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ABSTRACT

Direct numerical simulations are used to study a round tur-

bulent jet in a laminar crossflow. The velocity ratio is 5.7 and

the Reynolds number is 5000. Mean velocity and turbulent in-

tensity profiles available from experiment (Su & Mungal 2004)

are compared to simulation results, and good agreement is ob-

served. A two-dimensional model problem is used to study

the evolution of the jet cross-section and the counter-rotating

vortex pair (CVP). The model problem shows how the trailing

edge of the jet deforms and yields a CVP at later times. The

initial stages of the evolution are at constant acceleration; i.e.

pressure-driven while the later stages are at constant velocity;

i.e. momentum driven. The model problem is used to suggest

a pressure-based argument for CVP formation.

INTRODUCTION

Jets in crossflow, also called ‘transverse jets’ are defined as

the flow field where a jet of fluid enters and interacts with

a crossflowing fluid. Examples of jets in crossflow are fuel

injectors, smokestacks and dilution holes in gas turbine com-

bustors. Past work on this problem includes the study of the

velocity and vorticity fields (Kamotani & Greber 1972, Fearn

& Weston 1974, Andreopoulos & Rodi 1985, Fric & Roshko

1994, Krothapalli et al. 1990, Kelso & Smits 1995), study of

the scalar field and mixing (Smith & Mungal 1998, Shan &

Dimotakis 2000, Su & Mungal 2004) and attempts at model-

ing the flow field and jet trajectory (Broadwell & Breidenthal

1984, Karagozian 1986, Hasselbrink & Mungal 2001a, Muppidi

& Mahesh 2005a).

Broadwell & Breidenthal(1984) conclude that the global

length scale in the flow is rd in the region away from the jet

exit. This length scale is used to scale the trajectory as

y

rd
= A

(

x

rd

)B

(1)

where A and B are constants. Pratte & Baines (1967) obtain

A=2.05 and B=0.28 using their experimental data. Margason

(1993) provides a list of experimental values for A and B.

Experimental results show 1.2 < A < 2.6 and 0.28 < B <

0.34. Smith & Mungal (1998) use their experimental results

(5 < r < 25) and observe that the trajectories scale best with

rd (as compared to scaling with d or r2d). Experimentally

obtained trajectories, of jets at different velocity ratios, show

a significant scatter when normalized using rd. Muppidi &

Mahesh (2005a) show, using controlled numerical simulations,

that the jet trajectory is sensitive to the velocity profiles of the

jet and of the crossflow. Since the rd scaling does not contain

any information on these profiles, the rd–scaled trajectories

show a significant scatter. A model is proposed, that explains

the jet trajectory in terms of the inertias of the jet and of the

crossflow. An analytical expression is derived for the near–

field parameter h, which is defined as the height up to which

the jet is vertical before bending into the crossflow. It is shown

that the scatter reduces considerably when the trajectories are

scaled using h.

Some of the recent work on jets in crossflow involves nu-

merical simulations. Although RANS calculations (Chochua

et al. 2000) predict the mean velocities reasonably, turbulent

intensity predictions can vary significantly from experimen-

tal results. Acharya et al. (2001) provide a summary of

the different numerical attempts to model jets in crossflow.

They conclude that DNS and LES were better able to predict

the mean velocities and turbulence intensities (as compared

to the two–equations model and RSTM predictions). Yuan

et al. (1999) performed LES of a round jet in crossflow and

showed reasonable agreement for mean velocities and turbu-

lent intensities with experimental results of Sherif & Pletcher

(1989). Schluter & Schonfeld (2000) compared the results of

their LES with experimental velocity profiles of Andreopoulos

& Rodi (1984) and scalar fields of Smith & Mungal (1998),

and obtain reasonable agreement with the experiments.

This paper is organized in two parts. In part I, results of

DNS of a turbulent jet in crossflow are presented. Part II

discusses a two–dimensional model problem used to study the

evolution of the jet cross–section.

SIMULATION DETAILS

Problem

Simulations are performed under the same conditions as

experiments by Su & Mungal (2004). The velocity ratio is 5.7

and the Reynolds number of the flow, based on the bulk jet

velocity and the jet–exit diameter is 5000. In the experiment,

the jet exits out of a round pipe (about 70 d in length) into the

crossflow. In the absence of any crossflow, fully developed pipe

flow conditions are expected at the jet–exit (Su & Mungal,



section 2). The crossflow is laminar and the 80% boundary

layer thickness is δ80% = 1.32d at the location of the center of

the jet–exit, and in the absence of the jet.

Numerical Details

The numerical scheme solves the incompressible Navier

Stokes equations on unstructured grids. The scheme has been

described by Mahesh et al. (2004) and is not dealt with here

in detail. The algorithm stores the cartesian velocities and

the pressure at the centroids of the cells (control volumes)

and the face normal velocities are stored independently at the

centroids of the faces. The scheme is a predictor–corrector

formulation which emphasizes discrete energy conservation on

unstructured grids. This property makes the algorithm ro-

bust at high Reynolds numbers without numerical dissipation.

Time–stepping is implicit and is performed using a Crank–

Nicholson scheme. The algorithm has been validated for a

variety of problems (details are provided in Mahesh et al.

2004) over a range of Reynolds numbers.

The computational domain used in the simulations spans

36d×64d×64d in the x, y & z directions respectively, and in-

cludes a 2d length of the pipe. This allows the jet fluid to

develop naturally before exiting into the crossflow. The im-

portance of solving for flow in the pipe was noted by Yuan

et al. (1999) and Muppidi & Mahesh (2005a). The com-

putational mesh is unstructured and consists of hexahedral

elements. A total of 11 million control volumes are used to

generate the present mesh. The computations are initialized

with just the crossflow, and the solution is allowed to develop

for about 80 d/u∞ units before statistics are computed. This

way, statistics are computed only after the transients exit the

domain. The computational time step is 0.0025 d/u∞.

RESULTS

Part I. DNS of turbulent jet in crossflow

In order to simulate a turbulent jet in crossflow, a sepa-

rate simulation of a fully turbulent pipe flow was performed.

The velocity field at a cross–section from that simulation was

stored over a length of time and interpolated as the bound-

ary condition for the jet in the turbulent jet simulation. The

crossflow is laminar, and in the absence of the jet, the veloc-

ity field corresponds to the self–similar Blasius boundary layer

solution. Figure 1(a) shows contours of instantaneous vortic-

ity magnitude
√

ω2
x + ω2

y + ω2
z on the symmetry plane, along

with an instantaneous streamline passing through the center

of the jet–exit. The highest vorticity magnitude (shown in

blue) is observed near the walls of the pipe and along the jet.

Note that the simulation resolves the small scales of motion

inside the pipe and close to the jet exit. Small scale features

are observed even away from the jet–exit along the jet cen-

terline. Upstream of the jet, crossflow fluid shows a vorticity

that is steady, smaller in magnitude, and is characteristic of

a laminar boundary layer. Downstream of the jet (and x/d <

6), there appears to be a quiescent region with low vortic-

ity (shown in white). Further downstream, the flow contains

larger scale features which move slowly in the direction of the

crossflow.

Figure 1(a) also shows that the jet is asymmetric about the

center streamline. The jet is wider downstream (positive x

y
/
d

x/d
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/
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Figure 1: (a) Instantaneous contours of vorticity magnitude
√

ω2
x + ω2

y + ω2
z on the symmetry plane. (b) Instantaneous

contours of ωy on the horizontal plane y/d = 0.1.

side of the centerline) as compared to the upstream side. This

asymmetry has been noted by Su & Mungal (2004, figure 8)

and they suggest it is due to the ‘jet fluid that is stripped

away from the developing region of the jet by the crossflow

and is deposited in the wake region’, suggesting that the jet

fluid seen downstream of the streamline exits the jet–exit lying

on the periphery (of the jet) and not on the symmetry plane.

Also note that the crossflow fluid has a higher momentum up-

stream side of the jet (negative x side of the jet centerline)

as compared to the downstream side (the ‘wake’ region). The

asymmetry in the jet width could be accentuated by this dif-

ference in momentum.

Instantaneous contours of ωy on the horizontal plane y/d

= 0.1 are shown in figure 1(b). Note the separation of the

crossflow boundary layer a few diameters downstream of the

jet–exit.

Comparison to experiments.

Su & Mungal (2004) provide detailed experimental profiles

of velocity and turbulent intensities at three stations (y/rd

= 0.1, 0.5 and 1.0), as a function of the non–dimensionalized

streamwise distance (x/rd). The fluid density of the jet and of

the crossflow are assumed to be same in the present simulation.

The jet in the experiment, however, has a 10% higher density

than the crossflow (ρj/ρ∞ = 1.1, Su & Mungal 2004). In

order to account for this difference in densities, the profiles
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Figure 2: Comparison of jet trajectory from the simulation

( ) to that from the experiment ( ).

are normalized with reff , where

reff
2 =

ρjuj
2

ρ∞u∞
2

=
ρj

ρ∞
r2. (2)

The value of reff is 5.7 in the simulation and 6.008 in the

experiment. Figure 2 compares the jet trajectories from the

simulation and the experiment. Trajectories are scaled us-

ing reff and good agreement is obtained. At a location 15d

downstream of the jet–exit, the difference between the scaled

trajectories is 2.8%.

Profiles of v, v′v′, u′u′ and u′v′ are compared in figure

3. These profiles correspond to locations y/reff d = 0.1, 0.5

and 1.0 on the symmetry plane. The solid lines in these plots

are results from the present simulation while the symbols are

results from the experiment. Overall, for all the quantities

compared and at all the locations, the agreement presented is

quite reasonable, particularly the context of the sharp gradi-

ents that the profiles possess (e.g. v′v′ and u′v′ at y/reff d =

0.1). The comparison is discussed in more detail by Muppidi

& Mahesh (2005b).

The mean velocity (v) profiles show that at the station clos-

est to the jet–exit, the behavior exhibited by the jet is similar

to that of a turbulent pipe flow. This is indicated by the ap-

parent symmetry of the profile about the centerline. Moving

away from the jet–exit, fluid downstream of the jet demon-

strates an increase in velocity and at the farthest station, the

profile is indicative of two distinct jets. The jet fluid that

is stripped off the jet edges and deposited downstream pos-

sesses a vertical velocity and results in the profile as observed

in figure 3(a)(at y/reff d = 1.0). Contours of time–averaged

magnitude of velocity, when plotted on the symmetry plane,

also show this distinctive ‘two–jet’ behavior.

Part II. Model problem to study jet evolution

A circular jet, issuing into a crossflow bends in the direction

of the crossflow. Yuan & Street (1998) explain the bending of

the jet as a result of the pressure ‘drag’ in the near field and in

terms of the entrainment in the far–field. Muppidi & Mahesh

(2005a) explain the jet trajectory in terms of the competing

inertias of the jet and crossflow fluids. As the jet bends, a pair

of counter–rotating vortices (CVP) are formed. The CVP is

a ‘signature’ feature of this flow and has been the subject of

much investigation. In particular, different mechanisms have
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Figure 3: Comparison of mean vertical velocity (v) and tur-

bulent intensity (v′v′, u′u′ and u′v′) profiles with the experi-

mental results. simulation, experiment.
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Figure 4: Initial condition of the model problem used to study

the evolution of the jet. Streamlines show the potential flow

past a circular cylinder, while the contours show out–of–plane

velocity.

been suggested for formation of the CVP. It has been sug-

gested (Andreopoulos & Rodi 1984 etc.) that the CVP is

formed by the shear layer emanating from the pipe. Coelho

& Hunt (1989) suggest that the CVP is initiated within the

pipe. Kelso et al. (1996) conclude from their experiments

that CVP roll–up is related to the separation inside the pipe

and that the jet shear layer ‘folds’, contributing to the CVP

formation. The cross–section of a jet issuing out of a circular

jet–exit is known to deform to an oval, and then to a kidney

shape. Smith & Mungal (1998) show that this evolution of

the jet is slower at r=20 than at r=10.

A two–dimensional model problem is studied in order to

understand the evolution of the jet cross–section. The initial

condition of the problem, shown in figure 4, is as follows. A

circular region of diameter d is defined. The fluid inside this

region has a uniform vertical velocity (v = vj) and zero in–

plane velocity (u, w = 0). The fluid outside this region is

prescribed to have an in–plane velocity (u, w) corresponding

to potential flow past a circular cylinder, and a zero vertical

velocity (v = 0). The fluid inside the circle simulates the

jet and the fluid outside of it simulates the crossflow. The

direction of the crossflow fluid is from left to right. Uniform

crossflow velocity (u∞) is specified at the crossflow inflow and

the spanwise boundary planes. The governing equations for

momentum are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −

∂p

∂x
+ ν

{

∂2u

∂x2
+

∂2u

∂z2

}

,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −

∂p

∂z
+ ν

{

∂2w

∂x2
+

∂2w

∂z2

}

and

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
= ν

{

∂2v

∂x2
+

∂2v

∂z2

}

. (3)

Note that u and w are not affected by the out–of–plane veloc-

ity component v. Also note that the equation governing v is

the same as a passive scalar transport equation. The contours

of v, hence, accurately represent the jet on the x–z plane.

In the three–dimensional ‘jet in crossflow’ problem, the jet

has a circular cross–section close to the jet–exit. At least until

the jet bends significantly into the crossflow, the behavior of

the jet can be imagined to be similar to the behavior of the
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Figure 5: Position of the jet plotted against the temporal vari-

able. : Re = 1000, : Re = 10000 & : Re

= 100000. Symbols show quadratic curve fits to each of the

trajectories.

jet in the model problem. The evolution of the jet in the

three–dimensional problem is spatial (moving away from the

jet–exit) while the evolution of the jet in the model problem is

temporal. The temporal evolution variable (t) can be related

to the spatial evolution variable (s) as

s =

∫ t

0

us dt,

where us is the local velocity of the jet (in the 3–d problem).

The velocity of the jet is vj = u∞, and simulations are per-

formed at Reynolds numbers (Re = vjd/ν) of 1000, 10000 and

100000. The mesh used for the simulations has uniform edge

lengths ∆x/d = 0.005 and ∆z/d = 0.005. Figure 5 shows the

evolution of the center of the jet with time. The center of the

jet is defined as the centroid of the vertical velocity (v). Also

shown is a quadratic fit to each of the trajectories, denoted by

symbols. The initial trajectory of the jet is quadratic while

the later trajectory is linear. This suggests that initially, the

jet experiences a constant acceleration in the direction of the

crossflow, and that it moves at a constant velocity at a later

time (tu∞/d > 0.5, for Re = 1000, from figure 5). The accel-

eration experienced by the jet may be related to the pressure

gradient imposed on it by the crossflow fluid, which suggests

that the jet is pressure–driven in the initial stages of evolu-

tion and that it is momentum–driven in the later stages. For

the jet in crossflow, the implication is that the near–field is

pressure–driven whereas the far–field is momentum–driven.

The acceleration experienced by the jet (in the accelerating

regime), and the velocity of the jet (in the constant–velocity

regime) appear to depend on the Reynolds number. Figure

5 shows that as the Reynolds number increases, the jet ex-

periences a lower initial acceleration. Also, the ‘accelerating

regime’ lasts for a shorter time at higher Reynolds numbers.

Increasing the Reynolds number also appears to lower the ve-

locity in the ‘constant velocity regime’.

Contours of velocity v at different instants of time in the

vicinity of the jet are shown in figure 6. Figures 6(a)–(d) show

the solution of the model problem at Re=1000 and figures

6(e)–(h) show the solution at Re=10000. Note that figures in

the same row are plotted at the same instant of time. Also,

the oscillations observed exterior to the jet are a part of the
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Figure 6: Behavior of the solution of the model problem. (a)–

(d) : Re = 1000, (e)–(h) : Re = 10000. Only part of the

domain is shown.

solution and not oscillations resulting from the numerics. The

oscillations appear to be aligned with the local curvature of

the jet, and it was observed that grid refinement does not

affect these oscillations.

The jet that is initially circular, begins to flatten at the

trailing edge, forming a kidney–shaped cross–section. The

trailing edge continues to move towards the leading edge form-

ing a partial ‘ring’ of jet fluid around crossflow fluid (figure

6(d)). However, the progression rate appears slower at the

higher Reynolds number. The deformation the jet experiences

can be explained in terms of the pressure field around the

jet. The initial pressure field around the jet is symmetric and

the maximum pressure is observed at the trailing and leading

edges of the jet. The jet also experiences an acceleration in the

(a) (b)

Figure 7: Final stage in the evolution of the jet in the model

problem. (a) : Re = 1000, and (b) : Re = 10000. The counter–

rotating vortex pair is clearly seen.

streamwise direction. The pressure gradient is in the direction

of the acceleration at the leading edge, and in the direction

opposing this acceleration at the trailing edge. The symmetry

about the z–axis is thus broken, and the jet begins to flatten

at the trailing edge. As long as the jet accelerates, the trailing

edge continues to move closer to the leading edge.

The Reynolds number has a noticeable effect on the insta-

bilities on the jet edges. At Re =1000, no instabilities are

observed. At Re = 10000, however, figures 6(e)-(h) show

‘rollers’ on the top and bottom edges of the jet. Since the

crossflow velocity field is initially that of potential flow past

a cylinder, the shear is the greatest at the top and bottom

edges of the jet. This results in the Kelvin–Helmholtz in-

stability mechanism being active on these edges. The initial

stages of this instability are observed in figure 6(e) and the

ensuing ‘rollers’ are observed in figures 6(f)–(h). According

to the initial condition, vorticity (ωy) is distributed along the

jet circumference. As the jet evolves, ωy accumulates towards

the trailing edge of the jet – forming a counter–rotating vor-

tex pair. The CVP is is clearly visible in figures 6(c) & (d).

This implies that the pipe is not necessary for the formation

of the CVP. The pressure and velocity field in the vicinity of

the jet cause the CVP to be formed slightly downstream of

it. However, it appears that the contribution to the CVP’s

vorticity comes from the vorticity in the jet shear layer. With

respect to the suggestion by Kelso et al. (1996) that there

is a connection between the CVP roll–up and the separation

inside the pipe, it appears that the separation ‘contributes’

to the CVP formation rather than ‘leads to’ it. It must also

be mentioned that the separation (and the resulting separa-

tion streamlines on the pipe surface) inside the pipe is not

evident at higher velocity ratios (Muppidi & Mahesh 2005a

: the separation streamlines were observed at r = 1.52 and

not at r = 5.7). The cross–section of the jet in the ‘constant

velocity regime’ is shown in figure 7. The two plots are not at

the same instant of time. The jet at Re = 1000 reaches this

quasi–steady state earlier than the jet at Re = 10000. Note

that even at the higher Re, the instabilities on the jet edge

are absent, and CVP is clearly visible. In this regime, the jet

moves in the direction of the crossflow at a constant velocity,

as shown in figure 5.

SUMMARY

DNS of a round turbulent jet in crossflow at conditions

same as the experiments of Su & Mungal (2004) are performed.

Velocity and turbulent intensity profiles from the simulation



are compared to those from the experiments. The profiles

are normalized with ‘effective velocity ratio’ reff to account

for the difference in jet and crossflow densities in the exper-

iment. A good agreement is observed. A two–dimensional

model problem is used to study the evolution of the jet. The

solution to the model problem explains the change in shape

of jet cross–section in terms of the pressure field around the

jet. The model problem suggests that the near–field of a jet in

crossflow is pressure–driven while the far–field is momentum–

driven. The solution to the model problem also yields the

CVP, indicating that the pipe is not necessary to the forma-

tion of the CVP.
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