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Multi-agent Simulations and 
Vaccine Allocation Strategies 
By Jiangzhuo Chen, Stefan Hoops, 
Parantapa Bhattacharya, Dustin 
Machi, and Madhav Marathe

Epidemic science pertains to the develop-
ment of models, technologies, and deci-

sion support tools to understand and control 
the spread of disease. This area of research is 
especially critical as the COVID-19 pandem-
ic continues to cause significant social, eco-
nomic, political, and health-related impacts 
across the globe. In a previous article,1 we 
outlined an epidemiological approach that 
is rooted in network science and data-driven 
modeling. Here we discuss the challenges of 
such an approach’s implementation during 
an evolving pandemic in the context of the 
vaccine prioritization problem, and outline 
our recent efforts to develop operational 
models that support policymaking.

We focus on networked models, which 
consider epidemic spread on an undirected 
social interaction network GV E( , ) over 

1 https://sinews.siam.org/Details-Page/
networked-epidemiology-for-covid-19

a population V ;  each edge e u v E= Œ( , )  
implies that individuals (also called nodes) 
u v V, Œ  interact. The susceptible-infected-
recovered (SIR) model on graph G  rep-
resents a dynamical process wherein each 
node is in either an S, I, or R state. Infection 
can potentially spread from u  to v  along 
edge e u v= ( , ),  with a probability of b( , )e t  
at time t  after u  becomes infected — con-
ditional on node v  remaining uninfected 
until time t. I t( ) denotes the set of nodes 
that become infected at t.

The basic vaccine allocation problem 
involves deciding who to vaccinate and 
when to do so. The objective is to minimize 
the number of infections, hospitalizations, 
or deaths [4, 6]. This basic problem is 
computationally challenging on its own, 
but it becomes progressively more complex 
as we consider some of the following real-
world constraints [2, 3]:

 • Production Restrictions: Vaccines 
are available in limited quantities for a set 
amount of time. We must thus consider two 
time-varying processes (epidemic and vac-
cine production) when prioritizing vaccines.

 • Prioritization: This problem invites 
an ethical element. Should vaccine dis-
tribution aim to slow disease progression 
or reduce mortality? The latter usually 
suggests age- and health-based allocation, 
while the former implies allocation that 
targets potential super-spreaders.

 • Immune Profile: This topic raises 
several pertinent questions: Who should get 
the vaccine? What dosage is needed (one 
or two dose regimens)? Are booster shots 
necessary? If so, when? And who should 
receive boosters? 

 • Hesitancy: Some individuals are hes-
itant about vaccination for various reasons.

Additional complications include lack 
of timely data, incomplete understanding 
of disease and immunological processes, 
social interventions, genomic variations, 
and vaccine sharing within a country and 
between countries. The creation of mod-
els that assess various vaccine allocation 
strategies hence becomes a complex system 
problem that should address five distinct 
challenges: (i) Most natural problems are 

Figure 1. Results from two example studies on vaccine allocation. 1a. Example 1: Comparison of total reduction from the no-vaccine scenario 
with different prioritization strategies. The degree-based strategy, which targets individuals in the uppermost quartile with 60 percent accuracy, 
outperforms the other approaches. The no-priority strategy—which vaccinates randomly selected people—more successfully reduces infections 
than the old-age strategy, which targets those who are at least 50 years old. However, the opposite is true in the context of death reduction. 
When it comes to reducing hospitalizations, strategies that target essential workers and high-degree individuals outperform both the no-priority 
and old-age approaches. 1b. Example 2: Bubble chart that depicts correlations between vaccine acceptance, averted infections, and population 
size of all 50 U.S. states and Washington, D.C. Although infection aversion does not have an obvious correlation with vaccine acceptance, smaller 
states seem to have larger (normalized) infection aversions. Figure courtesy of Jiangzhuo Chen.

See Vaccine Allocation on page 3

Origami and the Structure of Materials
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Fan Feng, Arun Soor, and   
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The world’s population is growing 
approximately linearly by about 80 mil-

lion individuals per year, leaving less and 
less space per person on average. Perhaps 
this growth is responsible for an explosion 
of interest in origami—the art of paper 
folding—with applications that range from 
stents to canoes and even buildings. Origami 
is basically a fitting game. We already know 
a lot about the rules for smoothly bending 
and twisting a sheet of paper, as this is the 
classic subject of locally isometric map-
pings in differential geometry. Continuity 

is required for origami — these mappings 
must fit together at the creases.

Differential geometry per se is not quite 
as helpful for this purpose as one might 
think. It focuses on quantities that are intrin-
sic, i.e., that do not depend on parameteriza-
tion. But in origami design, we usually wish 
to find the particular parameterization that 
actually describes the origami structure, 
which we often fold from a flat sheet with 
a crease pattern. Ideally, we want the full 
recipe for the sheet’s continuous folding—a 
homotopy, if it exists—to guarantee that 
the structure is deployable. A Lagrangian 
approach is therefore fruitful, especially 
if we also seek to calculate the forces and 
moments that contribute to the folding.

Such logic brings origami design surpris-
ingly close to the methods that researchers 
apply to understand the structure of materi-
als at both the atomistic and continuum 
levels [7]. At the continuum level, a mate-
rial’s underlying crystal structure imposes 
a symmetry that phase transformations can 
break, often by passing to a subgroup. 
This group-subgroup relation describes a 
family of symmetry-related distortions that 
are possible at a phase transformation. It 
also leads to a fitting problem: How can 
we fit together the different distortions? 
Atomistic-level arrangements of atoms—
such as quasicrystals—suggest unusual ori-
gami designs that highlight undeveloped 
areas of applied mathematics.

The exploitation of discrete symmetries 
is a powerful tool for both origami design 
and the study of phase transformations. To 
explain the simplest method, consider a 
discrete group of isometries:

   g g1 1 1 2 2 2= = …( | ), ( | ), ,Q c Q c
(1)

                  gn n n=( | ).Q c

Here, Q Q1, ,¼
n
 are 3 3´  orthogonal 

matrices, c c1, ,¼
n
 are three-dimensional 

vectors, and the group can be finite or 
infinite ( ).n=∞  ( | )I 0  is the identity, 
g g1 2 1 1 2 2 1 2 1 1 2= = +( | )( | ) ( | )Q c Q c Q Q c Q c  
is the multiplication rule, and the 

Figure 1. Group orbit procedure with various tiles and helical/conformal groups. 1a. Group orbit procedure with a Miura tile and helical group. 1b. Group orbit procedure with various tiles and a 
conformal group. The unfolded crease pattern is shown in blue. Figure 1a adapted from [3], 1b courtesy of the authors.

See Origami on page 4



4 • January/February 2022 SIAM NEWS 

notation is traditional. We can apply a 
group element g=( | )Q c  to an origami tile 
  (or a collection of tiles) in the obvious 
way: g( ) ,x Qx c= +  xÎ .  The appar-
ently unusual group product simply cor-
responds to a composition of mappings: 
g g g g1 2 1 2( ) ( ( )).x x=

Abelian isometry groups are a natural 
tool for fitting things together. Imagine a 
tile, a collection of tiles, or any set what-
soever: ( ).Ω⊂3  Suppose that there are 
two disjoint subsets of  1 2, ,∈∂Ω  and 
that two commuting isometries g g1 2,  sat-
isfy g1 1( ) ⊂∂Ω  and g2 2( ) . ⊂∂Ω  By 
construction, g1( )W  fits perfectly onto W 
at g1 1( )  and g2( )W  fits perfectly onto W 
at g2 2( ).  But since g g g g1 2 2 1= ,  g g1 2( )W  
thus fits perfectly onto both g1( )W  and 
g2( )W  at g g1 2 2( )  and g g1 2 1( )  respec-
tively. The Abelian isometry group builds 
the whole structure by iterating this pro-
cess. According to the group property, each 
image of W  fits together perfectly with its 
four neighbors. And the tiles are identi-
cal, which is a welcome feature for people 
who actually make and transport the tiles 
in a real application. Figure 1 (on page 1) 

illustrates the “group orbit procedure” with 
W  as a partly-folded quad origami. The two 
commuting generators yield a helical group.

In terms of deployability, we want the 
whole homotopy rather than a single con-
figuration. One component of this ambi-
tion is easy. If we consider only piecewise 
linear, isometric deformations between the 
creases and perform pairwise fitting at the 
edges of individual tiles, we can at least 
hope to conduct the fitting with isometries. 
Deployability is hence reduced to the ques-
tion of whether there are sufficiently many 
free parameters in both the group and unit 
cell W  to make the whole structure deform-
able. Surprisingly, such freedom often exists; 
Figure 1a (on page 1) illustrates this point 
with two commuting isometries and a unit 
cell that collectively allow the structure to 
be folded continuously from a flat strip to a 
cylinder. We can also generate this outcome 
with two commuting conformal transfor-
mations: g1 1 1 1=( | ),lQ c  g2 2 2 2=( | ),l Q c  
l l1 2, .Î  The group product is again a 
composition of mappings in Figure 1b.

How do these concepts relate to the struc-
ture of materials? At the continuum level, 
we can adapt the aforementioned group 
orbit procedure. We begin with a deforma-
tion y : ,Ω→3  Ω⊂3 (rather than the 
full homotopy) and consider two Abelian 
isometry groups; one acts on W  and the 
other acts on y( ).W  As a simple case, 
consider tÎ3 and a translation group t i, 
iÎ, t ii( )x x t= +  that acts on W and 
a circle group hi i=( | ),Q 0  i n= …1, , , 
Q In=  that acts on y( ).W  Suppose that 
we arrange h t( ( ( )) ( ),y x y x− =1  xÎ  
on the overlap region = ∩t( ) .Ω Ω  The 
groups then build the whole structure for us: 
y x y x( ) ( ( )),= −h ti i  x∈t i( ),Ω  i n= …1, , . 
To yield a homotopy y x( , ),t  we again 
need sufficient flexibility of the groups and 
allowable deformations.

Figure 2 illustrates an experimental 
example with exactly these groups: two 
variants of a tetragonal phase of a ferro-
magnetic NiMnGa alloy [5]. It is difficult to 
experimentally achieve the full homotopy 
from a rectangular bar in this case; the row 
of permanent magnets at the top of the fig-
ure is instrumental.

How might we achieve Figure 2’s revers-
ible phase transformations in nanostruc-
tures? One idea involves using two helical 
groups to generate helical atomic structures, 
then fitting them together along a helix. We 
can in fact do so for the green and blue lat-
tices in Figure 3. But the structure is rigid; 
the interfaces cannot move without slip 
— i.e., without atoms losing their nearest 
neighbors. This is always the case when we 
attempt to fit two helical phases together at 
a (nondegenerate) helix. On the other hand, 
inserting the red phase in Figure 3—an 
exact reflection/“twin” of the blue phase 
across a horizontal plane and therefore 
equally stable by the invariance of quantum 
mechanics—makes the phase transforma-
tion possible. Figure 3 illustrates the way in 
which all atoms retain their nearest neigh-
bors in the process. We suggest that this 
motion is a viable route to reversible phase 
transformation in nanotubes.

Building some elastic energy into an ori-
gami structure to bias it towards a particular 
shape is often a valuable approach [1]. Most 
elegantly, we can introduce elastic energy by 
allowing curved, locally isometric mappings 
between the creases. Again, the Lagrangian 
approach and group orbit procedure provide 
powerful methods of synthesis and analysis. 
The fitting is subtler than before, with care-
ful consideration of the rulings on each side 
of the crease and exploitation of the addition-
al freedom when the crease itself undergoes 
a locally isometric mapping. Figure 4 offers 
some examples that use circle groups for 
both the reference domain W  and deformed 
domain y( ).W  We can fold all of these 
examples isometrically from a flat sheet.1

Kirchhoff’s nonlinear plate theory—a 
wonderfully simple and accurate theory—
allows us to calculate the elastic energy of 
these curved origami structures [4]. The finite 
energy deformations of Kirchhoff’s theory 
are precisely locally isometric mappings.

Can we use the mathematics and inspi-
ration of origami design to suggest com-

1 An animation in the online version of 
this article shows the full homotopy in the 
case of a translation group on W  and a heli-
cal group on y( ).W

pletely new kinds of materials? A central 
idea for material design—and one that is 
well represented by the periodic table—is 
that atoms “like to see identical environ-
ments.” In other words, an isometry can 
map any atom’s full atomic environment to 
that of any other atom. From a (challenging) 
mathematical perspective, we can view this 
property as an intermediate step in the proof 
of a general crystallization theorem. The 
property is also evident in the designs of 
Figures 1 through 4 (excluding Figure 1b); 
corresponding points on each tile experi-
ence the same environment.

A Penrose tiling relaxes this idea. 
Because there are only two tiles, each node 
in the tiling sees a finite number of local 
environments. As the local environment’s 
diameter grows, the number of different 
local environments grows as well. The 
presence of a few local environments is an 
acceptable situation for materials in both 
energetic and kinetic terms, as evidenced 
by the existence of quasicrystals. Reidun 
Twarock and Tom Keef’s analysis of virus 
structure [8] proposes another way to ensure 
that most atoms in the structure see one of 
several local environments: use an infinite 
non-discrete isometry group and carefully 
select elements while avoiding the accu-
mulation points. Since we have minimal 
knowledge of these non-discrete groups—
let alone how to select the elements—there 
is plenty of room for investigation.
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Figure 2. Bending by phase transformation of the tetragonal phase of a single crystal from a 
NiMnGa alloy. The arrows depict the direction of magnetization. Figure courtesy of [5].

Figure 3. Proposed mechanism for phase transformation in a nanotube. Figure courtesy of [2].

Figure 4. Curved isometric origami designs that use circle groups for both the reference and 
deformed domains. Figure courtesy of [6].
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