) � c dist2(F, SO(3)), c > 0, (5)

W is C2 in a neighborhood of SO(3). (6)

Since in many cases the relevant deformation gradients will be close to SO(3),
we also consider the quadratic form

Q3(F ) = ∂2W

∂F 2 (Id)(F, F ), (7)

which is twice the linearized energy, and Q2 : R
2×2 → R,

Q2(G) = min
a∈R3

Q3(G+ a ⊗ e3 + e3 ⊗ a), (8)
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which is obtained by minimizing over stretches in the x3 direction. In view of (4)
and (5) both forms are positive semidefinite and hence convex. For the special case
of isotropic elasticity we have

Q3(F ) = 2µ

∣∣∣∣F + FT

2

∣∣∣∣
2

+ λ(tr F)2,

Q2(G) = 2µ

∣∣∣∣G+GT

2

∣∣∣∣
2

+ 2µλ

2µ+ λ
(trG)2. (9)

In view of (4)–(6) Q2 and Q3 are positive-definite on symmetric matrices.

2.2. From membrane theory to nonlinear bending theory: 0 � α � 2

Here we quickly review the known (and some recent) results for forces with
scaling exponent α between 0 and 2. In the case α = 0, which leads to membrane
theory, we need some additional assumptions and notation. We assume that the
three-dimensional energy density W satisfies

W(F) � C(1 + |F |p), W(F) � c|F |p − C for some p � 2, c > 0. (10)

Weaker growth hypotheses, which are compatible with the conditionW(F) → ∞
as det F → 0, are also possible, see [6]. For the corresponding membrane theory
we consider the two-dimensional energy density W2D : R

3×2 → [0,∞], defined
by minimizing out over stretches in the x3 direction,

W2D(F
′) := min

a∈R3
W(F ′ + a ⊗ e3) (11)

and its quasiconvexification

Wmembrane(F
′) := W

qc
2D(F

′)

:= inf

{∫
S

W2D(F
′ + ∇′η) : η ∈ C1

0(S,R
3)

}
. (12)

In this way the membrane energyWmembrane takes into account the energy reducing
effect of possible fine-scale oscillations. These do indeed arise in compression and
Wmembrane(F

′) vanishes whenever (F ′)T F ′ � Id . This effect is missed by theories
based on formal asymptotic expansion.

The results about limiting theories can be stated in terms of convergence of
minimizers or using the closely related notion of �-convergence. For the former
we consider the functionals

Jh(y) =
∫

�

W(∇hy)− f (h)(x′) · y dx, (13)

where the applied forces f (h) : S → R
3 satisfy

1

hα
f (h) ⇀ f in L2(S; R

3). (14)
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Hereafter the half-arrow ⇀ denotes weak convergence. We assume that the total
force and the total moment applied to the reference configuration is zero, i.e.,∫

�

f (h) dx = 0,
∫
�

x ∧ f (h) dx = 0. (15)

Here, the former avoids the absence of a lower bound arising from the trivial
invariance y → y+const.. The latter can always be satisfied by rotating the forces
f (h) → Q(h)f (h),Q(h) ∈ SO(3), this being without loss of generality because of
the rotational invariance ofW in (13). Since f (h) is independent of x3 the conditions
(15) are equivalent to∫

S

f (h) dx′ = 0,
∫
S

x′f (h)3 dx′ = 0,
∫
S

x1f
(h)
2 − x2f

(h)
1 dx′ = 0. (16)

For α > 2 we also assume that the limiting force points in a single direction which
we may choose to be the x3 direction, i.e.,

f1 = f2 = 0. (17)

If we impose suitable boundary conditions which prevent a rigid motion of the
plate, it is also possible to consider a combination of normal and tangential forces
with different scalings. This will be discussed in detail in [33].

To cover cases where there may be nonattainment of the 3D energy, it is con-
venient to study not only convergence of exact minimizers but also of almost min-
imizers of Jh. Since the energy Jh will typically scale like a power of h we say
that a sequence of deformations y(h) is a β-minimizing sequence if

lim sup
h→0

1

hβ

(
Jh(y(h))− inf Jh

)
= 0. (18)

Theorem 1 (Membrane to nonlinear bending theory). Suppose that the stored en-
ergy W satisfies (3)–(6) and the forces satisfy (14) and (16). The following asser-
tions hold:

(i) (Membrane theory [45–47]). Suppose in addition that (10) is satisfied. Sup-
pose that α = 0 and set β = 0. Then | inf Jh| � C. If y(h) is a β-minimizing
sequence then y(h) ⇀ ȳ in W 1,2(�; R

3) (for a subsequence). The limit ȳ is
independent of x3 and minimizes

J 0
0 (y) =

∫
S

Wmembrane(∇′y)− f · y dx′ (19)

among all y : S → R3.
(ii) (Constrained membrane theory [18]). Suppose that 0 < α < 1 and set

β = α. Then | inf Jh| � Chβ and every β-minimizing sequence y(h) has a
subsequence with y(h) ⇀ ȳ inW 1,2(�; R

3). The limit ȳ is independent of x3,
satisfies (∇′ȳ)T∇′ȳ � Id and minimizes

J 0
α (y) =

∫
S

−f · y dx′ (20)

among all y : S → R3 with (∇′y)T∇′y � Id.
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(iii) (Nonlinear bending theory [28, 29]). Suppose that α = 2 and set β = 2.
Then | inf Jh| � Ch2 and if y(h) is a β-minimizing sequence then there is
strong convergence y(h) → ȳ in W 1,2(�; R

3) (for a subsequence). The limit
map is independent of x3, is an isometric immersion, i.e., (∇′ȳ)T∇′ȳ = Id,
and belongs to W 2,2(�; R

3). Introducing the normal ν̄ = ȳ,1 ∧ ȳ,2, consider
the second fundamental form Āij = −ȳ,ij · ν̄, where i, j ∈ {1, 2}. Then ȳ
minimizes

J 0
2 (y) =

∫
S

1

24
Q2(A)− f · y dx′ (21)

among all isometric immersions y : S → R
3 which belong to W 2,2(S; R

3).
The nonlinear strain satisfies

h−1
[
(∇hy(h))T∇hy(h) − Id

]
→ x3(Ā(x

′)+ sym amin ⊗ e3),

where 2 symG = GT + G and where amin is the vector which appears in
definition (8) of Q2, i.e., Q2(Ā) = Q3(Ā+ amin ⊗ e3).

In all cases, there is convergence of energy, i.e.,

lim
h→0

h−βJ h(y(h)) = lim
h→0

h−β inf Jh = J 0
α (ȳ) = min J 0

α . (22)

Convergence of minimizers for the nonlinear bending theory was obtained inde-
pendently by Pantz [60, 61] under the stronger assumption that (∇hy(h))T∇hy(h)
is uniformly close to the identity.

The range 1 � α < 2 is largely unexplored. In the context of delamination
and blistering of thin films [35] we are led to the study of compressive Dirichlet
boundary conditions such as y(h)(x′, x3) = (λx′, hx3) on ∂S × I , with 0 � λ < 1
and we can show that ch � inf Ih(y(h)) � Ch, with c > 0, see [8] (as well as [38,
7] for related work), and [18] for the extension to anisotropic compression. The
�-limit of h−1Ih is not known.

If instead of Dirichlet boundary conditions we only assume that y(h) ⇀ (λx′, 0)
inW 1,2 then much less is known. S. Venkataramani has constructed maps with peri-
odic boundary conditions whose energy scales like h5/3. His construction shows
that for λ = 0 it is possible to achieve an energy boundCh5/3. Conti & Maggi [19]
have generalized this construction to a much large class of limit maps. They have
also shown that every short map (i.e., every map satisfying (∇′y)T∇′y � Id) can
be approximated in L∞ (and weakly inW 1,2) by maps yh with energy bounded by
Ch5/3−ε. Thus part (ii) of Theorem 1 can be extended to the regime α = β < 5/3.

On the other hand, no general lower bound is known, except for the trivial one
lim infh→0 h

−2Ih(y(h)) = ∞, which follows from part (iii) of Theorem 1. The
scaling exponent h5/3 has been suggested in the physics literature on crumpling as
a natural exponent based on a formal scaling argument and an assumed equiparti-
tion of bending and stretching energy [49, 23] (for further discussion of crumpling
see, e.g., [5, 13]). Experimentally the structure of crumpled sheets is characterized
by cone-like singularities (smoothed at a scale h) which are connected by ridges
whose widths vary with the distance from the singularities. It is believed that the
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energy contribution of the cones is of order h2 ln(1/h) while the ridges contribute
h5/3. For a single ridge with well-defined boundary conditions, Venkataramani

recently showed that the energy scales indeed like h5/3 [75]. A related, but differ-
ent, problem arises in the study of complex folding patterns at free boundaries after
rupture and it has been suggested that similar patterns might be relevant in certain
growth models in biology [71, 4].

2.3. von Kármán like theories: α > 2

For α > 2 we will show that the limit map ȳ is not only an isometry (as in
part (iii) of Theorem 1 above) but is even close to a rigid motion. Then it is natural
to study the deviation from the rigid motion and its scaling with h. With a map
y(h) : � → R

3 we associate

ỹ(h) := (R̄(h))T y(h) − c(h), with constants R̄(h) ∈ SO(3), c(h) ∈ R
3. (23)

We set I = (−1/2, 1/2) and consider the averaged in-plane and out-of-plane dis-
placements

U(h)(x′) :=
∫
I

(
ỹ
(h)
1

ỹ
(h)
2

)
(x′, x3)−

(
x1

x2

)
dx3, V (h)(x′) :=

∫
I

ỹ
(h)
3 dx3 (24)

and their rescalings

u(h) = 1

hγ
U(h), v(h) = 1

hδ
V (h) (25)

defined by parameters γ, δ.
For u ∈ W 1,2(S,R2) and v ∈ W 2,2(S) we introduce the generalized von

Kármán functional

I vKα (u, v) := α

2

∫
S

Q2

(
1

2
[∇′u+ (∇′u)T + ∇′v ⊗ ∇′v]

)
dx′

+ 1

24

∫
S

Q2((∇′)2v) dx′, (26)

α :=



∞ if 2 < α < 3,
1 if α = 3,
0 if α > 3

with the convention that 0 · ∞ = 0. In other words for α = 3 we have the usual
von Kármán functional

I vK(u, v) := 1

2

∫
S

Q2

(
1

2
[∇′u+ (∇′u)T + ∇′v ⊗ ∇′v]

)

+ 1

24
Q2((∇′)2v) dx′, (27)
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for α > 3 we have the “linearized” von Kármán functional

I vKlin (v) = 1

24

∫
Q2((∇′)2v) dx′, (28)

and for 2 < α < 3 we also have I vKlin but subject to the nonlinear constraint

∇′u+ (∇′u)T + ∇′v ⊗ ∇′v = 0. (29)

A symmetrized gradient e = sym ∇′u satisfies e11,22 + e22,11 − 2e12,12 = 0 (in the
sense of distributions). Thus if (29) holds with v ∈ W 2,2(S) we must have

det((∇′)2v) = 0. (30)

Conversely (30) is sufficient for the existence of a map u such that (29) holds (see
Proposition 9 below).

Geometrically (30) is exactly the condition needed so that the Gauss curva-
ture of the graph of v vanishes. Thus, at least for sufficiently smooth functions,
(30) is equivalent to existence of an isometric map from the graph of v to R

2. See
Theorem 7 for a precise statement.

Theorem 2 (von Kármán like theories). Suppose that W satisfies (3)–(6) and the
applied forces satisfy (14), (16) and (17). Then the following assertions hold:

(i) (Linearized isometry constraint). Suppose 2 < α < 3 and set β = 2α − 2,
γ = 2(α−2), δ = α−2 (recall (25) for the definitions of γ, δ). If α ∈ (2, 5/2)
suppose in addition that S is simply connected. Then 0 � inf Jh � −Chβ .
If y(h) is a β-minimizing sequence (in the sense of (18)) then there exists
constants R̄(h) ∈ SO(3) and c(h) ∈ R

3 such R̄(h) → R̄ and ỹ(h) and the
scaled in-plane and out-of-plane deformations given by (23)–(25) satisfy (for
a subsequence)

∇hỹ(h) → Id in L2(�; R
3×3), (31)

u(h) → ū in W 1,2(S; R
2), v(h) → v̄ in W 1,2, (32)

equation (29) and v̄ ∈ W 2,2. Moreover, the pair (v̄, R̄) minimizes the func-
tional

J vKlin (v, R) = 1

24

∫
Q2((∇′)2v) dx′ − R33

∫
S

f3 · v dx′, (33)

subject to

det(∇′)2v = 0. (34)

(ii) (vK theory). Suppose that α = 3 and set β = 4, γ = 2, δ = 1. Then
0 � Jh � −Chβ and for a (subsequence of a) β-minimizing sequence, (31)–
(32) hold and the limit (ū, v̄, R̄) minimizes the usual von Kármán functional

J vk(u, v, R) = I vk(u, v)− R33

∫
S

f3 · v dx′. (35)
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(iii) (Linearized vK theory). Suppose α > 3 and set β = 2α − 2, γ = α − 1
and δ = α − 2. Then 0 � inf Jh � −Chβ and for a (subsequence of a)
β-minimizing sequence, (32) holds with ū = 0 and the pair (v̄, R̄) minimizes
the linearized von Kármán functional

J vKlin (v, R) = 1

24

∫
S

Q2((∇′)2v) dx′ − R33

∫
S

f3 · v dx′. (36)

In all cases we have convergence of the scaled energy h−βJ h(y(h)) to the mini-
mum of the limit functional I vkα (u, v)−R33

∫
S
f · v. Moreover for f3 
≡ 0 we have

R̄33 = 1 or R̄33 = −1.

Remark 1. If R̄33 = 1 then R̄ is an in-plane rotation and y(h) is close to R̄
(
x′
0

)
(up to translation). If R̄33 = −1 then R̄ is an in-plane rotation followed by a 180◦
degree out-of-plane rotationR0 = diag(−1, 1,−1). Since J 0 is invariant under the
transformation (u, v, R) → (u,−v, R0R) it suffices to consider the (conventional)
situation R33 = 1.

For convergence of the nonlinear strain

(∇hy(h))T∇hy(h) = (∇hỹ(h))T∇hỹ(h), (37)

see (161) below. In particular the limiting strain is affine in x3, see (106). In formal
derivations of the vK equations such a form of the strain is often assumed a priori,
whereas here it arises as a consequence of the scaling of the forces (and hence the
energy).

2.4. �-convergence

Next we turn to the closely related description in terms of �-convergence. In
this setting we consider the behavior of general sequences with bounded (scaled)
energy rather than minimizing sequences. The �-limit I of a sequence of function-
als Ih on a Banach space X captures the lowest limiting value of Ih(y(h)) among
all sequences y(h) converging to y. More precisely �-convergence with respect to
the weak (or strong) topology of X requires that the following statements hold:

(i) (Ansatz-free lower bound). For all sequences y(h) converging weakly (or
strongly) to y, lim infh→0 I

(h)(y(h)) � I 0(y),
(ii) (Attainment of lower bound). For each y ∈ X there exists a sequence yh

converging weakly (or strongly) to y such that

lim
h→0

I (h)(y(h)) = I 0(y). (38)

See [21] for a comprehensive treatment of �-convergence.
We restrict our attention to the von Kármán-like theories; for membrane theory

(α = 0) see [45–47], for nonlinear bending theory of plates and shells (α = 2) see
[28, 29, 31, 60, 61] and for 0 < α < 1 see [18].
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Theorem 3 (�-convergence). Suppose that W satisfies (3)–(6) and the applied
forces satisfy (14), (16) and (17). Let α > 2 and let β, γ, δ be as in Theorem 2 (see
Table 1). If α ∈ (2, 5/2) suppose that S is simply connected. Then the function-
als h−βIh are �-convergent to the generalized von Kármán functional I vkα . More
precisely,

(i) (Compactness and lower bound). If

lim sup
h→0

1

hβ
Ih(y(h)) < ∞, (39)

then there exists constants R̄(h) ∈ SO(3) and c(h) ∈ R
3 such (for a subse-

quence) R̄(h) → R̄ and ỹ(h) and the scaled in-plane and out-of-plane defor-
mations given by (23)–(25) satisfy

∇hỹ(h) → Id in L2(�; R
3×3), (40)

u(h) ⇀ u in W 1,2(S; R
2), (41)

v(h) → v in W 1,2(S), v ∈ W 2,2(S). (42)

For 2 < α < 3,

∇′u+ (∇′u)T + ∇′v ⊗ ∇′v = 0, det(∇′)2v = 0, (43)

lim inf
h→0

1

hβ
Ih(y(h)) �

∫
S

1

24
Q2((∇′)2v) dx′. (44)

For α = 3,

lim inf
h→0

1

hβ
Ih(y(h)) � I vK(u, v), (45)

and for α > 3,

lim inf
h→0

1

hβ
Ih(y(h)) �

∫
S

1

24
Q2((∇′)2v) dx′. (46)

(ii) (Optimality of lower bound). If 2 < α < 3 and if v ∈ W 2,2(S) with
det(∇′)2v = 0 then there exist u ∈ W 1,2(S; R

2) such that (43) holds and
there exists a sequence ŷ(h) such that (40)–(42) hold (with ỹ(h) replaced with
ŷ(h) and R̄(h) = Id , c(h) = 0) and

lim
h→0

1

hβ
Ih(ŷ(h)) =

∫
S

1

24
Q2((∇′)2v) dx′. (47)

If α = 3, v ∈ W 2,2(S) and u ∈ W 1,2(S; R
2) then there exists ŷ(h) such that

(40)–(42) hold and

lim
h→0

1

hβ
Ih(ŷ(h)) = I vK(u, v). (48)
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If α > 3 and v ∈ W 2,2(S) then there exists ŷ(h) such that (40) and (42) hold
and

lim inf
h→0

1

hβ
Ih(ŷ(h)) =

∫
S

1

24
Q2((∇′)2v) dx′. (49)

Remark 2. In part (i) we also haveu = 0 provided thatα > 3. Further convergence
results for ∇hy(h) are given in Lemmas 1 and 2 as well as in Corollary 1.

2.5. Clamped boundary conditions and Föppl’s theory

The scaling of the energy and the solutions can also depend strongly on the
boundary conditions. The influence of boundary conditions will be discussed in
more detail in [33]. Here we focus on an extreme case, the fully clamped plate. We
thus assume that

y(h)(x′, x3) =
(
x′

hx3

)
on ∂S × I. (50)

In terms of the averaged in-plane and out-of-plane displacements ((25) with R̄(h) =
Id, c(h) = 0) this implies in particular that

u = 0, v = 0 on ∂S, (51)

where we have omitted the superscript (h) here and below for simplicity. The first
equation has an important consequence. It implies that

∫
S

sym ∇′u dx′ = 0.

Therefore, control of the membrane energy (1/8)Q2(2 sym ∇′u+∇′v⊗∇′v) alone
provides an estimate for v. Indeed we obtain by Jensen’s inequality and the obvious
estimate Q2(A) � c|trA|2:

∫
S

Q2(2 sym ∇′u+ ∇′v ⊗ ∇′v) dx′

� 1

|S|Q2

(∫
S

2 sym ∇′u+ ∇′v ⊗ ∇′v dx′
)

� c

(∫
S

|∇′v|2 dx′
)2

. (52)

This implies that the clamped plate is much stiffer in response to applied normal
loads, than a plate with free boundaries (see the different exponents for δ in Tables 1
and 2). Note also that the above lower bound for the membrane energy scales like the
fourth power of the displacement, while the bending energy (1/24)

∫
Q2((∇′)2v)

scales only quadratically, leading to a sublinear (in fact cubic root) behavior of
the displacement in terms of the strength of the applied force, when the membrane
term is dominant. This crossover from linear response for very weak forces (α > 3)
to sublinear behavior for stronger forces (0< α < 3) is exactly what Föppl [25]
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and von Kármán [43] wanted to capture with their extension of the linear, purely
bending dominated theory.

A precise statement is contained in the following theorem. We define the relaxed
membrane energy by

Qrel
2 (A, b) = min

{
Q2

(
A+ b ⊗ b

2
+M

)
: M = MT ,M � 0

}
(53)

for all A ∈ R
2×2, b ∈ R

2. This relaxed energy is a geometrically linear version
of the membrane energy of LeDret and Raoult: it vanishes if symA+ (1/2)b ⊗ b

is negative semidefinite (pure compression) and it agrees with Q2 if the stress
σ = L(symA + (1/2)b ⊗ b) is positive semidefinite (here L is the self-adjoint
operator associated with the quadratic form Q2, i.e., (LA,A) = Q2(A)). In fact,
Qrel

2 is both the quasiconvex and the rank-one convex envelope of Q2 if the latter
is viewed as a function on 3 × 2 matrices

(
A
b

)
. We consider the limiting energy

functional

J Fö
rel (u, v) = 1

2

∫
S

Qrel
2 (∇u,∇v) dx′ −

∫
S

f3v dx
′. (54)

Theorem 4 (see [20]). Suppose that W satisfies (3)–(6) and that � is strictly star-
shaped with C2 boundary. Suppose also that 0 < α < 3, that f (h)1 = f

(h)
2 = 0 and

that f (h)3 : S → R satisfies

1

hα
f
(h)
3 ⇀ f3 in L2(S).

Set

β = 4

3
α, γ = 2

3
α, δ = 1

3
α.

Then,

0 � inf{Jh(y) : y satisfies (50)} � −Chβ. (55)

If y(h) is a β-minimizing sequence (subject to (50)) then (for a subsequence)

u(h) → u in L1(S; R
2), sym ∇′u(h) ∗

⇀ sym ∇′u in M(S; R
2×2), (56)

v(h) ⇀ v in W 1,2
0 (S), (57)

lim inf
1

hβ
J h(y(h)) = J Fö

rel (u, v), (58)

and (u, v) minimizes J Fö
rel subject to the boundary conditions v = 0 on ∂S and

u−(x′) = λ(x′)ν(x′), with λ � 0, on ∂S, where ν denotes the outer normal and u−
is the inner trace of u (which exists for functions whose symmetrized distributional
gradient is a Radon measure).
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Remark 3. Föppl [25] considered the limiting functional withQ2 instead ofQrel
2 .

This misses the degeneracy due to the possibility of crumpling, but Föppl’s func-
tional is correct if the plate is always in a state of stretch (and it may well be
possible to prove that this is the case for certain reasonable loading conditions).
Table 2 makes precise von Kármán’s assertion that his theory lies in between the
fully linear theory (which arises for α > 3) and Föppl’s theory.

Remark 4. It might at first glance seem surprising that the limiting boundary con-
dition for u is not simply u = 0. The reason is that displacements satisfying the
condition in the theorem can be approximated well in energy by deformations with
zero boundary conditions. Indeed assume the inequality condition and consider an
approximation uδ with zero boundary conditions which agrees with u except on a
boundary layer of thickness δ in which uδ is almost linear in the direction normal
to the boundary. Then ∇uδ is approximately −u− ⊗ ν in the boundary layer and
therefore sym ∇uδ is (almost) negative semidefinite since λ � 0, i.e., uδ is (almost)
compressive. Now the relaxed energy is zero on compressive deformations, hence
there is almost no extra energy in the boundary layer.

If the forces are scaled with exponent α � 3 and we impose the clamped bound-
ary conditions (50), then we obtain �-convergence to the same limit functionals as
above, subject to the constraints

u = 0, v = ∇′v = 0. (59)

The only slightly delicate point is to establish the new boundary condition
∇′v = 0. For this, we can use Corollary 1; see [33] for the details. The upper bound
in the proof of �-convergence is easy since the ansatz functions essentially inherit
the clamped boundary conditions from (59).

2.6. Overview of scaling exponents and limit models

Given the scaling exponent of the applied force, the exponents describing the
convergence of the energy and of the solution, together with the expression for the
limiting theory, are determined by Theorems 1–4. Tables 1 and 2 give an overview
of the different exponents, for unconstrained and clamped boundary conditions,
respectively.

Table 1. Relation between the scaling exponents α of the applied forces, β of the energy,
γ of the in-plane deformation and δ of the out-of-plane deformation. For α > 2 we assume
that the limit force is normal (see (17); cf. also Theorem 2)

α β γ δ
applied force energy in-plane out-of-plane limit model
α = 0 0 0 0 Membrane
0 < α < 1 α 0 0 Constrained membrane
α = 2 α 0 0 Bending, isometric midplane
2 < α < 3 2α − 2 2(α − 2) α − 2 Linearized isometry constraint
α = 3 2α − 2 2(α − 2) α − 2 von Kármán
α > 3 2α − 2 α − 1 α − 2 Linearized vK
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Table 2. Relation between the scaling exponents for a clamped plate, assuming normal
forces. Föppl’s theory (or more precisely its relaxed version) can be seen as a geometrically
linear version of membrane theory. von Kármán’s theory which has both membrane and
bending contributions lies in between Föppl’s theory (capturing only membrane energy) and
the linear theory (capturing only bending energy)

α β γ δ
applied force energy in-plane out-of-plane limit model
α = 0 0 0 0 Membrane
0 < α < 3 (4/3)α (2/3)α (1/3)α Relaxed Föppl

= lin. membrane
α = 3 2α − 2 2(α − 2) α − 2 von Kármán
α > 3 2α − 2 α − 1 α − 2 Linearized vK

3. Outline of the proof

(a) Rigidity estimates. As in the work on the nonlinear bending theory [29] the cru-
cial ingredient is a quantitative estimate that bounds the squared L2 distance
of the deformation gradient ∇w from a rigid motion in terms of the energy∫
W(∇w). We recall this estimate in Theorem 5 at the beginning of the next

section.
(b) Scaled rigidity estimates in thin domains. In a thin domain�h=S×(−h/2, h/2)

the constant in the rigidity estimate degenerates as h → 0. We show that glob-
ally the constant degenerates like h−2. Locally we can obtain a good approxi-
mation of ∇w by covering�h by cubes of size h and using a constant rotation
in each cube. This leads to two important approximations: one (by a piecewise
constant) maps R(h) with values in the rotations SO(3), and another one R̃(h)

(obtained by a difference quotient estimate and smoothing) which is differen-
tiable, takes values close to SO(n) (in an L2 sense) and has a gradient which
can be bounded in terms of the energy. While this is straightforward in the
interior, some care has to be taken near the boundary. All these estimates are
carried out in Theorem 6 in the next section. It is convenient to state them in
the fixed domain � = S × (−1/2, 1/2). Thus the gradient has to be replaced
by the scaled gradient ∇h.

(c) Scaling of the in-plane and out-of-plane components. From (b) we see that if
the energy is small compared to h2 then the deformation is close to a rigid
rotation even in a thin domain. Normalizing this rotation to the identity we can
easily derive the natural scaling exponents for the in-plane and out-of-plane
components (see Table 1). This is done in Lemma 1 in Section 5.

(d) Identification of the limiting strain. The estimates in (b) show that the scaled
approximate nonlinear strain G(h) = h2−α[(R(h))T∇hw(h) − Id] is bounded
in L2. Using a difference quotient argument we show that the limiting strain
G is affine in x3, i.e., G = G0(x

′) + x3G1(x
′), and we identify (the relevant

submatrices) of the coefficientsG0 andG1 in terms of the limiting in-plane and
out-of-plane components u and v. From this we can obtain the lower bounds
in Theorem 3 by a careful Taylor expansion. All this is done in Lemma 2 and
Corollary 2.
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(e) �-convergence. The lower bound follows directly from (d). For the upper bound
one has to identify good test functions. For α � 3 we can use more or less the
standard ansatz (which is often assumed a priori in heuristic arguments in
favour of the von-Kármán theory). For α < 5/2 the situation is more delicate,
since the standard ansatz only produces an approximate isometry of the mid-
plane (the mid-plane is isometric only in the sense of geometrically linear elas-
ticity) and the deviation from a true isometry leads to a too high elastic energy.
To overcome this problem we need to study carefully the relation between
geometrically linear isometries and full isometries. This is done in detail in
Section 8. In addition we need to approximateW 2,2 isometries byW 2,∞ maps
which are isometries except on a very small set (such an approximation was
already used in [29]).

(f) Convergence of minimizers. This follows from �-convergence by a suitable
Poincaré inequality, see Section 7.1. To establish strong convergence of the
in-plane components inW 1,2 (and not just weak convergence) we use an equi-
integrable version of the rigidity estimates. This is carried out in Section 7.2.

Finally in Section 9 we discuss how our approach addresses the criticisms
raised against the vK theory. We also discuss possible extensions, open questions,
and directions for future research.

For a first reading we recommend the reader to focus on �-convergence for the
vK case, i.e., α = 3, β = 4 andEh = h4. This case already contains the main ideas
of our analysis, and Sections 4, 5 and 6.1 are sufficient to obtain �-convergence to
the vK functional. The main points in this case are the bounds on the scaled in-plane
and out-of-plane displacements u(h) and v(h) (see Lemma 1) and the identification
of the limiting strain in Lemma 2. This immediately yields the lower bound for
�-convergence, and the upper bound follows by using the usual test function (119).

4. Geometric rigidity

Theorem 5 (Quantitative rigidity estimates). LetU be a bounded Lipschitz domain
in R

n, n � 2. There exists a constant C(U) with the following property. For each
v ∈ W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) such that,

‖∇v − R‖L2(U) � C(U) ‖ dist(∇v,SO(n))‖L2(U). (60)

The constant C(U) can be chosen uniformly for a family of domains which are
Bilipschitz equivalent with controlled Lipschitz constants. The constant C(U) is
invariant under dilations.

For a proof see [29]. The estimate (60) was established by John [39, 40] under
the stronger hypothesis that v is locally Bilipschitz (for further developments along
this line see [9]). The main difficulty with this assumption is that it does not fol-
low from suitable bounds on the elastic energy alone. Reshetnyak [70] estab-
lished rigidity results for almost conformal maps (rather than almost isometries).
He showed that if ∇v is close to the set R

+
0 SO(n) of all conformal matrices in Ln
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then ∇v is close to the gradient of a single conformal map in Ln. His argument
does, however, not give a quantitative estimate like (60).

In a thin domain �h = S × (−h/2, h/2) the constant C(�h) degenerates like
h−2 (see (63) below). We can obtain a good approximation (at least in the interior)
for ∇y by a piecewise constant map R(h) (with values in SO(3)) by covering �h
by cubes of size h. Application of Theorem 5 to two neighbouring cubes in addi-
tion yields a difference quotient estimate. Thus after mollification on a scale h we
can obtain another approximation R̃(h) (which in general no longer takes values
exactly in SO(3)) whose gradient can be controlled in terms of the energy. This
second approximation will prove useful to establish compactness and also higher
regularity of the limits as h → 0. The following result summarizes the estimates
(up to the boundary) which we can obtain in this way. As before we rescale to a
fixed domain � and use the scaled gradient ∇h = (∇′, h−1∂3).

Theorem 6 (Approximation by rotations in thin domains). Suppose that S ⊂ R
2 is

a Lipschitz domain and � = S × (− 1
2 ,

1
2 ). Let y ∈ W 1,2(�; R

3) and

E =
∫

�

dist2(∇hy,SO(3))dx.

Then there exist maps R : S → SO(3) and R̃ : S → R
3×3, with |R̃| � C,

R̃ ∈ W 1,2(S,R3×3) such that

||∇hy − R||2
L2(�)

� CE, ||R − R̃||2
L2(S)

� CE, (61)

||∇R̃||2
L2(S)

� C

h2E, ||R − R̃||2L∞(S) � C

h2E. (62)

Moreover, there exists a constant rotation Q̄ ∈ SO(3) such that

||∇hy − Q̄||2
L2(�)

� C

h2E, (63)

and

||R − Q̄||2Lp(S) � Cp

h2 E ∀p < ∞. (64)

Here all constants depend only on S (and on p where indicated).

Remark 5. IfE � δ0h
2 for a sufficiently small value of δ0 then, in view of (77) we

always have R̃(x′) ∈ U , where U is a tubular neighbourhood of SO(3). Hence the
map R : S → SO(3) obtained by projection to SO(3) is in W 1,∞ and ||∇R||2

L2 �
Ch−2E. Thus in this case the relevant estimates can be stated in terms ofR directly
and R̃ appears only as an intermediate quantity.
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Proof. The result is implicit in [29]. We could follow the strategy used there and
use Theorem 5 to first construct a map R which is constant on squares of size h,
and then mollify R to obtain R̃ (using a suitable change of variables and tangential
mollification near the boundary). For variety we follow a different approach and
construct R̃ first. One advantage of this approach is that the map y → R̃ is linear
(as long as E � Ch2, which is the main case of interest). To construct R̃ we use
separate constructions in the interior and near the boundary and then glue them
together by a partition of unity. We begin with the relevant local estimates.

Step 1. Local estimates
Let U be an open set in R

2 and let K ⊂ U be compact. We suppose that 3h <
dist∞(K, ∂U), where dist∞ is the distance with respect to the norm |(x1, x2)|∞ =
max(x1, x2). To abbreviate the notation we write F(x) for the scaled gradient and
F̄ (x′) for its vertical average

F(x) = ∇hy(x), F̄ (x′) =
∫
I

F (x′, x3) dx3, I = (−1/2, 1/2).

For each point x′ ∈ K we consider the square

Sx′,h = x′ + (0, h)2

with lower left corner x′. Let ψ ∈ C∞
0 ((0,−11)2) be a standard mollifier, i.e.,

ψ � 0,
∫
ψ = 1 and set ψh(·) = h−2ψ(·/h). On K we define the smoothed

rotation R by

R = ψh ∗ F̄ .
Here we write R instead of R̃ or R̃h to simplify the notation. The R defined above
is not the map R mentioned in the theorem. Explicitly we have

R(x′) =
∫
Sx′,h×I

h−2ψ

(
x′ − z′

h

)
F(z) dz′dz3.

We claim that∫
Sx′,h×I

|F(z)− R(z′)|2 dz � C

∫
Sx′,2h×I

dist2(F (z),SO(3)) dz, (65)

|∇R(x′)|2 � C

h4

∫
Sx′,h×I

dist2(F (z),SO(3)) dz, (66)

dist2(R(x′),SO(3)) � C

h2

∫
Sx′,2h×I

dist2(F (z),SO(3)) dz. (67)

To prove (65) we use Theorem 5 applied to a cube of size h. Keeping in mind
that y(x1, x2, x3) = ỹ(x1, x2, hx3) and F(x) = ∇ỹ(x1, x2, hx3) we see that there
exists Rx′,h ∈ SO(3) such that

∫
Sx′,h×I

|F(z)− Rx′,h|2 dz � C

∫
Sx′,h×I

dist2(F (z),SO(3)) dz. (68)
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Since
∫
ψh = 1, Jensen’s inequality yields

|R(x′)− Rx′,h|2 � C

h2

∫
Sx′,h×I

|F(z)− Rx′,h|2 dz

� C

h2

∫
Sx′,h×I

dist2(F (z),SO(3)) dz. (69)

Using the fact that
∫ ∇ψh = 0 we obtain similarly for x̃′ ∈ Sx′,h

|∇R(x̃′)|2 � C

h4

∫
Sx̃′,h×I

dist2(F (z),SO(3)) dz

� C

h4

∫
Sx′,2h×I

dist2(F (z),SO(3)) dz, (70)

and this proves in particular (66). We also conclude that for x̃′ ∈ Sx′,h,

|R(x̃′)− R(x′)|2 � C

h2

∫
Sx′,2h×I

dist2(F (z),SO(3)) dz, (71)

and combining this with (68) we obtain (65). Finally to prove (67) set g(ζ ) =
dist(R(x′ + hζ ),SO(3)). Then (65) and (70) imply that

∫
(0,1)2

|g|2 dζ + sup
(0,1)2

|∇g|2 � C

h2

∫
Sx̃′,2h×I

dist2(F (z),SO(3)) dz,

and the desired estimate for sup |g| follows easily.
Now consider a lattice of squares of size h in R

2, sum (65) over all squares
which intersect K and integrate (66) over K . This yields

∫
K×I

|R − F |2 + h2|∇R|2 dz �
∫
U×I

dist2(F (z),SO(3)) dz. (72)

Step 2. Estimates near the boundary
We fix again an open set U ⊂ R

2 and a compact subset K ⊂ U . We first consider
the situation near a flat piece of the boundary of S. More precisely we suppose that
U ∩ S = U ∩ R

2+, U ∩ ∂S = U ∩ ∂R2+, where R2+ = {(x1, x2) : x2 > 0} is the
upper half plane. For x′ ∈ K ∩ R

2+ we define as before R(x′) = (ψh ∗ F̄ )(x′).
Since the support ofψ is contained in the lower half plane,R is indeed well defined.
Proceeding as in Step 1 (and using the standard lattice (hZ)2 for the summation)
we obtain (72) with K and U replaced by K ∩ S and U ∩ S, respectively.

Now suppose that S is locally the epigraph of a Lipschitz function, i.e., there
exist a bounded open interval J ⊂ R, a Lipschitz function f : J → R and an
orthonormal coordinate system (still denoted (x1, x2)) such that

U ∩ S = {x ∈ U : x1 ∈ J, x2 > f (x1)}, (73)

U ∩ ∂S = {x ∈ U : x1 ∈ J, x2 = f (x1)}. (74)
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To flatten the boundary of S consider the map � : U ∩ S̄ → R
2+ given by �(x) =

(x1, x2 − f (x1). Note that � is Bilipschitz and area preserving. Now set

(R ◦�−1) = ψh ∗ (F̄ ◦�−1).

Then for ξ ′ ∈ �(K) and sufficiently smallK and h the value (R ◦�−1)(ξ ′) is well
defined. The application of Theorem 5 shows that there exists Rξ ′,h ∈ SO(3) such
that ∫

Sξ ′,h×I
|F(�−1(ζ ′), z3)− Rξ ′,h|2 dζ ′dz3

=
∫
�−1(Sξ ′,h)×I

|F(z′, z3)− Rξ ′,h|2 dz′dz3

� C

∫
�−1(Sξ ′,h)×I

dist2(F (z′, z3),SO(3)) dz′dz3

= C

∫
Sξ ′,h×I

dist2(F,SO(3))(�−1(ζ ′, z3)) dζ
′dz3.

The constant C is independent of ξ ′ since the estimate in Theorem 5 holds uni-
formly in domains which are Bilipschitzly equivalent. As before we deduce from
the above estimate∫
Sξ ′,h

|R ◦�−1 − Rξ ′,h|2 dζ ′ � C

∫
Sξ ′,h×I

dist2(F,SO(3))(�−1(ζ ′, z3)) dζ
′dz3

as well as the pointwise estimates for ∇(R◦�−1) andR◦�−1. This yields again an
estimate for ||R ◦�−1 −F ◦�−1||L2(Sξ,h×I ) and after summation over the standard
lattice we obtain the counterpart of (72), namely∫

(K∩S)×I
|R − F |2 + h2|∇R|2 dz �

∫
(U∩S)×I

dist2(F (z),SO(3)) dz. (75)

Step 3. Global estimates for R̃.
Now it suffices to combine the estimates in Steps 1 and 2 via a partition of unity.
Since S is a Lipschitz domain its closure S̄ can be covered by open sets U0, . . . Ul ,
where Ū0 ⊂ S and where the Ui are of the form (73) and (74) (after a possible
rotation of the coordinates). Denote by R̃0, . . . R̃l the maps constructed in Steps 1
and 2. Now consider a partition of unity subordinate to the cover {Ui}, i.e.,

ηi ∈ C∞
0 (Ui), ηi � 0,

∑
ηi = 1 in S.

Set

R̃ =
∑

ηiR̃i .

Using the fact that
∑∇ηi = ∇∑ ηi = 0 in S we find that

R̃ − F =
∑

ηi(R̃i − F),

∇R̃ =
∑

ηi∇R̃i +
∑

∇ηi(R̃i − F).
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Applying (72) and (75) with Ki = supp ηi we deduce that

∫
S×I

|R̃ − F |2 + h2|∇R̃|2 � CE. (76)

This proves the first estimate in (62). Similarly we obtain

sup
S

dist(R̃,SO(3)) � C

h2 sup
x′∈S

∫
(Bx′,C0h

∩S)×I
dist2(∇hy,SO(3)) dz

� C

h2E. (77)

Here C0 depends only on S (through the Lipschitz constants of the maps �i used
to flatten the boundary of S).

This essentially finishes the construction of R̃, but we need to address one
more point. As defined, R̃ may not be bounded (unless E � Ch2 in which case
we can use (77)). To remedy this, it suffices to replace R̃ by its projection πρR̃
onto a sufficiently large ball Bρ ⊂ R

3×3, which contains SO(3). Indeed we have
|∇(πρ ◦ R̃)| � |∇R̃| since πρ is a contraction. Moreover,

|πρ ◦ R̃ − F | � |πρ ◦ R̃ − πρ ◦ F | + |πρ ◦ F − F |
� |R̃ − F | + dist(F,SO(3)).

Hence (76) also holds with R̃ replaced by φρ ◦ R̃.

Step 4. Estimates for R ∈ L∞(S,SO(3))
Since SO(3) is a smooth manifold, there exists a tubular neighbourhood U of SO(3)
such that the nearest-point projection π : U → SO(3) is smooth. Let

R(x′) =
{
π(R̃(x′)) if R̃(x′) ∈ U, otherwise.

Id

Then |R(x′) − R̃(x′)| = dist(R̃(x′),SO(3)), if dist(R̃(x′),SO(3)) < δ. Hence
we always have |R − R̃| � C dist(R̃,SO(3)). This, together with (76) and the
definition of E proves (61).

Step 5. Remaining estimates
The estimates in (63) and (64) follow from the Poincaré-Sobolev inequality. Indeed
in view of the first estimate in (62) there exists a Q̄ such that ||R̃−Q̄||2Lp � Cph

−2E.
Taking p = 2 and using (61) we obtain (63), and taking into account the definition
ofE we see that we can assume without loss of generality Q̄ ∈ SO(3). The estimate
(64) follows from (62). ��

For future reference we recall that Korn’s inequality holds for Lipschitz domains
(we will only need it for S ⊂ R

2).
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Proposition 1. Korn’s inequality. Suppose that � ⊂ R
n is a bounded Lipschitz

domain and let 1 < p < ∞. Consider the space

Ep(�) := {u ∈ Lp(�; R
n) : sym ∇u ∈ Lp(�; R

n×n)
}
.

Then

Ep(�) = W 1,p(�; R
n), (78)

||u||p1,p :=
∫
�

|u|p + |∇u|p dx � Cp(�)

∫
�

|u|p + | sym ∇u|p dx, (79)

min
{
||u− Ax − b||p1,p : A+ AT = 0, A ∈ Rn×n, b ∈ R

n
}

� Cp(�)

∫
�

| sym ∇u|p. (80)

If � ⊂ ∂� has positive Hn−1 measure then

||u||p1,p � Cp(�,�)

∫
�

| sym ∇u|p for all u with u|� = 0. (81)

Proof. For (78) and (79) see [34], Theorem 1. To establish the assertion (80) we use
the compact embedding of W 1,p into Lp and the usual argument by contradiction
starting with a sequence with ||uk||1,p = 1,

∫
uk = 0,

∫ ∇uk − (∇uk)T = 0 and
|| sym ∇uk||p → 0.Any weak limit u inW 1,p satisfies sym ∇u = 0 and hence is an
affine map with skew symmetric gradient and therefore zero by the normalization
above. Together with (79) we obtain the desired contradiction. Similarly we obtain
(81). ��

5. Scaling of in-plane and out-of-plane components and limiting strain

5.1. Scaling exponents

It follows from Theorem 6 that for energiesEh small compared to h2, the defor-
mation y(h) is close to the trivial map (x′, x3) → (x′, hx3), up to a rigid motion.
The following lemma provides detailed estimates for the difference between y(h)

and the trivial deformation (cf. Table 1). In view of future applications it is con-
venient to consider a general sequence Eh and not to restrict our attention to only
powers of h.

Lemma 1 (Convergence of scaled out-of-plane and in-plane deformations). Sup-
pose that

Ih(y(h)) � CEh, (82)

lim
h→0

h−2Eh = 0. (83)



Hierarchy of Plate Models Derived from Nonlinear Elasticity 205

Then there exists a mapsR(h) : S → SO(3) and constants R̄(h) ∈ SO(3), c(h) ∈ R
3

such that

ỹ(h) := (R̄(h))T y(h) − c(h)

and the in-plane and out-of-plane displacements

U(h)(x′) :=
∫
I

(
ỹ
(h)
1

ỹ
(h)
2

)
(x′, x3)−

(
x1

x2

)
dx3, V (h)(x′) :=

∫
I

ỹ
(h)
3 dx3

satisfy

||∇hỹ(h) − R(h)||L2(�) � C
√
Eh, (84)

||R(h) − Id||Lq(S) � Cqh
−1
√
Eh ∀q < ∞,

||∇′R(h)||L2(S) � Ch−1
√
Eh. (85)

Moreover, there exists a subsequence (not relabeled) such that

v(h) := h√
Eh
V (h) → v in W 1,2(S), v ∈ W 2,2(S), (86)

u(h) := min

(
h2

Eh
,

1√
Eh

)
U(h) ⇀ u in W 1,2(S; R

2), (87)

h√
Eh
(R(h) − Id) → A in Lq(�; R

3×3) ∀q < ∞, (88)

h√
Eh
(∇hỹ(h) − Id)) → A in L2(�; R

3×3), (89)

A,3 = 0, A ∈ W 1,2(S; R
3×3), (90)

A = e3 ⊗ ∇′v − ∇′v ⊗ e3, (91)

h2

Eh
sym(R(h) − Id) → A2

2
in Lq(S; R

3×3) ∀q < ∞. (92)

Corollary 1. In connection with boundary value problems it is also useful to study
the convergence of the first moment

ζ (h)(x′) =
∫
I

x3

[
ỹ(h)(x′, x3)−

(
x′

hx3

)]
dx3. (93)

Then,

1√
Eh
ζ (h) ⇀

1

12
Ae3 = − 1

12

(∇′v
0

)
inW 1,2(S; R

3). (94)

The analogous assertion holds ifEh = h2. Then ∇hy(h) → R inL2 andh−1ζ (h) ⇀

(1/12)(R − Id)e3 in W 1,2.
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Note that in the vK scalingEh ∼ h4 the convergence results (86), (87) and (94)
are consistent with the commonly used ansatz

y(h)(x′, x3) ≈
(
x′

hx3

)
+
(
h2u(x′)
hv(x′)

)
− x3

(
h2∇′v

0

)
. (95)

Indeed it follows from (99) below that, for γ ∈ {1, 2},
h−2(ỹ(h)(x)− [x′ + h2u(x′)− x3h

2∇′v(x′)]) → 0 in L2(�; R
2),

h−1(ỹ(h)(x)− [hx3 + hv(x′)]) → 0 L2(�).

The right-hand side of (95) by itself, however, does not lead to an almost optimal
approximation of the energy since it misses an extension or contraction of the ver-
tical fibers in the case of non-zero Poisson’s ratio; see (119) below for an ansatz
which includes this phenomenon and leads to an almost optimal approximation.

Proof of Lemma 1.
Step 1. Normalization

Estimates (84) and (85) follow immediately from Theorem 6 and Remark 5 since
we can choose R̄(h) so that (63) holds with Q̄ = Id. This implies that the average
deformation gradient F̄ (h) = |�|−1

∫
�

∇hỹ(h) satisfies |F̄ (h) − Id| � Ch−1
√
Eh,

and by applying an additional constant in-plane rotation of order h−1
√
Eh to y(h)

and R(h) we may assume that in addition to (84) and (85) we have∫
�

(y
(h)
1,2 − y

(h)
2,1) dx = 0. (96)

By choosing c(h) suitably we may also assume that∫
�

y(h) −
(
x′

hx3

)
dx = 0. (97)

Step 2. Convergence of A(h) := (h/
√
Eh)(R(h) − Id)

From (85) we get for a subsequence

A(h) ⇀ A in W 1,2(S; R
3×3).

Using the compact Sobolev embedding we deduce (88). Together with (84) we
obtain (89). Since R(h) is independent of x3 we also obtain (90).

Step 3. Convergence of (h2/Eh) sym(R(h) − Id)

Since (R(h))T R(h) = Id , we have A(h) + (A(h))T = −(h/√Eh)(A(h))T A(h).
Hence A + AT = 0 and after multiplication by h/

√
Eh we obtain (92) from the

strong convergence of A(h).

Step 4. Convergence of the scaled normal and tangential deviations
The convergence (86) of the scaled normal component immediately follows from

(89). Moreover v,i = A3i for i = 1, 2. Hence v ∈ W 2,2 as A ∈ W 1,2. From
(84) and (92) we see that sym ∇′u is bounded in L2. Using Korn’s inequality (see
Proposition 1) and the normalizations (96) and (97), we obtain (87).
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Step 5. Identification of A
By Steps 3 and 4 the matrix A is skew-symmetric, A31 = v,1 and A32 = v,2. It

only remains to identifyA12. Now (87) and (89) imply that (along the subsequence
considered) A12 = limh→0 max(

√
Eh/h, h)u

(h)
1,2 and in view of the assumption

(83) we see that A12 = 0. Thus (91) holds and the proof is finished. ��
Proof of Corollary 1. Let

Y (h) = ỹ(h) −
(
x′

hx3

)
, Ȳ (h) =

∫
I

Y (h) dx3 =
(
U(h)

V (h)

)
,

Z(h) = Y (h) − Ȳ (h). (98)

Then

1

h
Z
(h)
,3 = 1

h
y
(h)
,3 − e3 = (∇hy(h) − R(h))e3 + (R(h) − Id)e3,

and thus

||h−1Z
(h)
,3 − (R(h) − Id)e3||L2(�) � C

√
Eh.

Since
∫
I
Z(h) = 0 and

∫
I
x3(R

(h) − Id)e3 dx3 = 0, this implies that

||h−1Z(h) − x3(R
(h) − Id)e3||L2(�) � C

√
Eh. (99)

Now multiply the quantity inside the norm by hx3/
√
Eh and integrate in x3. This

yields

∣∣∣∣
∣∣∣∣ 1√
Eh
ζ (h) − 1

12

h√
Eh
(R(h) − Id)e3

∣∣∣∣
∣∣∣∣
L2(S)

� Ch.

Together with (88) and (84) we obtain

1√
Eh
ζ (h) → 1

12
Ae3 in L2(S). (100)

On the other hand, for γ ∈ {1, 2},

ζ (h),γ =
∫
I

x3ỹ
(h)
,γ dx3 =

∫
I

x3(∇hỹ(h) − R(h))eγ dx3,

since R(h) is independent of x3. In view of (84) this shows that (1/
√
Eh)ζ

(h)
,γ is

bounded inL2(S) and therefore the convergence in (100) is also weakly inW 1,2(S).
The above reasoning also applies forEh = h2, if we replace (88) by theL2 compact-
ness of R(h). To obtain this compactness it suffices to note that by (61) and (62) in
Theorem 6 there exist R̃(h) with ||R̃(h)||W 1,2 � C and ||R̃(h)−R(h)||L2 � Ch2. ��
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5.2. The limiting strain

We know that ∇hy(h) can be well-approximated by rotations R(h)(x′). Since
W is invariant under rotations the energy of y(h) is essentially controlled by the
deviation of (R(h))T∇hy(h) from the identity. In view of (84) the quantitiesG(h) :=
(1/

√
Eh)[(R(h))T∇hy(h) − Id] converge weakly in L2 (for a subsequence) to G.

The following lemma shows that the relevant part of G (i.e., the symmetric part
of the in-plane components) can be identified in terms of u and v, the limits of
the scaled in-plane and out-of-plane displacements. In particular, we show that
the relevant components of G are affine in the thickness variable x3, a fact which
is often assumed a priori. The representation of G immediately yields the lower
bound in the definition of �-convergence (see the corollary immediately following
the lemma).

We will later apply the lemma below to the sequences ỹ(h), R(h), u(h), v(h)

obtained in Lemma 1 above. In view of future applications we state the result in a
slightly more general (and more self-contained) form, assuming only (101), (102)
and (103) and not the other conclusions of Lemma 1.

Lemma 2 (Identification of scaled limiting strain). Consider y(h) : � → R
3,

R(h) : S → SO(3) and Eh > 0. Set

u(h) := min

(
h2

Eh
,

1√
Eh

)∫
I

(
y
(h)
1

y
(h)
2

)
(x′, x3)−

(
x1

x2

)
dx3,

v(h) := h√
Eh

∫
I

y
(h)
3 dx3.

Suppose that

lim
h→0

h−2Eh = 0, (101)

||∇hy(h) − R(h)||L2(�) � C
√
Eh, (102)

u(h) ⇀ u in W 1,2(S; R
2), v(h) → v in W 1,2(S), v ∈ W 2,2(S). (103)

Then

h√
Eh

(
R(h) − Id

)
→ A = e3 ⊗ ∇′v − ∇′v ⊗ e3 in L2(S; R

3×3), (104)

G(h) := (R(h))T∇hỹ(h) − Id√
Eh

⇀ G in L2(�; R
3×3), (105)

and the 2 × 2 submatrix G′′ given by G′′
αβ = Gαβ for 1 � α, β � 2 satisfies

G′′(x′, x3) = G0(x
′)+ x3G1(x

′), (106)
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where

G1 = −(∇′)2v. (107)

Moreover,

∇′u+ (∇′u)T + ∇′v ⊗ ∇′v = 0 if h−4Eh → ∞, (108)

symG0 = 1
2 (∇′u+ (∇′u)T + ∇′v ⊗ ∇′v) if h−4Eh → 1, (109)

symG0 = 1
2 (∇′u+ (∇′u)T ) if h−4Eh → 0. (110)

Corollary 2. Let Eh, y(h), R(h), u(h), v(h) be as in Lemma 2. Then the following
lower semicontinuity results hold:

(i) If limh→0 h
−4Eh = 0 or limh→0 h

−4Eh = ∞ then

lim inf
h→0

1

Eh
Ih(y(h)) �

∫
S

1

24
Q2((∇′)2v) dx′. (111)

(ii) If limh→0 h
−4Eh = 1 then

lim inf
h→0

1

Eh
Ih(y(h)) �

∫
S

1

2
Q2(

1
2 [∇′u+ (∇′u)T + ∇′v ⊗ ∇′v])

+ 1

24

∫
S

Q2((∇′)2v) dx′. (112)

Remark 6. If in the inequalities (111) or (112) we have equality then we obtain
strong convergence of the nonlinear strain

1√
Eh

(
(∇hy(h))T∇hy(h)1/2 − Id

)
→ symG in L2(S; R

3×3),

see (161) below.

Proof of Lemma 2.

Step 1. We first assume (104) (for the special sequence coming from Lemma 1
we already know this) and establish the main assertion, namely the representation
formula for G.

Using the identity sym(Q− Id) = −(Q− Id)T (Q− Id) which holds for all
Q ∈ SO(3), we immediately deduce from (104) that

h2

Eh
sym

(
R(h) − Id

)
→ A2 = −∇′v ⊗ ∇′v − |∇′v|2e3 ⊗ e3. (113)

By assumption G(h) is bounded in L2, thus a subsequence converges weakly.
To show that the limit matrix G′′ is affine in x3 we consider the difference

quotients

H(h)(x′, x3) = s−1[G(h)(x′, x3 + s)−G(h)(x′, x3)].
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Multiply the definition ofG(h) byR(h), take the difference quotient and express the
difference quotient acting on y by an integral over y,3. This yields for α, β ∈ {1, 2},


 h√

Eh

1

s

s∫

0

1

h
ỹ
(h)
α,3(x

′, x3 + σ)dσ



,β

= (R(h)H (h))αβ(x
′, x3).

In view of (104) and (102) the left-hand side converges inW−1,2(S× (−1, 1−
s)) to Aα3,β(x

′) = −v,αβ(x′). We have R(h) → Id boundedly a.e. andH(h) ⇀ H

in L2 and we thus obtain Hαβ = −v,αβ . Since v is independent of x3 and since
s > 0 was arbitrary, we conclude thatG′′ is affine in x3 andG1 has the form given
in the lemma. In order to prove the formula for G0 it suffices to study

G
(h)
0 (x′) =

∫ 1
2

− 1
2

G(h)(x′, x3)dx3.

We have for α, β ∈ {1, 2},
(G(h))αβ(x

′)

= (∇′ỹ(h) − Id)αβ√
Eh

− (R(h) − Id)αβ√
Eh

+
[
(R(h) − Id)T

∇hỹ(h) − R(h)√
Eh

]

αβ

. (114)

First suppose h−4Eh → 1, i.e., Eh ≈ h4. Using the convergence of u(h), (113),
(104) and the hypothesis (102) we see that

(symG
(h)
0 )αβ →

[
sym ∇′u− A2

2

]
αβ

in L1(S), (115)

and using again (113) we can obtain (109). Similarly we obtain (110).
To derive (108) we multiply (114) by h2/

√
Eh and use again the weak conver-

gence of u(h) and (113), as well the hypotheses (102) and (104).

Step 2. We now prove (104). Since R(h) is independent of x3 we have for α, β ∈
{1, 2}

(R(h) − Id)αβ =
∫
I

(R(h) − ∇hy(h))αβ dx3 + max

(√
Eh,

Eh

h2

)
u
(h)
α,β,

(R(h) − Id)3β =
∫
I

(R(h) − ∇hy(h))3β dx3 +
√
Eh

h
v
(h)
,β .

Thus

h√
Eh

(
R(h) − Id

)
αβ

→ 0,
h√
Eh

(
R(h) − Id

)
3β

→ v,β in L2(S). (116)
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Using the fact thatR(h) takes values in SO(3)we deduce that ||R(h)β3 ||L2 � C
√
Eh/h.

To get control on R(h)33 we use the fact that for Q ∈ SO(3),

|1 −Q33| = | detQ−Q33|

� C

2∑
α,β=1

|(Q− Id)αβ | + C(|Q13Q31| + |Q23Q32|).

Substituting Q = R(h) and using (116) and the generalized dominated conver-
gence theorem (with L1 convergent majorant rather than constant majorant) we
easily deduce that (h/

√
Eh)(R

(h)
33 − 1) → 0 in L2. To control R(h)13 we use the fact

that the first and third row of R(h) are orthogonal. This yields

|R(h)13 + R
(h)
31 | � C(|R(h)11 − 1| + |R(h)33 − 1| + |R(h)12 |)

and together with (116) and the convergence of R(h)33 this gives the desired conver-

gence for R(h)13 . The same argument applies to R(h)23 , completing the proof. ��
Proof of Corollary 2. To show (111) and (112) we use a careful Taylor expansion.
Let ω : [0,∞) → [0,∞) denote a modulus of continuity ofD2W near the identity
and consider the good set �h := {x ∈ � : |G(h)(x)| < h−1}. Its characteristic
function χh is bounded and satisfies χh → 1 in L1(�). Thus we have χhGh ⇀ G

in L2(�). By a Taylor expansion, we obtain

1

Eh
χhW(Id +

√
EhG(h)) � 1

2
Q3(χhG

(h))− ω(h−1
√
Eh)|G(h)|2.

Thus using (101), we find that

lim inf
h→0

1

Eh
Ih(y(h))

= lim inf
h→0

1

Eh

∫
�

W((R(h))T∇hy(h)) dx

� lim inf
h→0

[
1

2

∫
�

Q3(χhG
(h)) dx + 1

Eh

∫
�

(1 − χh)W(∇hy(h)) dx
]

� 1

2

∫
�

Q3(G) dx

� 1

2

∫
�

Q2(G
′′) dx. (117)

Here we used the fact that Q3 is a positive semidefinite quadratic form and there-
fore the functional v → ∫

�
Q3(v) is weakly lower semicontinuous in L2. Now by

(106),
∫ 1/2

−1/2
Q2(G

′′)(x′, x3) dx3 = Q2(G0(x
′))+ 1

12
Q2(G1(x

′)). (118)

Together with the representations (107), (109) and (110) this implies (111) and
(112), and the proof of Corollary 2 is completed. ��
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6. von Kármán like theories: �-convergence

Proof of Theorem 3. We now return to the situation were the energy scaling is
given by powers of h rather than more general functions. The situation of Theo-
rem 3 corresponds to the choice

Eh = h2α−2,

and the borderline case Eh = h4 corresponds to the exponent α = 3.
With these choices part (i) of Theorem 3 follows immediately from Lemma 1

and Lemma 2.
To prove part (ii) of the theorem we consider the cases α = 3, α < 3 and α > 3

separately.

6.1. Upper bound, α = 3

We assume first that u and v are smooth and we make the ansatz

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(
h2u

hv

)
− h2x3


v,1v,2

0


+ h3x3d

(0) + h3

2
x2

3d
(1). (119)

Then

∇hŷ(h) = Id +
(
h2∇′u −h(∇′v)T
h∇′v 0

)
− h2x3

(
(∇′)2v 0

0 0

)

+h2d(0) ⊗ e3 + h2x3d
(1) ⊗ e3 + O(h3). (120)

Using the identities (I +A)T (I +A) = I + 2 symA+ATA and (e3 ⊗ a′ − a′ ⊗
e3)

T (e3 ⊗ a′ − a′ ⊗ e3) = a′ ⊗ a′ + |a′|2e3 ⊗ e3 for a′ ∈ R
2, we obtain for the

nonlinear strain,

(∇hŷ(h))T∇hŷ(h)
= Id + 2h2(sym ∇′u− x3(∇′)2v)+ h2(∇′v ⊗ ∇′v + |∇′v|2e3 ⊗ e3)

+2h2 sym[(d(0) + x3d
(1))⊗ e3] + O(h3). (121)

Taking the square root, and using the frame indifference (3) ofW and Taylor expan-
sion, we get

h−4W(∇hŷ(h)) = h−4W([(∇hŷ(h))T∇hŷ(h)]1/2) → 1

2
Q3(A+ x3B),

where

A = sym ∇′u+ 1
2∇′v ⊗ ∇′v + 1

2 |∇′v|2e3 ⊗ e3 + sym d(0) ⊗ e3,

B = −(∇′)2v + sym d(1) ⊗ e3.

For a symmetric 2 × 2 matrix A′′, let c = LA′′ ∈ R
3 denote the vector which

realizes the minimum in the definition of Q2, i.e.,

Q2(A
′′) = Q3(A

′′ + c ⊗ e3 + e3 ⊗ c).
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Since Q3 is positive definite on symmetric matrices, c is uniquely determined and
the map L is linear. We now take

d(0) = − 1
2 |∇′v|2e3 + L(∇′u+ (∇′u)T + ∇′v ⊗ ∇′v), (122)

d(1) = −2L((∇′)2v). (123)

This finishes the proof of Theorem 3 (ii) for α = 3 and smooth u, v. For general
u, v it suffices to consider suitable smooth approximations u(h), v(h), d(0,h), d(1,h).

6.2. Upper bound, α > 3

This case is simpler. We take u = 0 and

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(

0

hα−2v

)
− hα−1x3


v,1v,2

0


+ hα

2
x2

3d
(1). (124)

In this case the term in the nonlinear strain involving ∇′v becomes of higher order.
We obtain h−2+2αW(∇hŷ(h)) → Q3(x3B), where B is as above, and we conclude
easily.

6.3. Upper bound, 2 < α < 3

In analogy with the case α = 3 we could make the ansatz

ŷ(h)(x′, x3) =
(
x′

hx3

)
+
(
h2(α−2)u

hα−2v

)
− hα−1x3


v,1v,2

0




+h
2α−3

2
x3d

(0) + hα

2
x2

3d
(1). (125)

Proceeding as above we obtain the desired conclusion at least for α > 5/2. This
ansatz can, however, not work for α close to 2. Indeed we obtain for the strain in
the midplane

[(∇hŷ(h))T∇hŷ(h)]ij (x′, 0) = h4(α−2)(∇u)T∇u for i, j ∈ {1, 2},
and this leads to an energy contribution of order h8(α−2) which is larger than the
desired estimate h2α−2 if α < 7/3.

Thus instead of the ansatz (125) which only leads to an approximate isometry
of the midplane we will first construct an exact isometry

ȳε : S → R
3, ȳε(x

′) =
(
x′ + ε2uε(x

′)
εv(x′)

)
. (126)

We then consider the normal νε := ȳε,1 ∧ ȳε,2 and as for the nonlinear bending
theory we make the ansatz

ŷ(h)(x′, x3) = ȳε(x
′)+ εhx3νε(x

′)+ ε
h2

2
x2

3d(x
′), where ε = hα−2. (127)
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Assume for the moment that v belongs to W 2,∞ (then also u ∈ W 2,∞(S; R
2)

in view of (195) below). Then the existence of ŷ(h)ε and uniform W 2,∞ bounds on
uε are established in Section 8 (see Theorem 7 and the explicit expressions (183),
(186) and (190) below). Assume in addition that d is Lipschitz. Keeping in mind
that (νε),j · νε = 0 we find

∇ŷ(h) = Qε

(
Id + hx3

[
(∇′yε)T∇′νε +QT

ε εd ⊗ e3

])
+ O(h2ε), (128)

where

Qε(x
′) = (∇′ȳε, νε) ∈ SO(3). (129)

Now

∇′νε = −ε
(
(∇′)2v 0

0 0

)
+ O(ε2), Qε = Id + O(ε) (130)

and thus, using frame indifference, we obtain

h2−2αW(∇ŷ(h)) = ε−2h−2W(QT
ε ∇ŷ(h))

→ 1

2
x2

3Q3

((−(∇′)2v 0
0 0

)
+ d ⊗ e3

)

= 1

2
x2

3Q2((∇′)2v),

where in the last equality we used the choice

d = −2L((∇′)2v). (131)

This finishes the proof of the upper bound for 2 < α < 3 for v ∈ W 2,∞. The
general case is treated in the following subsection. ��

6.4. Approximation of W 2,2 data for 2 < α < 3

In general we only have v ∈ W 2,2(S) and standard mollification arguments
would destroy the crucial constraint det(∇′)2v = 0. Pakzad [59] showed (using
earlier work of Kirchheim [41]) that for convex domains S there nonetheless exist
approximations vk ∈ C2 which satisfy det(∇′)2vk = 0 and converge to v in W 2,2.
Since the limit functional is continuous with respect to this convergence, a standard
argument in �-convergence shows that it suffices to construct the upper bound for
v ∈ C2 which we have already achieved.

For general domains S we face two difficulties. First, the construction of the
isometry ȳε requires that |ε∇v| < 1 (see Theorem 7) but for Lipschitz domains
we do not always have a global Lipschitz bound for v. Second, we do not have a
bound for the term h∇′νε in the supremum norm and hence a Taylor expansion may
not be justified. The second difficulty will be handled by a truncation argument for
Sobolev functions as in [29].

To overcome the first difficulty we use Theorem 10 and Proposition 9. Thus for
each admissible pair (u, v), there exist vk ∈ W 2,2 ∩W 1,∞ such that det(∇′)2vk = 0
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and vk → v in W 2,2, and an admissible pair (uk, vk) with uk → u in W 2,q for
all q < 2 (cf. (195)). In particular I vK(uk, vk) → I vK(u, v). Thus by a stan-
dard density and diagonalization argument in �-convergence we may suppose that
v ∈ W 1,∞(S).

Applying Theorem 7 to V = εvε we find a W 2,2 map �ε : S → R
2 such that

ȳε =
(
�ε

εvε

)
(132)

is an isometric immersion. Moreover �ε = Id + ε2uε and

||uε||W 2,2(S) � C. (133)

Next we replace ȳε by a W 2,∞ map which agrees with ȳε except on a very
small set. We use the following truncation result, which is a special case of results
presented by Liu [48] and Ziemer [79].

Proposition 2 (Approximation by Wk,∞ maps). Let S be a bounded Lipschitz do-
main in R

n and let 1 < p < ∞, k ∈ N and λ > 0. Suppose that u ∈ Wk,p and
let

|u|k(x) :=
∑

|α|�k
|∇αu|(x).

Then there exists uλ ∈ Wk,∞ such that

||uλ||Wk,∞ � C(p, k, S) λ,

|{x ∈ S : uλ(x) 
= u(x)}| � C(p, k)

λp

∫
|u|k�λ/2

|u|pk , (134)

||uλ||Wk,p � C(p, k, S)||u||Wk,p . (135)

In particular,

lim
λ→∞ λ

p|{x ∈ S : uλ(x) 
= u(x)}| = 0 (136)

and

lim
λ→∞ ||uλ − u||Wk,p = 0. (137)

Remark 7. We can also include boundary conditions as follows (see [29], Proposi-
tion A.2 for the details). Let � be a closed subset of ∂S which satisfies
Hn−1(B(x, r) ∩ �) � crn−1 for all x ∈ � and all r ∈ (0, r0). If u ∈ W 2,p(S) and
u = ∇u = 0 on � (in the sense of trace) then the approximation uλ can be chosen
such that uλ = ∇uλ = 0 on �.
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We now make the specific choice

ε = hα−2, λ = ε

h
= hα−3. (138)

We apply Proposition 2 to each component of Yε = ȳε − id and set ȳλε = Yλε + id

and νε,λ = ȳλε,1 ∧ ȳλε,2. As before we set d = −2L((∇′)2v) and we choose Lipschitz
approximations dh satisfying

dh → d inL2, hdh → 0 inW 2,∞. (139)

Finally we denote the set of bad points by

Eλ = {x ∈ S : ȳλε 
= ȳε
} =

3⋃
i=1

{
x ∈ S : (Y λε )i 
= (Yε)i

}
. (140)

As before we consider the ansatz

ŷ(h)(x′, x3) = ȳλε (x
′)+ hx3νε,λ(x

′)+ εh2 x
2
3

2
dh(x

′). (141)

We have

∇hŷ(h) = Q(h) + εhx3a
(h) + εhx3b

(h),

where

Q(h) = (∇′ȳλε , νλε ), a(h) = (ε−1∇′νλε , 0), |b(h) − dh ⊗ e3| � h|∇′dh|.
We claim that

Q(h) → Id uniformly, (142)

a(h) →
(
(∇′)2v 0

0 0

)
in L2, εha(h) → 0 in L∞, (143)

b(h) → d ⊗ e3 in L2, εhb(h) → 0 in L∞. (144)

In S \Eλ we haveQ(h) ∈ SO(3) and thusW(∇hŷ(h)) = W(Q(h)T∇hŷ(h)). We
can then use (142)–(144) in connection with the dominated convergence theorem
to conclude that (cf. Proposition 3 below)

lim sup
h→0

1

h2(α−2)

∫
(S\Eλ)×I

W(∇hŷ(h))

� lim sup
h→0

∫
(S\Eλ)×I

1

(εh)2
W(Q(h)T∇hŷ(h))

=
∫
�

1

2
Q3

(
x3

(
(∇′)2v 0

0 0

)
+ x3d ⊗ e3

)

= 1

24

∫
S

Q2((∇′)2v). (145)
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We now first prove (142)–(144) and then bound the energy contribution on Eλ.
We first derive L∞ bounds for ∇′uλε and vλ. By the definition of ȳλε we have

||ε2uλε ||W 2,∞ � Cλ, ||εvλ||W 2,∞ � Cλ. (146)

Proposition 2 yields

||uλε ||W 2,2 � ||uε||W 2,2 � C, ||vλ||W 2,2 � ||v||W 2,2 � C.

Hence by the Brezis-Wainger inequality, we obtain

||∇′uλε ||L∞ � C ln
λ

ε2 � C ln
1

hα−1 � Cε−1/2

and similarly,

||∇′vλ||L∞ � Cε−1/2.

The normal νλε can be expanded as

νλε =
(

0

1

)
+ ε

(∇′vλ

0

)
+ ε2

(
0

divuλε

)
+ ε3B1(∇′vλ,∇′uλε )

+ε4B2(∇′uλε ,∇′uλε ),

where B1 and B2 are bilinear forms whose precise expression does not matter. Tak-
ing into account theL∞ bounds for ∇′uλε and ∇′vλ we see that |Q(h)−Id| � Cε1/2,
which proves (142). Differentiating the expression for νλε we see using (146) that

||∇′νλε ||L∞ � C

(
ε
λ

ε
+ ε2 λ

ε2 + ε3ε−1/2 λ

ε2

)
� Cλ. (147)

and ∣∣∣∣
∣∣∣∣∇′νλε − ε

(
(∇′)2vλ 0

0 0

)∣∣∣∣
∣∣∣∣
L2

� C(ε2 + ε3ε−1/2 + ε4ε−1/2) � Cε2.

Since hλ = ε goes to zero as h goes to zero this implies (143). Finally (144) follows
immediately from the properties of dh. This finishes the proof of (145).

It only remains to estimate the contribution from Eλ. We claim that

1

h2 |Eλ| = λ2

ε2 |Eλ| → 0, as h → 0, (148)

| dist(Q(h),SO(3))| � Cλ|Eλ|1/2 � Cε. (149)

To prove the first inequality we use (134) for each component of uε and for v
separately. With the notation |v|2 = |v| + |∇′v| + |(∇′)2v| this yields

λ2

ε2 |Eλ| � C
1

ε2

∫
|εv|2�λ/2

|εv|22 dx′ + 1

ε2

∫
S

|ε2uε|22 dx′

� C

∫
|v|2�1/(2h)

|v|22 dx′ + Cε2,
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and (148) follows. To prove (149) we first recall that |(∇′)2ȳλε | � Cλ. Together with
(147) this yields |∇′ dist(∇hŷ(h),SO(3))| � Cλ. Moreover dist(∇hŷ(h),SO(3)) =
0 on (S \ Eλ)× I . Now every point in � has distance at most C|Eλ|1/2 from the
set (S \ Eλ)× I and this yields (149).

Using (149), the L∞ bounds for hεa(h) and hεb(h), and the behaviour of W in
a neighbourhood of SO(3) we see that

W(∇hŷ(h)) � Cε2 + C(εh)2(|a(h)|2 + |b(h)|2).

Together with the L2 convergence of a(h) and b(h) and the fact that |Eλ| → 0, we
obtain from (148):

lim sup
h→0

1

(hε)2

∫
Eλ×I

W(∇hŷ(h)) dx � lim sup
h→0

1

h2 |Eλ| = 0.

Combining this with (145) we obtain the desired upper bound. ��
In the estimate (145) above we made use of the following version of the domi-

nated convergence theorem.

Proposition 3. Suppose that for δ → 0,

Gδ → G inL2(�), δGδ → 0 inL∞. (150)

Then,

δ−2W((Id + δGδ) → 1

2
Q3(G) inL1(�). (151)

Proof. For a subsequence we have Gδ → G a.e. Hence, for this subsequence,

δ−2W((Id + δGδ) → 1

2
Q3(G) a.e.. (152)

In view of the L∞ convergence we also have

δ−2W((Id + δGδ)) � Cδ−2|δGδ|2 � |Gδ|2. (153)

Since the right-hand side converges in L1(�) the generalized dominated conver-
gence theorem implies that (151) holds along the subsequence considered. Since
the limit is unique we have convergence of the full sequence. ��

7. von Kármán like theories: convergence of minimizers

The convergence of minimizers follows from the �-convergence result and a
Poincaré like inequality related to the rigidity estimates.
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7.1. A priori estimates and application of �-convergence

Proof of Theorem 2. By (63) there exist R̄(h) ∈ SO(3) and c(h) ∈ R
3 such that

Y (h)(x) := (R̄(h))T y(h) − c(h) −
(
x′

hx3

)
(154)

satisfies

||Y (h)||2
L2(�)

+ ||∇hY (h)||2L2(�)
� Ch−2I (h)(y(h)). (155)

Using the test function x → (x′, hx3) and the conditions (16) and (17) on the total
force and total moment of f (h) we obtain the trivial bound

inf J (h) � 0. (156)

Using once more the conditions on f (h) and the fact the y(h) is a β-minimizing
sequence (see (18)) we deduce that

I (h)(y(h)) = J (h)(y(h))+
∫
�

(R(h))T f (h) · (R(h))T y(h) dx

= J (h)(y(h))+
∫
�

(R(h))T f (h) · Y (h) dx

� Chβ + Chα−1
(
I (h)(y(h))

)1/2
.

Since β = 2α − 2 this immediately yields

I (h)(y(h)) � Chβ. (157)

Now all the assertions of Theorem 2 follow from Theorem 3 and Lemma 1 except
for the strong convergence of u(h) in (32). This will be addressed in the following
subsection.

7.2. Strong convergence of the in-plane components

To establish strong convergence of the in-plane components we first show that

h1−α dist(∇hỹ(h),SO(3)) → | symG| in L2(�). (158)

Indeed, since y(h) is a β-minimizing sequence in the sense of (18) we must have
equality in (117) and all the limits inferior can be replaced by limits. Thus

lim
h→0

∫
�

Q3(χhG
(h)) dx =

∫
Q3(G) dx,

lim
h→0

h2−2α
∫
�

(1 − χh)W(∇hỹ(h)) dx = 0, (159)
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where χh is the characteristic function of the set {|G(h)| < h−1}. Since Q3 is
positive definite on symmetric matrices the first identity yields

χh symG(h) → symG in L2(�; R
3×3). (160)

Thus by the definition (105) of G(h) (recall that Eh = h2α−2)

h1−αχh dist(∇hỹ(h),SO(3))

= h1−αχh dist(Id + hα−1G(h),SO(3))

= χh| symG(h)| + χhO(hα−1|G(h)|2) → | symG| in L2(�),

since supχhhα−1|G(h)| � hα−2 → 0. Together with (159) and the coercivity con-
dition (5) on W we deduce (158). We remark in passing that using the pointwise
estimate |(F T F )1/2 − Id)| � C dist(F,SO(3)) and (160) we can deduce in the
same way the convergence of the nonlinear strain, i.e.,

h1−α ([(∇hỹ(h))T∇hỹ(h)]1/2 − Id
)

→ symG in L2(S; R
3×3). (161)

From (158) we deduce in particular that h2−2α dist2(∇hỹ(h),SO(3)) is equi-
integrable. Using refined versions of Theorems 5 and 6 (see Propositions 4 and 5
below) we deduce that

|G(h)|2 = h2−2α|∇hỹ(h) − R(h)|2 is equiintegrable. (162)

In connection with (160) this implies that

symG(h) → symG in L2(�; R
3×3).

Since R(h) → Id in L2 and |R(h)| = √
n we also deduce (using, e.g., Egoroff’s

theorem) from (162) that

(R(h) − Id)G(h) → 0 in L2(�; R
3×3).

Thus by definition (105) of G(h) and the convergence of symG(h),

h1−α sym(∇hỹ(h) − R(h)) = h1−α sym(R(h)G(h))

→ symG in L2(�; R
3×3). (163)

Now by (92),

h4−2α sym(R(h) − Id) → A2

2
in L2(�; R

3×3).

Hence h4−2α sym(∇hy(h) − Id) converges in L2 if α � 3, while for α > 3 the
expression h1−α sym(∇hy(h)−Id) converges inL2. Recalling the definition of u(h)

(see (87) and Table 1) we see that sym ∇′u(h) converges strongly in L2(S; R
2×2)

for all α > 2. Finally Korn’s inequality and weak convergence of ∇′u(h) in L2

imply strong convergence of ∇′u(h). This finishes the proof of Theorem 2. ��
In the proof of strong convergence we used the following equiintegrable version

of the rigidity estimate in thin sets.
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Proposition 4. Suppose that α > 2 and

dist(∇hy(h),SO(3)) � hα−1(M + f2)

withM ∈ R,M � 0 and f2 ∈ L2(�). LetR(h) be the map constructed in the proof
of Theorem 6. Then

|∇hy(h) − R(h)| � hα−1(G1 +G2) (164)

with

||G1||Lp(�) � CM for some p > 2, and ||G2||L2(�) � C||f2||L2(�). (165)

In particular, if

h2−2α dist2(∇hy(h),SO(3)) is equiintegrable

then

h2−2α|∇hy(h) − R(h)|2 is equiintegrable.

To prove this we use a refined version of Theorem 5 which can be proved in
essentially the same way as the original result, see [32].

Proposition 5. Let U be a bounded Lipschitz domain in R
n, n � 2, and let 1 <

p1 < p2 < ∞. Then there exist constants C(p1, p2, U) with the following prop-
erties. If v ∈ W 1,1(U ; R

n) and

dist(∇v,SO(3)) � f1 + f2 with fi ∈ Lpi (U), (166)

then there exist gi ∈ Lpi (U) and R ∈ SO(n) such that

|∇v − R| � g1 + g2, ||gi ||Lpi (U) � C(p1, p2, U)||fi ||Lpi (U). (167)

The constants C(p1, p2, U) are invariant under dilations of U .

Proof of Proposition 4. We only show the interior estimate. The estimates near
∂S are obtained in a similar way by first flattening a sufficiently small piece of
∂S as in the proof of Theorem 6. Thus let K ⊂ S be compact and suppose that
dist(K, ∂S) � Ch. Let L′ denote the set of points x′ in the lattice (hZ)2 for which
the lattice cell

Sx′,h = x′ + (0, h)2

intersects K , i.e.,

L′ = {x′ ∈ (hZ)2 : Sx′,h ∩K 
= ∅}.
Let f1 ≡ M , f = M + f2, fix x′ ∈ L′ and write F (h) = ∇hy(h). By Proposi-

tion 5 applied to fiχSx′,h×I there exist g1,x′ and g2,x′ and Rx′,h such that

|F (h)(z)− Rx′,h| � hα−1(g1,x′(z)+ g2,x′(z)) for z ∈ Sx′,h × I, (168)∫
Sx′,h×I

|g1,x′ |p dz � CMph2,

∫
Sx′,h×I

|g2,x′ |2 dz � C

∫
Sx′,h×I

|f2|2 dz. (169)
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Strictly speaking we apply Proposition 5 to Sx′,h × hI , rescale the functions fi in
x3 accordingly and then unscale again.

Using the definition of R = R(h) in the proof of Theorem 6 we see that this
implies

|R(h) − Rx′,h|2 � Ch2α−2 1

h2

∫
Sx′,h×I

|F (h) − Rx′,h|2 dz

� Ch2α−2

(
M2 + 1

h2

∫
Sx′,h×I

|f2|2 dz
)
.

By (71) we have for x̃′ ∈ Sx′,h,

|R(h)(x̃′)− R(h)(x′)|2 � Ch2α−2 1

h2

∫
Sx′,2h×I

|f |2 dz

� Ch2α−2

(
M2 + 1

h2

∫
Sx′,2h×I

|f2|2 dz
)
.

Thus

|F (h)(z)− R(h)(z′)|2
h2α−2 � C

(
M2 + g1,x′ + g2,x′ + 1

h2

∫
Sx′,2h×I

|f2|2 dz
)

(170)

for z ∈ Sx′,h × I . Hence,

|F (h) − R(h)| � hα−1(G1 +G2) in K,

where

G1 = CM +
∑
x′∈L′

g2,x′χSx′,h ,

G2 =
∑
x′∈L′

g1,x′χSx′,h +
∑
x′∈L′

(
1

h2

∫
Sx′, 2h× I |f2|2 dz

)1/2

χSx′,h .

From this we can easily deduce (165). The assertion about equiintegrability is an
immediate consequence. ��

8. Construction of isometries from infinitesimal isometries

8.1. Construction of isometries

In this section we always deal with maps or functions defined on a bounded
Lipschitz domain S ⊂ R

2. To simplify the notation we write ∇ instead of ∇′ for
the two-dimensional gradient. Given a map V ∈ W 2,2(S) we seek to construct an
isometric immersion

y : S → R3, of the form y =
(
�

V

)
.
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We thus need to solve the equation

(∇y)T∇y = (∇�)T∇�+ ∇V ⊗ ∇V = Id.

The main result of this section is that (for simply connected domains) the con-
dition det ∇2V = 0 is necessary and sufficient for this, see Theorem 7 below. The
same condition is sufficient and necessary to obtain a linearized isometric immer-
sion, i.e., a solution of

∇W + (∇W)T + ∇V ⊗ ∇V = 0, (171)

where W : S → R
2, see Proposition 9 below.

To put these results in perspective we first review some general properties of
isometric immersions for the convenience of the reader. These properties are classi-
cal for smooth maps, but we will need them forW 2,2 maps. For a generalW 2,2 map
y : S → R

3 we define the induced metric by gij = y,i ·y,j and we set n = y,1 ∧y,2
and

Aij = −y,ij · n. (172)

If y is an isometric immersion, i.e., if gij = δij , then n is a unit normal to the image
of y and A is the second fundamental form.

Proposition 6. Suppose that S ∈ R
2 is a bounded Lipschitz domain and y ∈

W 2,2(S; R
3) is an isometric immersion. Then

y,ij = Aijn, (173)

Ai1,2 = Ai2,1 for i = 1, 2, (174)

in the sense of distributions. Moreover,

detA = 0. (175)

Proof. Since gij = δij we have |n| = 1. Differentiation of gij yields y,ij · y,k = 0.
Thus y,ij is parallel to n and this proves (173). To establish (174) first note that for
smooth y we have the identity

Ai1,2 − Ai2,1 = y,i1 · n,2 − y,i2 · n,1. (176)

By approximation this identity holds in the sense of distributions if y ∈ W 2,2.
By (173) the vector y,ij is parallel to n (a.e.), but n,k is perpendicular to n, since
|n| = 1. This proves (174).

Finally to establish (175) we start from the identity

g11,22 + g22,11 − 2g12,12 = 2y,12 · y,12 − 2y,11 · y,22. (177)

This holds pointwise for smooth y and by approximation it holds in the sense of
distributions for y ∈ W 2,2. For an isometric immersion the left-hand side vanishes
and together with (173) this proves (175). ��
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Remark 8. If y is smooth then we can deduce from (175) that locally ∇y is either a
constant or is constant on a smooth curve. In the latter case we can further conclude
that the smooth curve is a line defined by the kernel of A. It turns out that the latter
conclusion is still true for y ∈ W 2,2 (see Theorem 9 below). The proof, however,
requires a much finer analysis [41, 59] (for even weaker conditions see Pogor-

elov’s work [65, 66]). The following arguments do not require this geometric
property, except for the fine regularity estimates in Section 8.3.

Now we come to the announced result on the construction of isometric immer-
sions from linearized isometric immersions.

Theorem 7. Let S ∈ R
2 be a bounded, simply connected domain with Lipschitz

boundary. Suppose that V ∈ W 2,2(S) and ||∇V ||L∞ < 1. Then there exists � ∈
W 1,2(S) with det� > 0 and

(∇�)T∇� = Id − ∇V ⊗ ∇V, (178)

if and only if,

det ∇2V = 0. (179)

Moreover � is unique up to a rigid motion. If (179) holds and ||∇V ||L∞ � 1/2
then � can be chosen such that U := �− id satisfies

||∇2U ||L2 � C||∇V ||L∞||∇2V ||L2 , (180)

||U ||W 2,2 � C||∇V ||L∞||∇2V ||L2 + C||∇V ||2
L2 . (181)

Remark 9. IfS is not simply connected then the condition det ∇2V = 0 is not suffi-
cient. Consider, e.g., the annulus S = {x : 1/2 < |x| < 1} and the map V = ε|x|.
Let r = |x|, � = x/r . Then, using the notation below in (185) and (186) we can
easily compute that ∇θ = hF = (1/r)((

√
1 − ε2 − 1)/(

√
1 − ε2))�⊥. Hence in

polar coordinates (r, α) we get that θ(r, α) − θ(r, 0) = ((1/
√

1 − ε2) − 1)α. We
see that θ is well defined only if 1/

√
1 − ε2 ∈ Z.

We will see in Proposition 10 that for V ∈ W 2,2 the condition (179) actually
implies that V ∈ C1(S). If S is of class C1,α then ∇V is continuous up to the
boundary, see Theorem 8 below.

Proof of Theorem 7. Let g = Id − ∇V ⊗ ∇V and let F = g1/2, i.e.,

F = Id − λ̂(|∇V |2)∇V ⊗ ∇V, where λ̂(s) = 1 − √
1 − s

s
. (182)

Then we need to show that there exists a rotation

eiθ :=
(

cos θ − sin θ
sin θ cos θ

)
with ∇� = eiθF. (183)

The following result gives a necessary and sufficient condition for this. We
associate with F a vector field

hF := 1

det F
FT curlF = (cof F−1) curlF, (184)



Hierarchy of Plate Models Derived from Nonlinear Elasticity 225

where

(curlF)p = Fp2,1 − Fp1,2.

Proposition 7 (See [24], Proposition 3.1). Let S be a bounded, simply connected
domain with Lipschitz boundary. Suppose that F ∈ W 1,1(S; R

2×2), det F > 0
and |F−1| � C. Then F can be written in the form F = e−iθ∇� with � ∈
W 2,1(S; R

2×2) and θ ∈ W 1,1(S; R
2×2), if and only if,

curl hF = 0 (185)

in the sense of distributions. Moreover in this case

∇θ = hF . (186)

From (186) we easily read off the estimate (180) for ∇2� = ∇2U . To estimate
the lower derivatives of U we use the fact that θ is only defined up to a constant.
Hence we may suppose that

∫
θ = 0 and thus ||θ ||L2 � ||∇θ ||L2 . Therefore (183)

yields

||∇U ||L2 = ||∇�− Id||L2

� C||θ ||L2 + C||F − Id||L2

� C||∇θ ||L2 + C|||∇V |2||L2 . (187)

To control the last term we use the estimate

||f 2||L2 � C||f 2||L1 + C||∇f 2||L1

� C||f ||2
L2 + C||f ||L2 ||∇f ||L2 (188)

for f = |∇V |2. Together with the previous estimate for ∇θ this yields

||∇U ||L2 � C||∇V ||L∞||∇2V ||L2 + C||∇V ||2
L2 . (189)

Finally using the freedom to add a constant to U we obtain (181).
To prove Theorem 7 it only remains to show that the condition curlF = 0 is

equivalent to det ∇2V = 0. To check this we write

a = ∇V, λ = λ̂(|a|2), λ̂(s) = 1 − √
1 − s

s
.

Then F = Id − λa ⊗ a and using a1,2 = a2,1 we get

(curlF)p = − curl(λapa) = −ap∇λ ∧ a − λ∇ap ∧ a,
where we used the notation α ∧ β = α1β2 − α2β1. Thus

(F T curlF)j

= −aj∇λ ∧ a − λ∇aj ∧ a + λaj |a|2∇λ ∧ a + λ2ajap∇ap ∧ a
= ajg ∧ a − λ∇aj ∧ a,
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where

g = −∇λ+ |a|2λ∇λ+ λ2 1
2∇|a|2 = ∇(−λ+ 1

2λ
2|a|2).

A short calculation shows that g = 0. Indeed writing s = |a|2 we have

λ2|a|2 = (λ̂)2(s) s

= s
(1 − √

1 − s)2

s2

= 2 − s − 2
√

1 − s

s
= 2λ− 1.

Since det F = 1 − λ|a|2 and ∇aj = a,j we obtain

(hF )j = − λ

1 − λ|a|2 a,j ∧ a. (190)

The following proposition shows that curl hF = 0, if and only if, det ∇2V = 0.
��
Proposition 8. Let S be a domain in R

2 and suppose that V ∈ W 2,2(S) and
φ ∈ C1(R) with φ and φ′ bounded. Define h : S → R

2 by

hj := φ(|∇V |2))∇V,j ∧ ∇V.
Then

curl h = ψ(|∇V |2) det ∇2V, (191)

where

ψ(s) = −4sφ′(s)− 2φ(s) = −4
√
s(

√
sφ)′. (192)

Remark 10. If in addition |∇V |2 � M a.e. then it suffices that φ is C1 on [0,M]
since such φ can be extended to R in such a way that φ and φ′ remain globally
bounded.

Proof. If suffices to show the result for V ∈ C3 since the general case follows
by approximation. As before let a = ∇V and note that α ∧ β = −β⊥ · α. Since
a,12 = a,21 we have

curl h =
[
φ(|a|2)(a⊥ · a,1)

]
,2

−
[
φ(|a|2)(a⊥ · a,2)

]
,1

= φ(|a|2)(a⊥
,2 · a,1 − a⊥

,1 · a,2)
+2φ′(|a|2)

[
(a · a,2)(a⊥ · a,1)− (a · a,1)(a⊥ · a,2)

]
.

Now

a,1 · a⊥
,2 = −a,2 · a⊥

,1 = − det ∇a = − det ∇2V,
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and using the linearity of the determinant in rows we compute

det

(
a⊥ · a,1 a⊥ · a,2
a · a,1 a · a,2

)
=

2∑
i,j=1

a⊥
i aj det

(
ei · a,1 ei · a,2
ej · a,1 ej · a,2

)

= (a⊥
1 a2 − a⊥

2 a1) det

(
a1,1 a1,2
a2,1 a2,2

)

= −2|a|2 det ∇2V.

This completes the proof, once it is noted that ψ(s) has no zeroes on [0, 1) for
φ(s) = −(λ/(1 − sλ). ��
Proposition 9. Suppose that S is a simply connected, bounded Lipschitz domain.
Let V ∈ W 2,2(S). Then the equation

∇W + (∇W)T + ∇V ⊗ ∇V = 0 (193)

admits a solution W ∈ W 1,2(S; R
2), if and only if,

det ∇2V = 0. (194)

If (194) holds then W ∈ W 2,2(S; R
2) and

Wi,jk = −V,iV,jk. (195)

In particular det ∇2Wi = 0 for i = 1, 2. Moreover,W is uniquely determined up to
an affine map with skew-symmetric gradient. In particular it is possible to choose
W such that

||∇2W ||L2 � C||∇V ||L∞||∇2V ||L2 , (196)

||W ||W 2,2 � C||∇V ||L∞||∇2V ||L2 + C||∇V ||2
L2 . (197)

Proof. Let

e = −1

2
∇V ⊗ ∇V. (198)

For a smooth V we have

e11,22 + e22,11 − 2e12,12 = det ∇2V, (199)

and by approximation this identity holds in the sense of distributions if V ∈ W 2,2.
Now an L2 map e : S → R

2×2
sym is the symmetrized gradient of aW 1,2 functionW ,

i.e.,

2e = (∇W)T + ∇W, (200)

if and only if,

e11,22 + e22,11 − 2e12,12 = 0, (201)
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see, e.g., [50], Chapter 1, §17, equation (25) (note that in Love’s notation exx = e11,
eyy = e22, but exy = 2e12, see his equation (24) or [16], p. 372). Hence the con-
dition det ∇2V = 0 is sufficient and necessary for the existence of W . Now (200)
implies that

Wi,jk = eij,k + eik,j − ejk,i (202)

and after a short calculation this yields (195), which in turn implies (196). Using
the equation (193) for W and the estimate (188) with f = |∇V |2 we see that

|| sym ∇W ||L2 � C||∇V ||2
L2 + C||∇V ||L2 ||∇2V ||L2 . (203)

Now (197) follows from Korn’s inequality. ��

8.2. Simple regularity estimates

In general functions in W 2,2(S) just fail to be in C1. The situation is, however,
better for isometric immersions. We begin with a scalar result.

Proposition 10. Suppose that V ∈ W 2,2(S) and det ∇2V = 0. Then V ∈ C1(S).
If Bρ(x) ⊂ BR(x) ⊂ S we have more precisely

oscBρ ∇V � C

(
ln
R

ρ

)−1/2

||∇2V ||L2(BR)
, (204)

where oscBρ f := diam f (Bρ).

Proof. Following Kirchheim [41] we consider the map f δ(x1, x2) =
(∇V )(x1, x2)+ δ(−x2, x1) and compute

det ∇f δ = det

(
V,11 V,12 − δ

V,12 + δ V,22

)
= δ2 > 0.

Since the map f δ in addition belongs inW 1,2 it it is monotone and hence continuous
by a result of Vodopyanov & Goldstein [77] (see also [73], [37] and [26], The-
orem 5.14). In fact f δ is monotone in the sense of Lebesgue (i.e., ∂f δ(B(x, r)) =
f δ(∂B(x, r)) and in particular oscB(x,ρ) f δ � oscB(x,r) f δ � osc∂B(x,r) f δ for
r ∈ (ρ, R). Now we can apply the Sobolev embedding theoremW 1,2(∂B(x, r)) ↪→
C0,1/2(∂B(x, r)) for a.e. r ∈ (ρ, R), take squares, divide by r and integrate from ρ

to R to obtain the desired logarithmic modulus of continuity for f (see, e.g., [53],
(4.3.17), p. 110). Since the constants involved are independent of δ we obtain the
assertion for f by taking the limit δ → 0. ��

Now each component of an isometric immersion satisfies det ∇2yi = 0 (see
Proposition 6). Hence we obtain the following corollary.

Corollary 3. Let S, V , � and U be as in Theorem 7. Then V , � und U are C1 in
S. Moreover, for any compactly contained subset S′,

||∇U ||L∞(S′) � C(S′)||∇V ||L∞(S)||∇2V ||L2(S). (205)
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8.3. Refined regularity estimates

For sufficiently smooth domains the continuity estimates in Proposition 10 hold,
up to the boundary.

Theorem 8. Suppose that S is a C1,α domain (for some α > 0) and that V ∈
W 2,2(S) with det ∇2V = 0. Then V ∈ C1(S̄) and for sufficiently small ρ,R with
0 < ρ < R,

oscBρ∩S ∇V � C

(
ln
R

ρ

)−1/2

||∇2V ||L2(BR∩S), (206)

In particular,

||∇V ||L∞(S) � 1

|S|
∣∣∣∣
∫
S

∇V dx
∣∣∣∣+ C||∇2V ||L2(S). (207)

Remark 11. The result does not hold for Lipschitz domains. Consider for example
the truncated cone {(x1, x2) : x1 ∈ (0, 1/2), |x2| < x1} and V (x) = v(x1) with
v′(0) = ∞ and

∫ 1
0 t |v′′(t)|2 < ∞. We may take, e.g., v′(t) = | ln t |α , 0 < α < 1/2.

A slight modification shows that evenC1 domains are not sufficient. We need a cer-
tain logarithmic modulus of continuity of the normal.

Proof (See [58]). In the setting of Theorem 7 we thus obtain for C1,α domains the
estimates

||∇V ||L∞(S) � C||V ||W 2,2(S), (208)

||∇U ||L∞(S) + ||∇2U ||L2(S) � C||V ||2
W 2,2(S)

. (209)

The proof of Theorem 8 uses the fact that the gradient of an isometric immersion
is either locally constant or constant along a line segment which touches ∂S at both
ends. This is classical for smooth maps. For C2 maps it follows as a special case of
more general results presented by Hartman & Nirenberg [36]. Pogorelov [65,
66] has established the result under very weak hypotheses. He only required that
the surface is C1 and that the image of the Gauss map (which maps each point on
the surface to its normal) has measure zero on S2. Pakzad recently gave a shorter
proof (using results of Kirchheim) forW 2,2 isometric immersions. For later use we
state both the scalar version (for functions with det ∇2V = 0) of this result and the
version for isometric immersions.

Theorem 9 (See [41, 59]). Let S be a bounded Lipschitz domain. Suppose that
V ∈ W 2,2(S) with det ∇2V = 0. Consider the open set

S1 = {x ∈ S : ∇V is constant in a neighbourhood of x}. (210)

Then through every point x ∈ S \ S1 there exists a line segment which intersects
∂S at both ends and on which ∇V is constant.

The same characterization holds for an isometric immersion in W 2,2(S; R
3).
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Remark 12. The statement for isometric immersions follows from that for scalar
functions. By Proposition 6 the second fundamental formA is curl-free and thus can
be locally written asA = ∇f . SinceA is symmetric we also have locally f = ∇V .
Hence det ∇2V = detA = 0. Thus if f is not locally constant, it is constant on
a line segment. Now (173) and Lemma 3 imply that for each component yi the
gradient ∇yi is constant on that segment.

The above characterization can also be used to approximate W 2,2 functions
that satisfy det ∇2V = 0 by functions in W 2,2 ∩ W 1,∞ which satisfy the same
constraint. The idea is that each component of the set {|∇V | < k} is bounded by
line segments on which ∇V is constant and by pieces of ∂S. If k is sufficiently big
then by local regularity there is one large component U of {|∇V | < k}, and we
obtain a good approximation by replacing V by a constant in the regions between
∂U and ∂S. The precise statement is as follows:

Theorem 10 (See [58]). Suppose that S is a bounded Lipschitz domain. Let V ∈
W 2,2(S) with det ∇2V = 0. Then there exist an increasing sequence of open sets
Sk ⊂ S and Vk ∈ W 2,2(S) such that

Vk = V in Sk, ∇2Vk = 0 a.e. in S \ Sk, (211)

|∇Vk| � k in S, (212)
∞⋃
k=1

Sk = S. (213)

In particular det ∇2Vk = 0, ||∇2Vk||L2(S) � ||∇2V ||L2(S) and Vk → V in
W 2,2(S).

Remark 13 (See [58]). If � ⊂ ∂S is a finite union of intervals and ∇V = 0 on �
(in the sense of trace) then we can achieve that Vk = V and ∇Vk = ∇V = 0 on �.
In fact there exists a subset of S whose boundary includes � on which Vk = V .

In Remark 12 we have used the fact that if ∇u and ∇v are parallel in an L2

sense in S, and if v is constant on a line, then so is u. The following lemma gives a
precise statement.

Lemma 3. Let � = {(x1, x2) : x2 = h(x1), x1 ∈ (0, a)} be a Lipschitz graph and
let

U = {(x1, x2) : h(x1) < x2 < h(x1)+ b, x1 ∈ (0, a)} (214)

be a strip above �. Suppose that u ∈ W 1,1(U), bk, vk ∈ W 1,2(U) and

∇u =
∑
k

bk∇vk. (215)

If the functions vk are constant on � (in the sense of trace) then u is constant
on �.

Proof. We may assume that h = 0, since otherwise we can consider the functions
ũ, b̃k, ṽk given by ũ(x1, x2) = u(x1, h(x1), x2) etc. We may also suppose that the
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vk vanish on � since otherwise we can first subtract suitable constants. So suppose
h = 0 and let ū(x1) = u(x1, 0) denote the trace of u on �. We claim that∫

�

ūϕ̄′ dx1 = 0 ∀ϕ̄ ∈ C∞
0 (0, a). (216)

Then the assertion may be immediately applied. To prove (216) fix ϕ̄ and consider
ψ ∈ C∞

0 ([0, 1)) with ψ = 1 on [0, 1/2]. Set ϕδ(x) = ¯ϕ(x1)ψ(x2/δ). Then for
sufficiently small δ > 0 the function ϕδ vanishes on ∂U \ �. Thus

∫
U

∇u ∧ ∇ϕδ dx =
∫
U

(uϕδ,2),1 − (uϕδ,1),2 dx =
∫
�

ūϕ̄′ dx1. (217)

On the other hand we have∫
U

∇u ∧ ∇ϕδ dx =
∫
U

∇vk ∧ bk∇ϕδ dx

=
∫
U

∇vk ∧ ∇(bkϕδ) dx −
∫
U

∇vk ∧ ϕδ∇bk dx.

Now the first term vanishes. To see this, approximate the bk by smooth functions
and use the fact that vk vanishes on � and the calculation in (217). The second term
goes to zero as δ → 0. Hence (216) holds. ��

9. Conclusions

We have shown that variational methods and rigidity estimates yield a system-
atic derivation of a hierarchy of plate theories (as thickness-to-zero limits), which
is completely free from a priori assumptions on the structure of the solutions. The
different theories in the hierarchy are distinguished by the relation between the
strength of the applied force and the thickness.

9.1. vK theory revisited

It is instructive to see how this approach addresses the criticisms raised by
Truesdell and Antman against the usual derivations of von Kármán’s plate theory.
This were [74]:

(i) approximate geometry;
(ii) assumptions on the way the stresses vary over the cross-section;

(iii) commitment to some specific linear constitutive relation;
(iv) neglect of some components of the strain;
(v) an apparent confusion of the referential and the spatial descriptions.

The first and last criticisms in particular refer to the fact that nonlinear elas-
ticity is invariant under the full group SO(n) of rotations, whereas von Kármán’s
theory is based on geometrically linear elasticity which is only invariant under
the tangent space of skew-symmetric matrices. Since the three-dimensional elastic
energy is invariant under rotations, large rotations could in principle occur and these
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would not be compatible with the use of geometrically linear theory. This point is
addressed by our rigidity estimate, Theorem 6. In the energy scaling regime in
which von Kármánś theory is valid (i.e.,Eh ∼ h4) the three-dimensional deforma-
tion gradient is very well approximated by a constant rotation (see (63)), which we
may assume to be the identity. This is the reason why geometrically linear theory
works. The crucial expression sym ∇′u + (1/2)∇′v ⊗ ∇′v which represents the
membrane strain in vK theory is derived rigorously in Lemma 2, see (109). At the
heart of the matter is a second-order estimate for the deviation of the local defor-
mation gradient from a constant rotation (see (92) and (84), where the constant
rotation is taken as the identity and where Eh = h4).

Point (iii) is again essentially addressed by (63). This allows us to use a Taylor
expansion of the energy. Therefore only the linearization of the full elastic energy
matters and we get a linear constitutive relation in the limiting model. One subtle
point is that from the smallness of the energy we can only prove that the gradient
is close to the identity in L2, whereas a Taylor expansion requires an L∞ estimate.
Here lies the strength of the variational character of �-convergence. For the lower
bound we can ignore the very small set where the gradient may not be uniformly
close to the identity (see (117)). For the upper we only need to construct a test
function and we can choose this so that uniform convergence holds.

Point (ii) is also taken care of by Lemma 2. It shows that the relevant compo-
nents of the limiting strain are affine in x3. Since the limiting stress-strain relation
is linear, the same holds true for the stress.

Finally (iv) emerges naturally in our analysis. Again Lemma 2 shows that cer-
tain components of the limiting strain can be predicted from the limiting in-plane
and out-of-plane deformations. Minimization over the remaining components leads
to a lower bound for the energy and the construction of test functions for the upper
bound shows that this lower bound is already sharp. Hence for (almost) minimiz-
ing sequences in the sense of (18), the remaining components of the strain are
essentially slaved to the ones which enter directly into the theory.

9.2. Extensions

The approach discussed here can be extended to many other settings and a lot
of work is currently in progress. Let us just mention shells [47, 31], rods [55, 56,
62], other boundary conditions and stability [33], heterogeneous films and multi-
layers [72], and multiwell problems [10, 72, 14, 15, 44, 57]. We also believe that
the estimates developed here should be useful for the numerical analysis of thin
elastic bodies.

9.3. Theories which involve membrane and bending energy

A wide open problem is the question of whether we can rigorously justify
theories which are two-dimensional but still involve the small thickness parameter
h. There are many cases of interest with boundary conditions that do not fall into
any of the categories. A typical case involves boundary conditions that cause part
of the shell to stretch, but another part to bend with no stretching. This apparently
can also happen near a singularity.
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The theories derived in the limit h → 0 (see Table 1) also often show certain
degeneracies. In such cases, membrane theory exhibits no resistance to compres-
sion, leading to undesirable instabilities. Thus, while membrane theory is too soft,
Kirchhoff’s bending theory is often too stiff. It captures the bending energy cor-
rectly but only isometric immersions have finite energy. Practitioners often use
theories which involve both membrane and bending contributions to the energy
(and thus retain the small parameter h), i.e., geometrically nonlinear versions of
the von Kármán theory. The question of whether any one of these theories has a
rigorous asymptotic status is unclear. There have been some attempts to extend the
concept of �-convergence to �-expansion in order to capture not only the limit,
but also higher-order terms, but so far this approach has been mostly successful for
linear problems [3]. It seems that these �-expansions tend to separate the regimes
more than is desirable; each successive term in the �-expansion can only make an
arbitrarily small perturbation to the preceeding theory. In ongoing work, Braides

& Truskinovsky [11] are studying a number of nonlinear examples where such a
�-expansion would be very desirable. The issue of simplified theories which still
contain the small parameter is of particular interest in the force range 1 � α < 2,
as we already discussed in Section 2.2.
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