
rsta.royalsocietypublishing.org

Research
Cite this article: Ganor Y, Dumitrică T, Feng F,
James RD. 2016 Zig-zag twins and helical
phase transformations. Phil. Trans. R. Soc. A
374: 20150208.
http://dx.doi.org/10.1098/rsta.2015.0208

Accepted: 1 December 2015

One contribution of 11 to a theme issue
‘Trends and challenges in the mechanics of
complex materials’.

Subject Areas:
crystal engineering, applied mathematics,
microsystems, materials science

Keywords:
martensitic phase transformation, bending,
ferromagnetic shape memory, Ni2MnGa,
continuummechanics

Author for correspondence:
Richard D. James
e-mail: james@umn.edu

Zig-zag twins and helical
phase transformations
Yaniv Ganor1, Traian Dumitrică2, Fan Feng1

and Richard D. James1

1Department of Aerospace Engineering and Mechanics, and
2Department of Mechanical Engineering, University of Minnesota,
Minneapolis, MN 55455, USA

RDJ, 0000-0001-6019-6613

We demonstrate the large bending deformation
induced by an array of permanent magnets (applied
field ∼0.02 T) designed to minimize poles in the
bent state of the crystal. Planar cantilevers of
NiMnGa (5M modulated martensite) ferromagnetic
shape memory alloy deform into an arched shape
according to theory, with a zig-zag microstructure
that complies with the kinematic and magnetic
compatibility between adjacent twin variants. A
general theory of bent and twisted states is given,
applicable to both twinning and austenite/martensite
transformations. Some of these configurations achieve
order-of-magnitude amplification of rotation and axial
strain. We investigate also atomistic analogues of
these bent and twisted configurations with perfect
interfaces between phases. These mechanisms of large
deformation, induced by small magnetic fields or
temperature changes, have potential application to
the development of new actuation technologies for
micro-robotic systems.

1. Introduction
Martensitic transformations are solid-to-solid phase
transformations observed in various crystalline solids.
The transformation is characterized by a first-order
or discontinuous change in the crystal lattice and
the absence of diffusion or reordering of atoms.
This transformation is responsible for phenomena
of significant scientific interest, including the shape
memory effect, the ferromagnetic shape memory effect,
magnetic or electric field-induced phase transformation,
and a wide variety of phenomena that arise due to
the generic sensitivity of magnetoelectric and transport
properties to lattice parameters [1], which generally
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undergo abrupt changes at transformation. Potential or demonstrated technological applications
of these transformation phenomena include solid-state refrigeration [2,3], direct conversion of
heat to electricity [4,5], robotics [6], information storage [7], smart windows [8], sensors and
actuators [9,10].

Typically, the lattice of the high-temperature phase, austenite, has greater symmetry than that
of the low-temperature phase, martensite. This gives rise to variants of martensite—identical
crystal lattices of martensite which are obtained by using different deformations of the austenite
lattice. The variants rearrange themselves compatibly in a coarse or fine-scale microstructure in
order to satisfy imposed boundary conditions.

During the development of the geometrically nonlinear theory of martensitic phase
transformations, one of the simplest possible energy-minimizing structures (under free boundary
conditions) was constructed theoretically by jumping back and forth between states on the
energy wells associated with two variants of martensite, always jumping from one state to a
compatible state [11, p. 444]. This microstructure could be realized in a beam. It is of particular
practical interest in that the tensile side of the beam experiences the maximum uniaxial stretching
possible (among zero-energy microstructures) in this material, while the compressive side has
the maximum possible local shrinkage. Thus, the amount of bending is believed to be the
largest achievable in a given martensitic material and therefore provides an interesting actuation
mechanism (cf. [12,13]). An attempt was made to produce this microstructure by bending a
suitably oriented single crystal of Cu-14.0mass%Al-3.5mass%Ni in a pure bending machine [14].
Despite this being a zero-energy microstructure, this experiment was not successful, probably
due to metastability phenomena more recently discussed by Ball, Chu and James [15–17], Ball
et al. [18] and especially Seiner et al. [19]. Thus, this simple, natural and interesting energy-
minimizing structure has not to our knowledge been observed. Magnetism offers a new handle
on the manipulation of microstructure and the lowering of energy barriers. Here, we manipulate
magnetic energies to produce this microstructure in the NiMnGa (5M) ferromagnetic shape
memory alloy. We demonstrate the formation of these large deflections in an NiMnGa alloy
driven by a small magnetic field of 0.02 T. The use of related mechanisms for remotely energized
microscale propulsion is discussed in the literature [20].

Motivated by these results, we also update the theory. Seen from a different perspective,
the zig-zag bending microstructure can be viewed as an example of an ‘objective structure’
([21] and §5) at continuum level, or, more precisely, the transformation of one objective
structure to another. This generalizes the zig-zag structure to a large variety of zero-energy
microstructures. We develop this idea in the context of martensitic phase transformations in §§3
and 4. As an application of the theory, using the helical group, we find families of zero-energy
austenite/martensite structures. Overall, these results show how phase transformations can be
used in diverse ways to produce large bending and twisting of extended structures.

Notation and method of visualization. SO(3) = {R ∈ R
3×3 : RTR = I, det R = +1} denotes rotation

matrices, and the notation a ⊗ n stands for the rank-one tensor constructed from a and n: in
Cartesian components (a ⊗ n)ij = ainj. All theoretical pictures of microstructures (at continuum
level) shown in this paper are plotted using the following algorithm. (a) A deformation y(x)
defined on a domainΩ and having the given values of ∇y is constructed analytically. (b) Suitable
rectangular arrays of points x1, x2, . . . are specified on ∂Ω . (c) Dots at the points y(x1), y(x2), . . .
are plotted, coloured by their phase or variant. If a magnetization m0 = m(y(x0)) is present,
corresponding to the deformation gradient ∇y(x0), then the vector m0 is plotted in the deformed
configuration at y(x0). (The point x0 is chosen conveniently.) This is a visualization based on a
direct interpretation of the Cauchy–Born rule [22] generalized to the magnetic case [23].

2. Magnetoelastic zig-zag twins
The NiMnGa alloy chosen is an off-stoichiometric Heusler alloy with an L21 cubic structure
of the austenite. It undergoes a ferromagnetic transition above room temperature and
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a cubic-to-tetragonal martensitic transformation below room temperature. The martensitic
transformation is accompanied by a shortening of the cubic unit cell in the [100] direction, and
the corresponding easy axis of magnetization is in that direction.

All the bending and twisting deformations constructed in this paper would be poorly
represented in geometrically linear theory because of the large rotations involved [24]. A suitable
geometrically nonlinear theory of magnetoelasticity, building on the work of Brown [25] but
including phase transformation, has been given in [23]. This theory is based on an energy of
the form ∫

Ω

W(∇y(x), m(y(x)), θ ) − h0 · m(y(x))(det ∇y(x)) dx + 1
2γ

∫
R3

|∇ϕ|2 dy. (2.1)

Here Ω is the reference configuration, which is chosen to represent undistorted austenite at
the transformation temperature θ0, W is the local free-energy density which includes both
strain energy and magnetic anisotropy energy, θ is the temperature, y :Ω → R

3 represents the
deformation, the vector field m(y) is the magnetization (defined on the deformed configuration
y(Ω)), h0 is the applied field and γ = 4π (cgs units). The last term is the magnetostatic energy: it
is evaluated by assigning the magnetization m(y) and then solving the magnetostatic equation

div(−∇ϕ + m) = 0 (2.2)

on all of space, and then inserting the solution ∇ϕ into the last term of (2.1). There is no ambiguity
because (2.2) has a unique solution ϕ up to an additive constant, among potentials with finite
magnetostatic energy.

The key point for this paper is the precise form of the energy wells of W. These are pairs (F, m)
consisting of a 3 × 3 deformation gradient F and corresponding magnetization m that minimize
the local free-energy density W. In the case that the martensite is ferromagnetic and θ < θ0, these
have the following general form [23]:

(RU1, ±Rm1), (RU2, ±Rm2), . . . , (RUn, ±Rmn), R ∈ SO(3). (2.3)

Note for later use the rotational invariance, and the important fact that the same rotation
matrix appears in front of Ui and mi. The symmetric, positive-definite tensors U1, . . . , Un, called
transformation stretch tensors, define the variants of martensite. All of the wells can be obtained
from the first one by using the point group P = {Q1, . . . , Qm} of undistorted austenite:

{(U1, m1), . . . , (Un, mn)} = {(QiU1QT
i , Qim1) : i = 1, . . . , m}. (2.4)

Generally, n ≤ m because there can be degeneracy, as in the tetragonal case below. There can also
be a further degeneracy (consistent with (2.4)) in which several magnetizations are paired with the
same stretch tensor. (A practical example occurs in the tetragonal phase of Fe7Pd3 [26].) We will
assume that W = 0 on the states given in (2.3) and is positive elsewhere, for θ < θ0.

At the transformation temperature, θ = θ0, there are one or more additional wells associated
with the austenite. If the austenite is ferromagnetic, these are of the form

(R, ±Rm̂1), . . . (R, ±Rm̂p), R ∈ SO(3) and {m̂1, . . . , m̂p} = {Qim̂1, i = 1, . . . , m}. (2.5)

If it is non-ferromagnetic the austenite well is simply (SO(3), 0). Note that in all cases the
wells of austenite and martensite are consistent with the same invariance: the transformation
(U, m) → (RQiUQT

i , ±RQim) takes the wells to themselves for R ∈ SO(3) and Qi in the point group
of austenite. The austenite well persists as a minimizer of W for θ > θ0, but the martensite wells
have a higher energy density at these temperatures.

We will make use of a theorem given in [27]: assume two variants of martensite are compatible
and the solution for the compatible interface is a type I or type II twin. See [28,29] for the precise
definition: in the simplest case type I twins exhibit 180◦ symmetry of the crystal structure about
the normal, while type II twins exhibit 180◦ symmetry about a vector in the twin plane. In either
case, this interface can be made pole-free by the choice of ±, i.e. the condition div m = 0 is satisfied
in the weak sense in a neighbourhood of the interface. In view of (2.2), the jump of magnetization
at the interface therefore makes no contribution to the magnetostatic energy. Mathematically, this
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(a)

(i)

(ii)

(b)

Figure 1. Predicted two-variant microstructure viewed down the [001] axis (a) and a three-dimensional view (b). Figures
drawnwithη1 = 1.013,η2 = 0.952. Note the precise absence of poles on the internal interfaces in the deformed configuration.
(a) Reference (ii), deformed (i) and (b) three-dimensional view with magnetization. (Online version in colour.)

theorem says that if the energy wells have the structure given above and R ∈ SO(3) and vectors
a, n are chosen to satisfy (for fixed i, j)

RUi − Uj = a ⊗ n, (2.6)

where Ui = QUiQT for a suitable twofold orthogonal transformation Q ∈P (so the two solutions
RI, aI ⊗ nI and RII, aII ⊗ nII of (2.6) are type I/II twins), there is a choice of ± such that

(Rmi ± mj) · n̂ = 0, (2.7)

where n̂ = U−T
i n is a normal to the interface in the deformed configuration. The key point is

that the rotation R is the same in both (2.6) and (2.7), and therefore the states (RUi, Rmi) and
(Uj, ±mj) are on the energy wells. In the case relevant to the experiment reported here, this result
is illustrated by figure 1, where it can be seen that the deformed interfaces are compatible and
exactly pole-free, despite the distortion, and the local free energy is zero.

The constructions given below consist of piecewise constant magnetization with interfaces
satisfying these conditions, and the ± can be chosen consistently so that all internal interfaces
are pole-free. Therefore, the only contribution to the magnetostatic energy is from jumps of the
magnetization at the boundary of the body. We noticed that by choosing a suitably oriented,
rectangular, single-crystal bar (figure 1) we could make all lateral surfaces of the bar pole-
free, except one surface, the convex (blue) surface shown in figure 1b having perpendicular
magnetization.

Our strategy for an experimental design was to try to remove these remaining poles, thereby
lowering the energy. (Fully removing these poles, everything else being the same, would
theoretically give zero energy.) A way to fully remove these poles would be to insert magnetic
material of the same saturation magnetization outside the bar, with a slightly distorted version
of the classical four-domain pattern seen in (100) single-crystal iron [30], so as to create a zero-
divergence flux path that simultaneously removes the poles in two neighbouring regions of the
same variant. This was considered not practical because the bar deforms, and it is known that the
magnetostatic energy is sensitive to small gaps. Alternatively, to achieve a similar reduction of
magnetostatic energy, we designed an array of permanent magnets to make a similar circuit, as
shown below. Note that the spacing and alternating polarity are matched to the domain structure.
Also, ideally, permanent magnets have a fixed magnetization and therefore do not change their
own anisotropy energy as the magnetic field in and around them changes.

The alloy chosen for the experimental study undergoes a cubic to tetragonal transformation
at macroscopic level with (100) magnetization. The energy-well structure has been determined
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previously [31] and is given in the orthonormal cubic basis by

U1 =

⎛
⎜⎝η2 0 0

0 η1 0
0 0 η1

⎞
⎟⎠ , U2 =

⎛
⎜⎝η1 0 0

0 η2 0
0 0 η1

⎞
⎟⎠ , U3 =

⎛
⎜⎝η1 0 0

0 η1 0
0 0 η2

⎞
⎟⎠

and m1 = ms(1, 0, 0) m2 = ms(0, 1, 0) m3 = ms(0, 0, 1),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

with η1 = a/a0 = 1.013, η2 = c/a0 = 0.952 and ms = 600 emu cm−3. We consider variants 1 and 2
only and look for solutions of the equation

RU2 − U1 = a ⊗ n, R ∈ SO(3), a ∈ R
3, n ∈ R

3. (2.9)

In fact, in the present case there are precisely two solutions (R1, a1 ⊗ n1) and (R2, a2 ⊗ n2) of (2.9),
the twins are compound, i.e. there are two different twofold rotations relating the variants as
above, and each solution can be considered of both types I and II. (See [28,29] and above.) In the
cubic basis in which the distortion matrices are written, the solutions are:

R1 = 1

η2
2 + η2

1

⎛
⎜⎜⎝

2η1η2 η2
1 − η2

2 0

η2
2 − η2

1 2η1η2 0

0 0 η2
1 + η2

2

⎞
⎟⎟⎠ , a1 =

√
2(η2

2 − η2
1)

η2
2 + η2

1
[−η2, η1, 0], n1 = 1√

2
(1, 1, 0),

R2 = 1

η2
2 + η2

1

⎛
⎜⎜⎝

2η1η2 η2
2 − η2

1 0

η2
1 − η2

2 2η1η2 0

0 0 η2
1 + η2

2

⎞
⎟⎟⎠ , a2 =

√
2(η2

1 − η2
2)

η2
2 + η2

1
[η2, η1, 0], n2 = 1√

2
(1, −1, 0).

Note that RT
1 = R2.

Now notice the following. By successive premultiplication by powers of R2, using alternately
the two solutions given above, we have the sequence of identities

U1 − R2U2 = −a2 ⊗ n2,

R2U2 − R2
2U1 = R2

2a1 ⊗ n1,

R2
2U1 − R3

2U2 = −R2
2a2 ⊗ n2,

R3
2U2 − R4

2U1 = R4
2a1 ⊗ n1,

R4
2U1 − R5

2U2 = −R4
2a2 ⊗ n2, etc.

This can be thought of as zig-zagging back and forth between the energy wells (figure 2), using
the two rank-one connections. The kinematic jump conditions for alternating the deformation
gradients

∇y = U1, R2U2, R2
2U1, R3

2U2, R4
2U1, . . . (2.10)

across interfaces with normals n2, n1, n2, n1, n2, . . . are satisfied, and therefore the associated
deformation describes a compatible microstructure, i.e. there is a continuous deformation
y :Ω → R

3 satisfying (2.10). Since the powers of the rotation matrix R2 build up fast, one can
expect this deformation to exhibit a lot of bending. Or, from a more mechanical perspective, the
tensile side of the beam is parallel to the direction of greatest stretching, while the compressive
side of the beam is parallel to the direction of greatest local shrinkage in this alloy.

An explicit form of the deformation, in the case that Ω is a rectangular solid of undistorted
austenite with {100} faces and having dimensions 	× w × h, is obtained by integrating (2.10) to



6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150208

.........................................................

U1

U1

SO(3)U1 SO(3)U2

R2U2

R2
2U1

R2
2U1

R4
2U1

R4
2U1

R3
2U2

R2U2

R3
2U2

n2

n1

(a)

(b)

Figure 2. (a) Alternating variants in the reference configuration. (b) Schematic picture of the energy wells (excluding
magnetism). The circles represent SO(3)U1 and SO(3)U2, and lines connecting deformation gradients indicate that they differ
by a matrix of rank one.

yield the formula

y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ri+1
2 U1x + 2w√

2

(i−1)/2∑
k=1

kR2k
2 (a1 − a2)

+ (i + 1)w√
2

Ri+1
2 a1, i =

[
1√
2w

(x · n1)
]

+
[

1√
2w

(x · n2)
]

= odd,

Ri+1
2 U2x + 2w√

2

i/2∑
k=1

kR2k
2 (a1 − a2), i =

[
1√
2w

(x · n1)
]

+
[

1√
2w

(x · n2)
]

= even.

(2.11)

Here, the notation [x] denotes the greatest integer less than or equal to x. For design purposes,
we need the angle between the boundaries of neighbouring blue variants in figure 1a. This is,
from (2.12),

arccos
(y(4w, 0, 0) − y(2w, 0, 0)) · (y(0, 0, 0) − y(2w, 0, 0))
|y(4w, 0, 0) − y(2w, 0, 0)||y(0, 0, 0) − y(2w, 0, 0)| = arccos

η4
1 − 6η2

1η
2
2 + η4

2

(η2
1 + η2

2)2
. (2.12)

With η1 = 1.013, η2 = 0.952, this angle is 172.9◦. This does not depend on the dimensions 	, w, h.
The length of the edge of the blue region (figure 1a) is 2wη1.

Oriented single-crystal bars of NiMnGa exhibiting 5M modulated martensite (nominal
composition Ni50Mn28Ga22) were obtained from Adaptamat Ltd. The experiment was carried
out in the martensite phase at 25◦C, using a specimen size of size 20 × 2.5 × 1 mm. We note
that it is currently accepted that the martensite phase of this alloy is monoclinic [32,33] arising
from the weakly monoclinic structure. Here, we designed the device based on tetragonal lattice
parameters given in §2. Despite the earlier difficulty in the case without magnetism, in the
present case these bent states were quite easy to produce by simply moving the bar through
the permanent magnet array. The field of the magnets is measured to be 0.02 T at the near surface
of the bar in its deformed configuration. From figure 3, it is seen that, while there appears to be
complete detwinning in triangles near the magnets, there is incomplete detwinning in some of the
other triangles. These are likely to be modulation twins [33] arising from the weakly monoclinic
structure. These can either cross the a–c interfaces (see [32] for this terminology and an analysis)
or end there. In both cases, these are low-energy interfaces. Evidently, the field is strong enough to
bias every other variant completely, while the alternate triangles retain some of these modulation
twins. Nevertheless, there is good quantitative agreement between the measured angles of the
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(a) (b)

1 mm

Figure 3. Experimental realization of a two-variant microstructure in NiMnGa. (a) The permanent magnet array. Sliding the
oriented NiMnGa rod past this array produced the structure seen in (b). The magnetization in (b) is added by hand. (Online
version in colour.)

triangles and the theoretical calculation summarized by figure 1. Evidently, this is due to the fact
that the monoclinicity is small.

The bent configuration is quite stable when the field is removed. This can be understood from
the fact that, due to the ± invariance, fine arrays of 180◦ magnetic domains can be introduced into
each triangle, with 1/2 volume fraction + and 1/2 − so as to reduce the magnetostatic energy to
a low level when no applied field is present.

3. Austenite/martensite circle
As we now explain, the elementary construction given above is a special case of a much more
general method of constructing curved zero-energy microstructures. From formula (2.12), one
can realize that it is produced by a particular action of two discrete groups of isometries, the
group of rotations of multiples of angle θ about a point (circle group) and the one-dimensional
translation group. The circle group acts in the deformed configuration, and the one-dimensional
translation group acts in the reference configuration. The action of the generator of the circle
group (about y0) is

h(y) = Rθ (y − y0) + y0. (3.1)

The action of the generator of the translation group (translation vector e) is

t(x) = x + e. (3.2)

Powers of isometries are calculated by composition, hk(y) = h(h(. . . k−times . . . (y)) . . . ) = Rkθ (y −
y0) + y0, tk(x) = t(t(. . . k−times . . . (y)) . . .) = x + ke. The scheme is the following. Let Ω ′ be given
and consider a zero-energy deformation y :Ω ′ → R

3 ofΩ ′. To avoid trivial cases, we suppose that
Ω ′ ∩ (Ω ′ + e) is non-empty. Suppose also the following compatibility condition is satisfied on the
overlap region I =Ω ′ ∩ (Ω ′ + e)

y(x) = h(y(t−1x)) = Rθ (y(x − e) − y0) + y0, x ∈ I. (3.3)

In the example above I is just an interface. Now let the extended reference configuration
be Ω = ∪iti(Ω ′). Extend the definition of y(x) to all of Ω using the formula y(x) = hi(t−i(x)),
x ∈ ti(Ω ′). It is a simple exercise, using the compatibility condition (3.3) and the group property,
that the deformation is consistent on all the overlap regions ti(Ω ′) ∩ ti+1(Ω ′). The key point is
that by differentiation ∇y(ti(x)) = Riθ∇y(x). By the frame-indifference of the energy wells, this
transformation takes zero-energy states to zero-energy states.
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It is an easy exercise to show that, if Ω ′ consists of two neighbouring triangular solids in a
bar of width w, and θ and e are chosen appropriately, then the deformation y(x) defined by the
formula y(x) = hi(t−i(x)), x ∈ ti(Ω ′), agrees precisely with (2.12).

As a second example consider the alloy Ti50Ni40.75Pd9.25 [29,34], which undergoes a cubic
to orthorhombic phase transformation (n = 6). This alloy is not ferromagnetic, so we omit the
magnetization, but otherwise the energy wells have the invariance given above. The wells are
defined by

U1 =

⎛
⎜⎜⎜⎜⎝
α + γ

2
α − γ

2
0

α − γ

2
α + γ

2
0

0 0 β

⎞
⎟⎟⎟⎟⎠ , U2 =

⎛
⎜⎜⎜⎜⎝
α + γ

2
γ − α

2
0

γ − α

2
α + γ

2
0

0 0 β

⎞
⎟⎟⎟⎟⎠ , U3 =

⎛
⎜⎜⎜⎜⎝
α + γ

2
0

α − γ

2
0 β 0

α − γ

2
0

α + γ

2

⎞
⎟⎟⎟⎟⎠ ,

U4 =

⎛
⎜⎜⎜⎜⎝
α + γ

2
0

γ − α

2
0 β 0

γ − α

2
0

α + γ

2

⎞
⎟⎟⎟⎟⎠ , U5 =

⎛
⎜⎜⎜⎜⎝
β 0 0

0
α + γ

2
α − γ

2

0
α − γ

2
α + γ

2

⎞
⎟⎟⎟⎟⎠ , U6 =

⎛
⎜⎜⎜⎜⎝
β 0 0

0
α + γ

2
γ − α

2

0
γ − α

2
α + γ

2

⎞
⎟⎟⎟⎟⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

with measured values α= 1.0000,β = 0.9345, γ = 1.0645 (±0.0002). This particular alloy is
interesting in the present context since it was tuned by compositional changes to have λ2 = α = 1
where λ2 is the middle eigenvalue of U1. (Note that, due to the structure of the energy wells, all
U1, . . . , Un have the same eigenvalues, which in this case are α,β and γ .) Given U1 the condition
λ2 = 1 is necessary and sufficient that the equation

RU1 − I = a ⊗ n (3.5)

has a solution R ∈ SO(3) and a, n ∈ R
3. In fact, if λ2 = 1, there are precisely two solutions (R1, a1 ⊗

n1) and (R2, a2 ⊗ n2) of (3.5). The alloy discussed here,1 Ti50Ni40.75Pd9.25, was preceded by the
synthesis of the nearby alloy Ti50Ni39Pd11, which also has λ2 quite close to 1. High-resolution
transmission electron microscope (HRTEM) images [35] of Ti50Ni39Pd11 revealed many of these
‘exact (untwinned) interfaces’, and the measured angle in R and the measured values of a and n
were shown to agree well with solutions of (3.5).

The existence of the two solutions allows us to construct a deformation similar to that of §2 but
using the two solutions of (3.5) and the methods of this section. For this purpose, we choose the
first solution (R1, a1 ⊗ n1) of (3.5), and we make the particular choices Rθ = RT

1 and, say, y0 = 0 to
specify the group generated by h, and e =ω[1, −1, 0] for the group generated by the translation t (ω
is chosen conveniently). We also choose a regionΩ ′ consisting of a parallelepiped in the reference
configuration bounded by planes of normal n2 from the second solution a distance |e| apart. This
choice ensures that the overlap condition (3.3) is satisfied. The resulting deformation given by
y(x) = hi(t−i(x)), x ∈ ti(Ω ′) is shown in figure 4. In this figure, the red triangular regions (austenite)
each undergo a pure rigid rotation. The sequence of deformation gradients shown, beginning
with the blue triangular region at the end, is ∇y = R1U1, I, RT

1 U1, R2T
1 , R3T

1 U1, R4T
1 , R5T

1 U1, . . . .

4. General theory of bent and twisted microstructures
The constructions given above are special cases of a broad class of zero-energy microstructures.
The purpose of this section is to define these solutions in the general case and to explain the scope
of the method. These solutions have a relation to the theory of objective structures [21] that we
explain here. The latter allows us to generalize these solutions to atomic level, where continuum
theories such as those based on (2.1) may not be appropriate.

1This alloy was found by making 1
4 % changes of composition of Pd [29], starting from the alloy Ti50Ni39Pd11, so as to satisfy

λ2 = 1 to the highest accuracy possible in bulk materials synthesized by arc melting.
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(a) (b)

Figure 4. Predicted austenite/single-variant martensite microstructure using measured lattice parameters and the energy-
well structure of the alloy Ti50Ni40.75Pd9.25. The long direction of the reference configuration is parallel to [1,−1, 0] while its
lateral face normals are (1, 1, 0) and (0, 0, 1). (a) Reference configuration (austenite) and (b) austenite (red), martensite (blue).
(Online version in colour.)

hi

gi

xgi
–1 (x)

y(gi
–1(x))

y : W¢ Æ �3

hi (y(gi
–1(x)))

W¢

Figure 5. Schematic of the general method of producing compatible bent and twisted microstructures, shown with r = 1 and
illustrating the consistency condition (4.1).

Isometry groups are groups of orthogonal transformations and translations, with typical
elements (Q|c), Q ∈ O(3) and c ∈ R

3, in conventional notation. The multiplication law is
(Q1|c1)(Q2|c2) = (Q1Q2|c1 + Q1c2), the identity is (I|0) and the inverse of (Q|c) is therefore (QT| −
QTc). Under these operations isometries can form groups. The discrete groups of isometries (with
the exception of the helical groups) are collected in the International Tables of Crystallography,
volumes A and E [36,37]. The subperiodic groups [37] are particularly relevant here. The details
of the construction of these groups or the nomenclature is not needed here.

We suppose we have two isometry groups, G and H. As above, G is associated with the
reference configuration and H to the deformed configuration. For any isometry group, the tensors
to the left of the vertical bar in (Q|c) necessarily form an orthogonal group of tensors which we
term the orthogonal part. To ensure that the specification of these groups is consistent with the
energy-well structure given in §2, the orthogonal part of H must be a subgroup of SO(3) (finite
or infinite), while the orthogonal part of G must be a subgroup of the point group of austenite
(figure 5).

We suppose also we are given a region Ω ′ and a deformation y :Ω ′ → R
3 having a gradient

on the wells, ∇y(x) ∈ SO(3) ∪ SO(3)U1 ∪ · · · ∪ SO(3)Un. (We comment below on the inclusion of
magnetization.) Here we assume that the temperature is at the transformation temperature, θ =
θ0, so we have included the austenite well. We assume that Ω ′ and G have been chosen such
that only finitely many members of g1, . . . , gr ∈ G have the property gi(Ω ′) ∩Ω ′ = ∅ and these
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elements commute. To each gi, i = 1, . . . , r, we assign a corresponding hi, i = 1, . . . , r, in H such
that the h1, . . . , hr commute. The h1, . . . , hr need not be distinct. Each gi gives rise to a region gi(Ω ′)
that overlaps Ω ′. We assume on these overlap regions that the deformation is consistent, in the
sense that

y(x) = hi(y(g−1
i x)), x ∈ gi(Ω

′), i = 1, . . . , r. (4.1)

We denote the Abelian subgroup of G generated by g1, . . . , gr by G′, and similarly let H′
be generated by h1, . . . hr. We extend Ω ′ to Ω = ∪g∈G′ g(Ω ′) and correspondingly extend the
deformation by the rule

y(x) = hi
1 · · · hk

r (y((gi
1 · · · gk

r )−1x)), x ∈ gi
1 · · · gk

r (Ω ′). (4.2)

Note that the powers are matched. This formula defines a consistent deformation on all of Ω . For
example, if y is continuous on Ω ′, the extended function defined by (4.2) is continuous on all of

Ω . To see this consistency, let g = gp
1, . . . , gq

r and ĝ = gp̂
1, . . . , gq̂

r be such that g(Ω ′) and ĝ(Ω ′) have a

non-empty intersection, and define h = hp
1, . . . , hq

r and ĥ = hp̂
1, . . . , hq̂

r . Then, the extension (4.2) gives
two possible extensions of y. Let z ∈ g(Ω ′) ∩ ĝ(Ω ′). These two extensions are consistent if

h(y(g−1(z))) = ĥ(y(ĝ−1(z))). (4.3)

Letting x = g−1(z), (4.3) holds if and only if

y(x) = h−1ĥ(y((g−1ĝ)−1(x))). (4.4)

But the latter holds by commutativity and (4.2), because h−1ĥ = hp̂−p
1 , . . . , hq̂−q

r and g−1ĝ =
gp̂−p

1 , . . . , gq̂−q
r have the same powers. The choices of the two groups G and H above ensure that a

zero free-energy deformation of Ω ′ extends to a zero free-energy deformation of Ω .
As an example, we consider again the alloy Ti50Ni40.75Pd9.25 but now choose helical groups for

G and H. In each case, these groups will be generated by a single element so that commutativity
is automatically satisfied. The austenite in this alloy is B2-cubic (space group Pm3̄m), with Pd
substituting for Ni on one of the B2 sublattices, so the natural choice for the orthogonal part of G
is a subgroup of the cubic point group of Pm3̄m: we choose an isometry whose orthogonal part is
generated by a fourfold rotation about the vertical e = [001] axis, generated by g = (Rπ/2|cg). We
then chooseΩ ′ to be a curved bar bounded by two planes: one is P and the other is g−1(P). Using
the notation following (3.5), P is chosen to have normal n2. The material between the planes is
divided by the second compatible interface with normal n1. We assign ∇y = I, R1U1 on Ω ′. The
choice of P with normal n2 then ensures the linear term in the overlap condition is satisfied if
we choose h = (Q|ch) where QR−π/2 − R1U1 = ã ⊗ n2. The constant term in the overlap condition
then becomes an algebraic relation for ch in terms of cg. The deformation is then given by

y(x) = hiy(g−ix), x ∈ gi(Ω ′). (4.5)

By differentiation, this deformation gives the following sequence of deformation gradients as we
go up the helix:

∇y = I, R1U1, QR−π/2, QR1U1R−π/2, Q2R−π , Q2R1U1R−π , Q3R−3π/2, Q3R1U1R−3π/2 . . .

= I, R1U1, QR−π/2, QR1R−π/2U2, Q2R−π , Q2R1R−πU1, Q3R−3π/2, Q3R1R−3π/2U2, . . . . (4.6)

Note that we only get two distinct variants of martensite (blue and green in figure 6) instead
of the expected four, because RπU1R−π = U1 and R3π/2U1R−3π/2 = Rπ/2U1R−π/2 = U2. This is a
consequence of the orthorhombic symmetry of the martensite. We remark also that the reference
configuration in figure 6a is undistorted austenite: it is not bent and twisted into this shape but
it is cut out of a single crystal. Note from the above that cg is assignable. This implies that
the pitch of the reference configuration is assignable. These kinds of configurations achieve
significant amplification of rotations and strains. A smaller pitch of the reference helix gives rise
to larger (negative) axial strains: strains of about −40% are possible with the dimensions of the
reference bar and volume fractions shown in figure 6 by choosing cg appropriately (using the
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(a) (b)

Figure 6. A zero-energy helical microstructure drawn accurately with the lattice parameters of Ti50Ni40.75Pd9.25. The reference
configuration (a) is an unstressed single crystal of austenite that has been cut out in a helical shape. The deformed configuration
(b) consists of austenite regions (red) and two distinct variants (blue, green) of martensite, all of which are zero free-energy,
unstressed states. (a) Reference configuration (austenite) and (b) austenite (red), martensite (blue, green). (Online version
in colour.)

same material). Figure 6 shows an angle of twist of about 45◦ per turn in transforming from
figure 6a to figure 6b.

5. Bent and twisted microstructures at the atomic level

(a) An atomistic-to-continuum analogy
We remark that the minimum free-energy configurations found above all have direct analogues
at the atomic level. This is important as a way to understand the origins of atomic-level
behaviour that may differ from continuum-level behaviour as embodied in continuum theories
of micromagnetics or phase transformation. The atomistic analogues can be appreciated by
noticing that both reference and deformed configurations of all these solutions are ‘objective
structures’ defined in [21]. Objective structures (OSs) are atomic structures which can be divided
into disjoint groups of atoms, having a one-to-one correspondence between atoms in any two
groups. Equivalently, the atoms can be labelled using the notation (i, j), where i labels the group
and j labels the atom within the group. In this notation, all atoms with the same second index are
required to be the same species. By definition, to be an OS, every pair of atoms of the form (i, j) and
(k, j) are required to see precisely the same atomic environment up to orthogonal transformation.
To see that this is true of the structures above, we superimpose the undistorted lattice of austenite
on the reference configuration. In fact, the method of visualization used in these figures with
a fine array of dots is consistent with the OS definition—we simply ensure that the dots are
points of the reference lattice of austenite. Then, following the Cauchy–Born rule [22], we use the
calculated zero-energy deformation to transport the atomic positions. This leads to both reference
and deformed configurations being perfect objective structures. The basic group of atoms are
those contained in Ω ′. By definition the reference configuration Ω is the application of the group
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G on Ω ′, that is, the disjoint groups of atoms are the orbits of the atoms in Ω ′ under G. This
automatically gives an objective structure [38] with the correspondence being that given by the
action of G onΩ ′. (That is, suitably oriented observers stationed at x and g(x) see the same atomic
environment, assuming of course that the helix is extended to infinity so there are no ends.) By
construction, the deformed configuration is also an objective structure: replace G by H and Ω ′ by
y(Ω ′).

The analogy can be pushed one step further, as described in [39,40]. If one sets up a molecular
dynamics simulation (with very general classes of atomic forces) for the atoms in y(Ω ′) but
determines the image atoms using the group H, just as above, so only the atoms in y(Ω ′) are
actually simulated, but forces on these from all the other atoms are accounted for, then it follows
that all the atoms satisfy exactly the equations of molecular dynamics. This is a special case of
the method of objective molecular dynamics (OMD [39,40]). In fact, a certain time dependence
of the group parameter ch can be introduced [39], which leads to exact molecular dynamics for
every atom, but which also includes a macroscopic motion. For the case shown in figure 6, this
method could be used to study stress-induced transformation due to pulling the helix vertically
at a constant (assignable) axial strain rate. We note that this analogue between continuum-level
free-energy minimizers and exact solutions of the equations of molecular dynamics is sufficiently
flexible to allow for phenomena such as surface relaxation in either the continuum or atomistic
theory.2 Using atomic forces appropriate to a transforming material, it would be interesting to set
up some computations of this type at small scales. A direct comparison between the results of
atomic and continuum theory could then be made.

The analogy between atomic and continuum level is nearly perfect for these solutions, except
for one curiosity. That is, the atomic-level solutions of OMD allow all possible discrete groups
of isometries, whereas the continuum-level analogue described here requires Abelian groups.
Evidently, this is related to the use of deformations in continuum mechanics, and the fact that the
associated conditions of compatibility used heavily here are fundamentally related to the Abelian
process of getting the same answer by taking different paths to the same point.

(b) Perfect atomistic interfaces
In §4, we used the idea of objective structures to generate energy-minimizing bent and twisted
configurations of a material (e.g. Ti50Ni40.75Pd9.25) exhibiting perfect interfaces between austenite
and single-variant martensite. In §5a, we noticed that the resulting configurations have the same
structure as exact solutions of the equations of molecular dynamics generated using the theory of
objective structures. For the latter the bent and twisted structure is the orbit under a helical group
of the domain y(Ω ′).

Note that the reference configuration plays no direct role in the construction of twisted states
at the atomic level. We can simply work with a collection of atoms and an isometry group. The
simplest objective structures are the orbits of a single atom position under an isometry group.
The examples above raise the question of whether two objective structures, each generated as the
orbit of a single atom position, can meet along an interface with perfect matching of atoms across
the interface. Here we show by examples that this is the case. In fact, the method of construction
here is strictly mathematically analogous to the method used to construct the helical structures
shown in figure 6b. A complete analysis is given in a forthcoming paper [43].

Helical atomistic structures are surprisingly common. All single-walled carbon nanotubes of
all chiralities are given by a helical group acting on a single atomic position. (See [39] for formulae
for the helical groups.) They are particularly common in viruses. In [13], it is shown that the
positions and orientations of molecules on the tail sheath of bacteriophage T4 are accurately given
by a helical group operating on a single molecule. In fact, the tail sheath of this virus actually
undergoes a phase transformation during the process of infection, and both phases are orbits

2See Salje et al. [41] for a review of interfacial relaxation in the context of continuum theory of ferroelectric phase
transformations and Diao et al. [42] for interesting atomistic effects such as surface energy induced phase transformation
in atomistic theory.
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Figure 7. Nearest-neighbour generators: the isometry g1 maps the red atom to the yellow atom, while the isometry g2 maps
the red atom to the green one. (Online version in colour.)

of the same helical group, but with different parameters. (These parameters do not satisfy the
strong conditions of compatibility given below.) As another important example, the Ebola virion
apparently exhibits four helical structures, see [44].

Consider two helical groups Ga and Gb. While many interesting atomic structures can be
constructed using powers of a single isometry (as above), this is not suitable for our construction
of perfectly matching atomic interfaces. That is because structures constructed from powers of
a single isometry typically have nearby atoms (often, nearest neighbours) that are generated by
very different powers of the isometry. One can imagine starting at an atom, then going one by
one around a long helix to another atom which is near the first one. In such cases, nearby powers
of the isometry are not good kinematic indicators of nearby atoms. Fortunately, under very mild
assumptions on the group parameters [43], one can always switch to nearest-neighbour generators

(figure 7). This is a pair of commuting screw transformations g1 and g2 such that gi+1
1 gj

2(x)

and gi−1
1 gj

2(x) are nearest neighbours of gi
1gj

2(x), and gi
1gj+1

2 (x) and gi
1gj−1

2 (x) are second nearest

neighbours of gi
1gj

2(x), for all x ∈ R
3 not on the common screw axis. In that case we can use the

powers (i, j) as a surrogate for metric properties. In this framework, the positions of atoms on the

helical structures of phases a and b are given by formulae of the type y(i, j) = gi
1gj

2(r), or, explicitly,

ya(i, j) = Qa
iψa+jβa

ra + (ima
1 + jma

2)τaea + za, i ∈ Z, j = 1, . . . , j�a

and yb(i, j) = Qb
iψb+jβb

rb + (imb
1 + jmb

2)τbeb + zb, i ∈ Z, j = 1, . . . , j�b,

⎫⎬
⎭ (5.1)

where Qa,b
θ ∈ SO(3), Qa

θea = ea, Qb
θeb = eb, ra, rb ∈ R

3, and the subscript θ denotes the angle:
tr Qa,b

θ = 1 + 2 cos θ . The integers j�a,b specifying the domain of j come out of the switch to nearest-
neighbour generators. In words, the formulae (5.1) give the positions of atoms (i, j) in phases
a or b.

The structural parameters (i.e. the analogues of the lattice parameters α,β, γ of (3.4)) are
constants that determine the structure up to an overall rotation and translation. The structural
parameters of the two phases are therefore ψa,b,βa,b, τa,b, ra,b ∈ R; ma,b

1 , ma,b
2 ∈ Z, where ra,b = |ra,b|.

Having set up this metric kinematics, the simplest way to impose compatibility is to notice
that the formulae (5.1) for ya and yb make perfect sense when i, j are real numbers rather than
integers. One can term this smooth extension to i ∈ R, 0< j< j�a,b, the canonical interpolation. Using
the canonical interpolation, compatibility can now be imposed in the usual way of continuum
mechanics. A smooth interface î(s), ĵ(s), s ∈ (s1, s2) is given in arclength parametrization, î′(s)2 +
ĵ′(s)2 = 1 (without loss of generality) and lying in an appropriate domain 1< s1 < s2 <min{j�a , j�b}.
Assuming that î′ = 0, local deformation of the form

y(i, j) =
{

ya(i, j), j> ĵ(s),

yb(i, j), j ≤ ĵ(s),
(5.2)
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Figure 8. Perfect interface between helical states. See text. (Online version in colour.)

is compatible if there is an amplitude a(s), s1 < s< s2 such that

[|(y,i , y,j )|] = (ya,i −yb,i , ya,j −yb,j ) = a(î′, −ĵ′), (5.3)

or, equivalently,
[|y,i |]ĵ′ + [|y,j |] î′ = 0, (5.4)

with î′2 + ĵ′2 = 1. A complete solution of (5.4) for all choices of interface and structural parameters
is given in forthcoming work [43], so we here just give a typical family of examples. That is the
case of î = const. and structural parameters

βa = βb = 0, rb = Qî(ψa−ψb)ra, eb = ea, Qa
θ = Qb

θ , ma
1τa = mb

1τb. (5.5)

These conditions can be considered (one subcase of) the atomic-level analogue, for helical
structures, of the macroscopic condition λ2 = 1 used above. A typical picture of an interface
satisfying these conditions is shown in figure 8. It is seen that completion of the phase
transformation can occur by widening the red region, so it consumes the whole tube. During this
process, significant bending and twisting occurs due to the (small) change of lattice parameters.
By appropriately removing red and blue atoms, it is seen that this state is closely analogous to the
state shown in figure 6, except here there is only one variant of the blue phase. It remains to be
seen whether the concept of ‘variant’ has any meaning for helical atomistic phases.

6. Summary and discussion
We have demonstrated experimentally large bending due to phase transformation and
magnetism. An array of permanent magnets was designed according to a geometrically nonlinear
theory of magnetoelastic phase transformations, and these easily induced bending of an oriented
single-crystal beam. Since the tensile side of the beam experiences the greatest tensile strain
possible in the material, and the compressive side experiences the largest local negative strain,
this configuration is believed to produce the largest zero-energy bending curvature possible
in a phase-transforming material. The construction is generic and applies to a broad class of
transforming materials. Gradual bending from the undeformed to the deformed configurations
is possible by spacing the triangles shown in figure 2 further apart. This would require a tunable
array of magnets, which could be made with a fine array of patterned coils.

The elimination of internal poles at twin boundaries in this configuration is due to
a fundamental relationship between deformation and magnetization that arises from the
symmetries of the energy wells. This is also often true of energy wells in a single-crystal
ferroelectric [45] to which the analysis then applies. Essentially, ferroelectrics need not exhibit the
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± invariance of (2.4), although in many cases this follows necessarily from the other invariances
present (frame indifference and point group invariance). Besides the analogue of magnetostatic
energy, the total ferroelectric energy also has terms arising from free charges that would have to
be considered.

The standard scaling of magnetoelasticity y(x) → λy((1/λ)x), m(y) → m((1/λ)y) preserves the
energy wells and sends zero-energy solutions to zero-energy solutions, but multiplies curvatures
by a factor 1/λ. Therefore, these solutions have the property that the curvature scales inversely as
a linear dimension as they are scaled down in a geometrically similar way. Consider the case of
the austenite/martensite structure of figure 4b. If the temperature is raised to θ > θ0, then this is
no longer a zero-energy microstructure. In fact its energy at temperature θ scales as the volume,
λ3, while elastic bending energies scale as λ5. Thus, there is a strong driving force, forcing it back
to the unique (up to rotations and translations) reference configuration, figure 4b → 4a. For a finer
analysis, consider a beam of thickness h, width b and length 	 in the reference configuration,
and the austenite has typical extensional modulus E. We can imagine hanging a vertical weight
on the end of the beam in figure 4b. The weight F will be lifted substantially by heating the
crystal, as the crystal returns to a nearly straight shape, if (i) the energy of raising the weight F is
comparable to the free-energy difference between phases at θ and (ii) the weight F is small enough
so that it does not cause much ordinary elastic bending of the austenite. The latter requires that
F � Ebh3/12	2 while the former is F ∼ bh�W, where �W = W(I, θ ) − W(U1, θ ). (Here, we have
neglected ordinary thermal expansion of austenite and martensite.) As in the derivation of the
Clausius–Clapeyron equation, we approximate �W = (∂W/∂θ (I, θ0) − (∂W/∂θ )(U1, θ0))(θ − θ0) =
(η(U1, θ0) − η(I, θ0))(θ − θ0) = L(θ − θ0)/θ0, where η is the entropy density and L is the latent heat.
This gives the useful regime

θ − θ0

θ0
� E

12 L

(
h
	

)2
(6.1)

(θ in kelvin). Using, for example, typical values for NiTi (L = (25 J g−1)(6.45 g cm−3) = 160 J cm−3,
E = 80 GPa), we get (θ − θ0)/θ0 � 40(h/	)2. Typical expected temperature excursions of
approximately 20 K from a transformation temperature of 300 K are therefore reasonable for
a cantilever of aspect ratio h/	= 1/10. The width b does not enter this comparison, and can
be used to increase (or decrease) the force. In the magnetic case, the important magnetic
energies—anisotropy, magnetostatic, Zeeman—also scale favourably as the volume.

We have given a general method of zero-energy microstructures that exhibit bending and
twisting. These are based on the use of Abelian, discrete groups of isometries. The listing of
volume E of the International Tables [37] shows that there are many of these. Also, the helical
groups, which are not listed there (due, in our view, to an unfortunate choice of classification
scheme), provide additional interesting groups. Thus, systematic study is warranted.

We have also remarked that, based on the Cauchy–Born rule, these solutions have exact
analogues at the atomic level, using molecular dynamics with general atomic forces. These
are solutions of the equations of motion at the atomic level, but their stability properties
might be quite different. This provides an unusual opportunity to understand the behaviour
of phase transformations at the atomic level, especially in comparison with more familiar
continuum-level behaviour.
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