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Abstract

The RANS (Reynolds averaged Navier-Stokes) equa-

tions can yield significant error when applied to prac-

tical flows involving shock waves. We use the interac-

tion of homogeneous isotropic turbulence with a nor-

mal shock to suggest improvements in the k− ε model

applied to shock/turbulence interaction. Mahesh et

al.1 and Lee et al.2 present direct numerical simula-

tion (DNS) and linear analysis of the flow of isotropic

turbulence through a normal shock, where it is found

that mean compression, shock unsteadiness, pressure-

velocity correlation and upstream entropy fluctuations

play an important role in the interaction. Current

RANS models based on the eddy viscosity assumption

yield very high amplification in the turbulent kinetic

energy, k , across the shock. Suppressing the eddy vis-

cosity in a shock improves the model predictions, but

is inadequate to match theoretical results at high Mach

numbers. We modify the k -equation to include a term

due to shock unsteadiness, and model it using linear

analysis. The dissipation rate equation is similarly al-

tered based on linear analysis results. These modifica-

tions improve the model predictions considerably, and

the new model is found to match the linear theory and

DNS data well.

1. Introduction

The interaction of a turbulent boundary layer with

a shock wave is important in many practical flows, e.g.

deflected control surfaces of high-speed vehicles and

inlet of scram jet engines. Shock/turbulence interac-

tions can cause flow separation and high heating rates,

both of which are critical to vehicle design. Com-

monly studied flow configurations include compression

ramps, cylinder-flare combinations, double cones, sin-

gle or double fins on a plate, oblique shocks impinging

on a boundary layer and transonic airfoils.
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Engineering prediction of shock/turbulence inter-

action relies on Reynolds averaged Navier-Stokes

(RANS) simulations. However, significant disagree-

ment with experimental data is observed even for

canonical flows such as the compression ramp. Knight

et al.3 summarize results obtained using several tur-

bulence models. Although the predictions are satisfac-

tory for small ramp angles (up to 16◦ ), there is notice-

able disagreement with data for higher deflections.4

The models cannot predict the size of the separa-

tion region, the peak heat transfer rate at reattach-

ment, and the mean velocity profiles on the ramp.4,5

Some attempts have been made to improve the pre-

dictions, e.g. realizability constraint,4 compressibil-

ity correction,5,6 length-scale modification6 and rapid

compression correction.6 The outcome of the modifi-

cations vary from model to model and also with the

test conditions, which point to the possibility that

some key physical processes are either modeled incor-

rectly or not included in the models.

The shock-wave/turbulent boundary layer interac-

tion is complicated by the simultaneous presence of

flow separation, stream-line curvature, and mean com-

pression downstream of the shock. By comparison, the

interaction of homogeneous isotropic turbulence with

a normal shock wave is a simpler and more fundamen-

tal problem. Also, direct numerical simulations (DNS)

and linear analysis solutions exist for isotropic turbu-

lence interacting with a shock,1,2 which make it ideal

for identifying the important physical mechanisms. It

is found that mean compression, shock unsteadiness,

pressure-velocity correlation and entropy fluctuations

in the upstream flow play an important role in the

interaction.1,7 Some of these effects are not included

in the existing turbulence models, which may be one

of the reasons for their inaccuracies. The objective

of this paper is to evaluate the k − ε modeling of ho-

mogeneous turbulence/shock-wave interaction, and to

suggest improvements using linear analysis. The tur-

bulence upstream of the shock is assumed to be essen-

tially composed of vortical fluctuations, i.e. the effect

of entropy and acoustic fluctuations is not considered.

The paper is organized as follows. Section 2 applies

the standard k − ε model8 to the interaction of ho-
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mogeneous isotropic turbulence with a normal shock

wave. The model predictions are compared to DNS

and linear analysis, and significantly higher amplifica-

tion of the turbulent kinetic energy is observed. Re-

cently proposed modifications9 that suppress eddy vis-

cosity in a shock are found to improve predictions but

still do not match the linear theory and DNS. Section 3

uses linear analysis to improve the k−ε model applied

to shock/turbulence interaction. The k -equation is

modified in Section 3.1 to include the effect of shock

unsteadiness, and linear analysis is used to model this

term. Section 3.2 modifies the dissipation rate equa-

tion in a similar way. The new model is used to predict

the interaction of homogeneous turbulence with a nor-

mal shock wave in Section 4, and is found to reproduce

DNS data1,2 well.

2. Current RANS models

The k−ε model is used to predict the interaction of

a Mach 1.29 normal shock with homogeneous isotropic

turbulence at Reynolds number based on the Taylor

micro-scale, Reλ , of 19.1 and turbulent Mach number,

Mt , of 0.14. Here, Reλ = urmsλ/ν̄ and Mt =
√

2k/ã ,

where urms is the rms velocity, λ is the Taylor micro-

scale, ν̄ is the mean kinematic viscosity of the fluid

and ã is the mean speed of sound. Direct numerical

simulation of this flow is presented by Mahesh et al.1

2.1. Standard k − ε model

We use the standard k − ε model8 with the com-

pressible dissipation and pressure-dilatation correc-

tions. In a steady one-dimensional mean flow through

a normal shock, the modeled transport equations for

the turbulent kinetic energy, k , and the solenoidal dis-

sipation rate, εs , simplify to

ρ̄ũ
∂k

∂x
= −ρ̄ũ′′u′′

∂ũ

∂x
− ρ̄(εs + εc) + p′θ′ , (1)

ρ̄ũ
∂εs

∂x
= −cε1ρ̄ũ′′u′′

∂ũ

∂x

εs

k
− cε2

ε2s
k

, (2)

where k = 1
2 ũ′′

i u′′

i , ρ is density, and u is the com-

ponent of velocity in the stream-wise direction, x .

Here, overbar and tilde represent Reynolds and Favre

averaged quantities, and the prime and double-prime

represent the Reynolds and Favre fluctuations, respec-

tively. The first and second terms on the right-hand

side of the two equations correspond to the produc-

tion and dissipation mechanisms, and the last term in

Eq. (1) is the pressure-dilatation correlation, where p

is the pressure and θ = ui,i is the dilatation. Note that

the turbulent transport and viscous diffusion terms are

assumed to be small compared to the production and

dissipation mechanisms, and are therefore neglected.

The normal Reynolds stress, ρ̄ũ′′u′′ , is modeled using

the Boussinesq approximation as

ρ̄ũ′′u′′ = − 4
3µT

∂ũ

∂x
+ 2

3 ρ̄k , (3)

where µT is the eddy viscosity and is given by

µT = cµ

ρ̄k2

εs

. (4)

Here, cµ = 0.09, cε1 = 1.35 and cε2 = 1.8 are

model constants, and we use the values given by

Chien.10 The compressible dissipation rate, εc , and

the pressure-dilatation term are modeled as11,12

εc = α1M
2
t εs ,

p′θ′ = α2M
2
t ρ̄ũ′′u′′

∂ũ

∂x
+ α3M

2
t εs .

(5)

where α1 = 1, α2 = 0.4 and α3 = 0.2. Similar to

the DNS, the model equations are normalized using

upstream values of ρ̄ , ã and µ̄ , where µ̄ is the mean

viscosity of the fluid. In the absence of any physical

length scale in the mean flow, an arbitrary length scale

is used as reference such that the Reynolds number

based on the reference quantities is 750. The normal-

ized inlet values of k and εs are obtained from the

DNS1 and are listed in Table I. Eqs. (1) and (2) are

integrated through the shock which is specified as hy-

perbolic tangent profiles of the mean flow quantities

with the mean shock thickness taken from DNS.1

The evolution of turbulent kinetic energy is shown

in Figure 1, where the data are normalized by the value

of k immediately upstream of the shock. The DNS

data show very high levels of k at the shock location

(x = 2). This is an artifact of the unsteady motions

of the shock, and does not represent amplification of

the turbulent kinetic energy. There is rapid drop and

rise in k immediately downstream of the shock (up

to x ' 2.7). This variation is caused by the transfer

of energy between the acoustic and vortical modes.13

Further downstream of the shock, k decreases mono-

tonically due to turbulent dissipation. The k−ε model

yields a higher amplification of k across the shock

than the DNS. This is because the production term

(∝ 1/δ2 , δ being the shock thickness) becomes very

large in the shock. Also, the pressure-dilatation term

(modeled in terms of production) assumes very large

negative values. A balance between these two terms

results in high levels of k downstream of the shock.

The dissipation term is found to have a negligible con-

tribution in the shock.
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The unsteady motion of the shock results in a mean

shock thickness that is much larger than that of a

steady shock at the same mean flow conditions. The

k − ε model does not account for the effect of shock

unsteadiness, and therefore cannot predict the shock

thickness correctly. In a simulation, the shock thick-

ness depends on the numerics of the computation and

the resolution of the grid in the vicinity of the shock.

The effect of different numerical methods and grid

refinement can be studied in the test flow presented

above by varying the shock thickness in the prescribed

mean flow profiles. It is found that the amplification

of k and εs increase very rapidly as the shock becomes

thinner due to the non-physical 1/δ2 variation of the

production and pressure-dilatation terms.

x

k

0 1 2 3 4 5 60.5

1

1.5

2

2.5

(a)

DNS

Standard
model

Realizable
model

Extra-
polation

Figure 1. Evolution of k in the interaction of homo-
geneous turbulence with a Mach 1.29 normal shock.
Different k − ε models are compared to DNS.1 rep-
resents the extrapolation of the DNS data for compar-
ison with linear analysis.

2.2. Realizable k − ε model

In order to reduce the production of k in a shock,

several researchers have proposed modifications to the

standard model based on the realizability constraint,

0 ≤ ũ′′u′′ ≤ 2k , that reduce the eddy viscosity in a

shock wave. Here, we present the modification used by

Thivet et al.9 where cµ in the turbulent eddy viscosity

expression (4) is given by

cµ = min(c0
µ,

√
c0
µ/s) , (6)

where c0
µ = 0.09 is the standard value of the con-

stant, and s is a dimensionless mean strain rate,

given by s = Sk/εs with S2 = 2SijSji − 2
3S2

kk and

Sij = 1
2 (ũi,j + ũj,i). Thus, the eddy viscosity in a

normal shock becomes

µT =

√
3c0

µ

2

ρ̄k

∂ũ/∂x
,

which results in

ũ′′u′′ = 0.35 k + 2
3k . (7)

Using this expression in place of Eq. (3) yields a much

lower amplification of k at the shock (x = 2) as com-

pared to the standard k − ε model (Fig. 1). The re-

alizable k − ε models proposed by Durbin14 and Shih

et al.15 give similar results. Thus, the modifications

based on the realizability constraint give the correct

trend by reducing eddy viscosity in the shock, but the

model predictions are still higher than the DNS data.

As pointed out earlier, the turbulent dissipation

rate has a negligible effect on the evolution of k and

εs across the shock. Also, in case of the realizable

k − ε model, pressure-dilatation is small compared to

production because M2
t � 1 (see Eq. (5)). Thus, the

amplification of turbulence across the shock is mainly

due to the production terms in Eqs. (1) and (2), which

can be integrated to get

k2

k1
=

(
ũ1

ũ2

) 2
3+0.35

and
εs2

εs1
=

(
ũ1

ũ2

)cε1(
2
3+0.35)

, (8)

where subscripts 1 and 2 refer to the state immediately

upstream and downstream of the shock wave. Unlike

the standard k − ε model, the realizable model yields

an amplification of k and εs that are independent of

the numerics or the grid resolution. The amplifications

depend only on the upstream mean Mach number.

Mahesh et al.1,7 and Lee et al.2 use linear inviscid

analysis to study shock/turbulence interaction. In this

approach, the linearized Euler equations are solved for

the interaction of homogeneous turbulence with a nor-

mal shock. The shock wave is modeled as a discon-

tinuity, and the homogeneous turbulence upstream of

the shock is represented as a superposition of Fourier

modes, each of which independently interacts with the

shock. The analysis predicts an amplification of k

across the shock followed by a rapid spatial variation,

which is similar to that observed in DNS.1,2 However,

the inviscid theory cannot reproduce the viscous de-

cay in k , and asymptotes to a constant value. Fig. 2

shows the ratio of the asymptotic value of k to the

upstream turbulent kinetic energy as a function of the

upstream normal Mach number, M1 . The theoretical

amplification can be compared to DNS data by extrap-

olating the downstream monotonic decay in k back to

the shock location (shown by in Fig. 1). The ampli-

fication ratios obtained from the DNS data1,2 for up-

stream Mach numbers of 1.29, 2.0 and 3.0 are shown
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in Fig. 2, and they match the linear analysis results

very well.

The amplification of k predicted by the realizable

k − ε model for different upstream Mach numbers,

Eq. (8), is also shown in Fig. 2. The model yields large

amplifications of k , over-predicting the linear analysis

results by a factor of 3 or more at large Mach num-

bers. The amplification of k obtained from the stan-

dard k− ε model depends on the shock thickness, and

therefore grid independent results cannot be obtained

for different Mach numbers.

M1

k 2
/k

1

1 2 3 4 51

2

3

4

5

Realizable
model

Linear analysis

µT = 0

DNS

Figure 2. Amplification of k across a normal shock
wave as a function of the upstream mean Mach num-
ber. Results obtained from linear analysis,1 DNS,1,2

the realizable k − ε model, and the k − ε model with
µT = 0.

2.3. Suppression of eddy viscosity

In a turbulent flow that is in local equilibrium with

the mean flow, the Reynolds stresses are linearly re-

lated to the mean strain rates via the proportion-

ality constant µT . This model works very well in

cases where the turbulent time scale is of the same

order in magnitude as the time scale of the mean

strain, e.g. a zero pressure gradient boundary layer.

However, in a highly non-equilibrium flow, such as

a shock/turbulence interaction, the time scale of the

mean distortion is significantly smaller than that of

the turbulence. Thus, the equilibrium concept of the

eddy viscosity breaks down, and the usual model with

µT given by (4) yields unrealistically high values of the

Reynolds stresses, which in turn results in very high

production of k . One means of reducing this error is to

suppress µT entirely within a rapid compression, such

that ũ′′u′′ = 2
3k . Using this expression in Eqs. (1)

and (2) results in lower amplification of k than the

realizable model,

k2

k1
=

(
ũ1

ũ2

) 2
3

and
εs2

εs1
=

(
ũ1

ũ2

) 2
3 cε1

. (9)

Here, the dissipation and pressure-dilatation terms are

neglected because they are small compared to the pro-

duction in the shock. Note that the amplification ra-

tios depend only on the upstream mean Mach num-

ber normal to the shock. Fig. 2 shows that the ratio

k2/k1 given above matches the linear analysis results

for M1 < 1.5 but is significantly higher than the the-

oretical amplification ratio for higher Mach numbers.

This shows that setting µT = 0, which can be viewed

as an extreme limit of the cµ - correction (6), is not

sufficient to get the correct amplification of k .

3. Modeling improvements

In this section, we present modifications to the ex-

isting k − ε model applied to shock/ turbulence inter-

actions. The effect of shock unsteadiness on the evolu-

tion of k is included in the k -equation and is modeled

using linear analysis. The modified k -equation yields

significant improvement over the existing models and

the solution matches linear analysis well. The dissi-

pation rate equation is also corrected to predict the

amplification of εs accurately.

3.1. Turbulent kinetic energy

The evolution of the turbulent kinetic energy in

a shock/turbulence interaction is governed by several

processes including mean compression, unsteady shock

motion and pressure transport. In order to account for

the unsteady motion of the shock, we write a transport

equation for k in the frame of reference of the instanta-

neous shock. The different source terms in the equa-

tion are identified and modeled using linear analysis

results.

The distortion of the shock from its mean position

can be written as x = ξ(y, z, t), where x is the di-

rection normal to the shock. Thus, the linear velocity

of the shock in the stream-wise direction is ξt , and

the angular distortions are ξy and ξz in the x − y

and x − z planes. Assuming that the shock under-

goes small deviations from its mean position, we can

write the linearized conservation equations in a frame

of reference that is attached to the shock,

∂

∂x
ρ(u − ξt) = 0 ,

ρ (u − ξt)
∂u

∂x
+

∂p

∂x
= 0 ,

ρ (u − ξt)
∂

∂x
(v + ũ ξy) = 0 .

(10)
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where u = ũ + u′′ is the streamwise velocity, and

v = v′′ and w = w′′ are the transverse velocity com-

ponents. Note that w follows an equation very similar

to that of v . Here, we assume that the shock-normal

derivatives are much larger than the derivatives in a

direction parallel to the shock, and that the viscous

terms are negligible.

A transport equation for ũ′′2 can be derived from

the streamwise momentum equation. By neglecting

the higher-order terms, we get

ρ̄ũ
∂

∂x

ũ′′2

2
= −ρ̄ũ′′2

∂ũ

∂x
+ ρ̄ũ′′ξt

∂ũ

∂x
− u′′

∂p̄

∂x
− u′p′,x ,

(11)

where the first term on the right-hand side is the pro-

duction due to mean compression, and the second term

represents the effect of shock unsteadiness. They are

denoted by Pk and S1
k , respectively. A positive fluc-

tuation in streamwise velocity (u′′ > 0) upstream of

the shock pushes the shock downstream (ξt > 0) and

vice-versa. Thus, the net change in the upstream ve-

locity with respect to the shock is smaller than u′′ ,

which results in reduced amplification in u′′ through

the shock. Linear analysis shows that ũ′′ξt > 0, and

therefore S1
k reduces the amplification of ũ′′2 through

the shock. The third term on the right-hand side is the

production due to mean pressure gradient, and it rep-

resents the effect of entropy fluctuations on the flow.

The last term, denoted by Π1
k , represents the effect

of the pressure-velocity correlation on the evolution of

ũ′′2 .

A transport equation for ṽ′′2 can be derived from

the transverse momentum equation,

ρ̄ũ
∂

∂x

ṽ′′2

2
= −ρ̄ũ ṽ′′ξy

∂ũ

∂x
, (12)

where the term on the right-hand side, denoted by

S2
k , represents the effect of shock distortion. Across

a distorted shock, a sum of v′′ and the component of

mean flow tangential to the shock, ũξy , is conserved.

A decrease in ũ across the shock results in a change

in ṽ′′2 . Linear analysis shows that ṽ′′ξy > 0 such that

shock distortion amplifies ṽ′′2 across the shock. Note

that w̃′′2 follows an equation similar to (12).

Using the linearized Rankine-Hugoniot relations

presented by Mahesh et al.1 , we can write an equa-

tion for the change in u′2 across the shock.

ρ̄1ū1
1
2 (u′2

2 − u′2
1 ) = −ρ̄1u′

1u
′

m ∆ū + ρ̄1u′

mξt ∆ū

+ ρ′1u
′

m(p̄2 − p̄1)/ρ̄1 − u′

m(p′2 − p′1)
(13)

where ∆ū = ū2− ū1 and u′

m = 1
2 (u′

1 +u′

2). The above

equation can be interpreted as an integrated form of

M1

1 2 3 4 5-0.15

-0.1

-0.05

0

0.05

0.1

0.15

∫Pk

∫Sk
2

∫Sk
1

∫Πk
1

∫Πk
2

Figure 3. Budget of Eqs. (13) and (14) at different
Mach numbers: Pk = production, S1

k = shock un-
steadiness term, S2

k = shock distortion term, Π1
k =

pressure-velocity term, and
∫

represents the integra-
tion across the shock.

∫
Π2

k is the total contribution
of the energy exchange mechanism downstream of the
shock. All terms are normalized by ρ̄1ū

3
1 .

Eq. (11), where the first two terms on the right-hand

side correspond to the production and shock unsteadi-

ness mechanisms. The third term is the production

due to mean pressure gradient and the last term rep-

resents the effect of pressure-velocity correlation on the

flow. Note that u′′ = u′ and ũ = ū in the linear limit.

Similarly, we can write an equation for the change in

v′2 ,

ρ̄1ū1
1
2 (v′22 − v′21 ) = −ρ̄1ū1

1
2 (v′1 + v′2)ξy ∆ū , (14)

which can be viewed as an integrated form of Eq. (12).

Figure 3 shows a budget of Eq. (13) for differ-

ent Mach numbers where the terms are normalized

by ρ̄1ū
3
1 . We consider purely vortical turbulence up-

stream of the shock, and hence ρ′

1 = p′1 = T ′

1 = 0. As

a result, the production due to mean pressure gradient

is identically zero. The production due to mean com-

pression is positive, while shock unsteadiness reduces

u′2 . The pressure-velocity term has a significant con-

tribution to the overall budget. The shock distortion

term is also shown in the figure, and it has an ampli-

fying effect on the turbulent kinetic energy.

Mahesh et al.13 show that the total energy in the

linearized disturbances remain constant downstream

of the shock, i.e.

γM

2

[
2k

ã2
+

p′2

γ2p̄2

]
+

p′u′

p̄ã
= Constant . (15)
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The interaction of vortical turbulence with a shock

produces acoustic energy, i.e. p′2 6= 0 and p′u′ 6= 0 im-

mediately behind the shock. The acoustic energy de-

cays rapidly downstream of the shock, and it is trans-

fered to the vortical mode so that the total energy is

conserved. The change in k due to this energy trans-

fer mechanism is denoted by a source term, Π2
k , in

the k -equation. The total contribution of this energy

exchange mechanism is plotted as a function of the

upstream Mach number in Fig. 3.

The different mechanisms discussed above can be

combined with the viscous dissipation rate, ε , to get

an equation for the turbulent kinetic energy,

ρ̄ũ
∂k

∂x
= Pk + S1

k + 2S2
k + Π1

k + Π2
k − ρ̄ε , (16)

that governs the interaction of homogeneous isotropic

turbulence with a normal shock. Here, the production

due to mean pressure gradient is neglected, and a fac-

tor of 2 multiplies S2
k in order to include the shock

distortion effects on w̃′′2 .

The modeling of Eq. (16) is described below. The

shock-unsteadiness term is a function of ũ′′ξt , which

is modeled as

ũ′′ξt = b1 ũ′′2 , (17)

where b1 is a modeling coefficient. This is based on

the assumption that the unsteadiness of the shock is

caused by the turbulent fluctuations in the flow. We

use

b1 = 0.4 + 0.6 e2(1−M1) (18)

which is a curve-fit to the ratio ũ′′

1ξt/ũ′′2
1 obtained

from linear analysis (Fig. 4). Thus,

S1
k = ρ̄ ũ′′2

∂ũ

∂x
b1 . (19)

The terms S2
k , Π1

k and Π2
k are functions of ṽ′′ξy , p′2

and p′u′ . These correlations can be modeled by intro-

ducing additional coefficients, similar to b1 . However,

we take a simpler approach where the model for S1
k

is included in Eq. (16), while S2
k , Π1

k and Π2
k are ne-

glected. Thus, we get

ρ̄ũ
∂k

∂x
= −ρ̄ ũ′′2

∂ũ

∂x
(1− b1) − ρ̄ε , (20)

Using the isotropic form of the normal Reynolds stress

ũ′′2 = 2
3k , as obtained by setting µT = 0 in Eq. (3),

M1

1 2 3 4 50

0.5

1

b1

Figure 4. The ratio ũ′′

1ξt/ũ′′2
1 predicted by linear

analysis1 is used to obtain the modeling coefficient,
b1 .

ũ′′

1ξt/ũ′′2
1

and integrating the above modeled equation across the

shock results in

k2

k1
=

(
ũ1

ũ2

) 2
3 (1−b1)

, (21)

where the effect of the viscous dissipation is neglected

in the shock. Fig. 5 compares the above result to lin-

ear analysis. For M1 > 3, the model approximately

matches linear theory, which implies that Eq. (20) with

µT = 0 reproduces the overall effect of all the terms

in Eq. (16) for high Mach number flows.

For M1 < 3, the above model yields a lower k2/k1

than the linear analysis. This is because b1 approaches

1 at low Mach numbers such that S1
k cancels the am-

plification of k due to Pk . The budget of the source

terms in Fig. 3 shows that for M1 < 2, S1
k ' −Pk and

that the contributions of the other terms result in a net

amplification of k . Thus, the effect of S2
k , Π1

k and Π2
k

needs to be included at low Mach numbers. This can

be achieved by reducing the value of b1 in Eq. (20).

Also, b1 → 1 as M1 → 1 causes the model to have the

wrong asymptotic behavior in this limit (see Fig. 5).

It is reasonable to assume that the combined effect of

the source terms due to shock/turbulence interaction,

namely S1
k , S2

k , Π1
k and Π2

k , vanish at M1 = 1. This

can be achieved by replacing b1 in Eq. (20) by b′1 ,

where b′1 is obtained by modifying b1 with an expo-

nential function between the limits of M1 = 1 and

M1 → ∞ ,

b′1 = b1,∞

(
1 − e1−M1

)
. (22)

Here, b1,∞ = 0.4 is the high Mach number limiting

value of b1 . Thus, b′1 → b1 in the high Mach number
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M1

k 2
/k

1

1 2 3 4 51

2

3

4

5
Realizable
model

µT = 0

Eq. (23)

Eq. (20)

Linear
analysis

Figure 5. Amplification of k in a shock/turbulence
interaction as a function of the upstream Mach num-
ber. Different k − ε models are compared to linear
analysis.1

limit, and for low Mach numbers, we have b′1 < b1

so as to include the effect of S2
k , Π1

k and Π2
k . The

final model equation for k can therefore be written in

a frame-independent form as

ρ̄ũi

∂k

∂xi

= − 2
3 ρ̄k Sjj (1 − b′1) − ρ̄ε . (23)

Integration of this equation across a shock (with ε =

0) yields k2/k1 which has a form similar to Eq. (21).

Fig. 5 shows that the amplification of k predicted by

the above equation matches the linear theory results

over the entire range of Mach numbers.

3.2. Turbulent dissipation rate

The turbulent dissipation rate consists of a solenoidal

part, a compressible part, and contributions due to

inhomogeneity and fluctuations in viscosity. We as-

sume that the solenoidal dissipation rate given by

εs = ν̄ ω′

iω
′

i is the dominant part, where ω′ is the vor-

ticity fluctuation. Mahesh et al.1 and Lee et al.2 show

that the vorticity components transverse to the shock

are amplified, and the streamwise component remains

unchanged. Also, ν̄ changes across the shock due to an

increase in mean temperature and mean density. We

combine the amplification of ω′

iω
′

i predicted by linear

analysis with the change in ν̄ to obtain the amplifica-

tion of εs across the shock (Fig. 6). The results of the

realizable k − ε model (Eq. (8)) and the k − ε model

with µT = 0 (Eq. (9)) are also presented in the figure.

The realizable model shows a poor comparison with

the linear analysis, while the k − ε model

M1

ε s2
/ε

s1

1 2 3 4 50

2

4

6

8

10

Linear
analysis

Realizable
model

Eq. (24)

µT = 0

Figure 6. Amplification in solenoidal dissipation rate
across the shock wave as a function of the upstream
Mach number. Different k − ε models are compared
with linear analysis.1

with µT = 0 is close to the theory up to M1 = 2.0

and under-predicts the amplification of εs for higher

Mach numbers. This may be because of the effect

of shock unsteadiness and compressibility, which are

not accounted for in the models. In this work, we

do not attempt to identify and model all the physical

mechanisms that affect the solenoidal dissipation rate.

Instead, we modify the model parameter cε1 in the

εs -equation (with µT = 0) such that it predicts the

correct change in εs across the shock. We use

cε1 = 1.25 + 0.2(M1 − 1) , (24)

that is tailored to match the linear analysis results for

1 < M1 < 7 (Fig. 6).

Note that the modifications proposed in this sec-

tion are applicable only in a shock wave, and there-

fore in a subsonic flow b′1 = 0. This can be achieved

by multiplying the expressions for b′1 by the factor
1
2 (1 + sign(M1 − 1)). cε1 can be altered in a similar

way so that it retains its original value in a subsonic

flow. Also, the modifications are strictly applicable

when the flow on either side of the shock is uniform.

Application to flows with additional mean gradients

may require further modifications and are beyond the

scope of this paper.

4. Model evaluation

We use the different variations of the k − ε model

discussed above to predict the interaction of vortical

homogeneous isotropic turbulence with a normal shock

at upstream Mach numbers of 1.29, 2.0 and 3.0. DNS

data1,2 showing the evolution of k in these flows are
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M1 Mt Reλ kin εin

1.29 0.14 19.1 9.8× 10−3 1.3× 10−3

2.0 0.11 19.0 6.6× 10−3 6.0× 10−3

3.0 0.11 19.7 6.6× 10−3 5.7× 10−3

Table I. Mean and turbulent flow quantities for the

interaction of homogeneous turbulence with a normal

shock.

compared to the predictions of the standard model,

the realizable model, the model with µT = 0, and the

new model given by Eqs. (23) and (24). The values of

Reλ and Mt for the three test cases are listed in Ta-

ble I. For the M1 = 1.29 case, these values correspond

to the inlet station, and are used to obtain the inlet

values of k and εs . For M1 = 2 and 3, the values of

Mt and Reλ are immediately upstream of the shock,

which are extrapolated to obtain k and εs at the inlet

using the decay rate of homogeneous turbulence pre-

dicted by the standard k − ε model. The normalized

inlet values, kin and εin , are listed in Table I. As dis-

cussed in Section 2, the model equations are solved in

a normalized form, and the mean flow quantities are

specified as hyperbolic tangent profiles with the mean

shock thickness taken from DNS. The solution of the

standard k− ε model is a strong function of the shock

thickness, whereas the amplifications predicted by the

other k − ε models do not depend on the shock thick-

ness.

Figure 7 shows the evolution of k in the shock/tur-

bulence interactions, where the data is normalized by

the value of k immediately upstream of the shock. The

new model matches the DNS amplification of k well

in the Mach 1.29 and 3.0 flows, and under-predicts

the data in the Mach 2.0 case. On the other hand,

the standard and realizable k− ε models yield a much

higher level of k downstream of the shock. The model

with µT = 0 predicts the correct amplification of k in

the Mach 1.29 flow, but over-predicts the DNS data

in the Mach 2 and 3 cases. Note that none of the

k− ε models reproduce the rapid variation in k imme-

diately behind the shock because they do not model

the decay of the acoustic energy in this region.

The monotonic decay rate of k downstream of the

shock is determined by ε . The new model matches

the theoretical amplification of εs (see Fig. 6), and

yields the correct decay rate in the M1= 2 and 3 cases.

However, it predicts a slower decay than DNS in the

Mach 1.29 flow. The decay rate of k predicted by the

model with µT = 0 is very similar to the new model

x
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0 1 2 3 4 5 60.5

1

1.5

2

2.5

(a)

DNS

Standard
model

Realizable
model

New
model

µT = 0

x
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0 1 2 3 4 5 60.5

1

1.5

2

2.5

3(b)
Standard

model

Realizable
model

DNS

New
model

µT = 0

x

k

0 1 2 3 4 5 6

1

2

3

4(c)

New
model

Standard
model

Realizable
model

µT = 0

DNS

Figure 7. Evolution of k in the interaction of ho-
mogeneous isotropic turbulence with a normal shock
at M1 : (a) 1.29, (b) 2.0 and (c) 3.0. Different vari-
ations of the k − ε model (lines) are compared with
DNS data1,2 (symbols).
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for the first two test cases and is relatively low in the

Mach 3 flow. The realizable model yields a higher

amplification of εs than the linear analysis for M1 <

5. The corresponding decay rate appears to match

DNS in the Mach 1.29 flow, but is higher than the

data in the latter two test cases. The standard k −
ε model yields much higher εs , and therefore results

in a significantly higher decay rate of k downstream

of the shock.

5. Conclusions

We study the modeling of homogeneous isotropic

turbulence interacting with a normal shock. The stan-

dard k − ε model grossly over-predicts the amplifi-

cation of the turbulent kinetic energy, k , across the

shock, because the underlying eddy viscosity assump-

tion breaks down in a rapidly distorting mean flow.

Modifications based on the realizability constraint re-

duce the eddy viscosity, and thus yield a lower ampli-

fication of k . However, it is shown that eddy viscosity

corrections are not enough to match the linear the-

ory and direct numerical simulation (DNS). This is

because the existing models do not account for some

of the key physical processes involved in these interac-

tions, e.g. the unsteady motion of the shock wave that

is found to reduce the amplification of the turbulent

kinetic energy. We modify the k -equation to incorpo-

rate the shock unsteadiness mechanism and model it

using linear analysis. The resulting equation yields a

significant improvement over the existing models. The

equation for the solenoidal dissipation rate is also mod-

ified so that it predicts the correct amplification of εs

across the shock. The new k−ε model reproduces DNS

data of shock/isotropic turbulence interaction well.
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