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Adjoint sensitivity and optimal perturbations of
the low-speed jet in cross-flow
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The tri-global stability and sensitivity of the low-speed jet in cross-flow are studied
using the adjoint equations and finite-time horizon optimal disturbance analysis at
Reynolds number Re = 2000, based on the average velocity at the jet exit, the jet
nozzle exit diameter and the kinematic viscosity of the jet, for two jet-to-cross-flow
velocity ratios R = 2 and 4. A novel capability is developed on unstructured grids
and parallel platforms for this purpose. Asymmetric modes are more important
to the overall dynamics at R = 4, suggesting increased sensitivity to experimental
asymmetries at higher R. Low-frequency modes show a connection to wake vortices.
Adjoint modes show that the upstream shear layer is most sensitive to perturbations
along the upstream side of the jet nozzle. Lower frequency downstream modes are
sensitive in the cross-flow boundary layer. For R = 2, optimal analysis reveals that
for short time horizons, asymmetric perturbations dominate and grow along the
counter-rotating vortex pair observed in the cross-section. However, as the time
horizon increases, large transient growth is observed along the upstream shear
layer. When R = 4, the optimal perturbations for short time scales grow along
the downstream shear layer. For long time horizons, they become hybrid modes that
grow along both the upstream and downstream shear layers.

Key words: absolute/convective instability, turbulence simulation, jets

1. Introduction
Jet in cross-flow (JICF) or transverse jet is a common flow problem characterized

by a jet of fluid injected normal to a cross-flow. Often the cross-flow consists of a
planar boundary layer which interacts with the jet of fluid creating complex vortical
structures. Figure 1 shows an instantaneous flow field of a typical JICF visualized
using isocontour of Q-criterion (Hunt, Wray & Moin 1988) coloured with streamwise
velocity. The upstream and downstream shear layers are marked for clarity. The shear-
layer vortices and Kelvin–Helmholtz instability can be observed along the upstream
side of the jet path. Kamotani & Greber (1972) and Smith & Mungal (1998) observed
the counter-rotating vortex pair (CVP) dominating the jet cross-section and travelling
far downstream. Horseshoe vortices (Krothapalli, Lourenco & Buchlin 1990; Kelso
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FIGURE 1. (Colour online) Instantaneous flow field for a JICF visualized using
isocontours of Q-criterion coloured by streamwise velocity showing the upstream and
downstream shear layers.

& Smits 1995) form near the wall around the upstream side of the jet nozzle exit.
They travel downstream and begin to tilt upward during ‘separation events’ (Fric &
Roshko 1994) due to the adverse pressure gradient caused by jet entrainment. These
wall-normal vortical structures that extend through the jet wake are described as wake
vortices (McMahon, Hester & Palfery 1971; Moussa, Trischka & Eskinazi 1977; Fric
& Roshko 1994; Eiff, Kawall & Keffer 1995; Kelso, Lim & Perry 1996).

Transverse jets are found in many engineering applications, e.g. dilution jets in gas
turbine combustors, film cooling of turbine blades and the thrust vectoring mechanism
of vertical and/or short take-off and landing aircraft. Readers are referred to Margason
(1993), Karagozian (2010) and Mahesh (2013) for comprehensive reviews of JICF
research, both experimental and computational, over the last seven decades.

An incompressible JICF can be characterized by the jet Reynolds number (Re), the
cross-flow Reynolds number (Re∞) and the JICF velocity ratio (R) defined as

Re= vjetD/νjet, (1.1)
Re∞ = u∞D/ν, (1.2)

R= vjet/u∞, (1.3)

where vjet is the average velocity at the jet exit, D is the jet nozzle exit diameter, νjet
is the kinematic viscosity of the jet, u∞ is the cross-flow freestream velocity and ν is
the kinematic viscosity of the cross-flow. The velocity ratio can also be defined as

R∗ =
vjet,max

u∞
, (1.4)

where vjet,max is the maximum velocity at the jet exit.
Because of its use in many engineering applications, numerous past studies have

focused on control of JICF to enhance a desired behaviour. Shapiro et al. (2006)
studied the response of JICF to square-wave excitation. Jet penetration and mixing
were the main focus of their study, which acoustically pulsed the JICF at R = 2.4
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and R = 4, for 1420 6 Re 6 3660. They found that often a single set of excitation
conditions generated vortical structures that greatly improved jet penetration. Their
results highlight that varying the amplitude or the frequency affects jet penetration.
However, optimal jet penetration does not necessarily result in an optimally mixed
JICF. They suggest that low-frequency excitation (relative to the unforced jet upstream
shear-layer frequency) may enhance mixing. This is because subharmonic frequencies
resulting from high-frequency excitation may cause strong bifurcations of the jet,
reducing the degree of injectant distribution and therefore the quantified amount
of mixing. Furthermore, Davitian et al. (2010) reported that the optimal forcing
conditions for high (R> 3) and low (R< 3) velocity ratios might depend on the jet
regime. This observation is consistent with the experiments of Narayanan, Barooah
& Cohen (2003) who showed that when R= 6, low-amplitude excitation of the JICF
can promote mixing. M’Closkey et al. (2002) and Shapiro et al. (2006) showed that
high-amplitude sinusoidal excitation has little success in increasing jet penetration or
mixing when R 6 4,

Sau & Mahesh (2010) used direct numerical simulations (DNS) to further
understand the effect of pulsing on the JICF. They suggested that strong pulsing
produced vortex rings whose properties could be characterized in terms of experimental
parameters, such as amplitude, frequency and duty cycle. They performed DNS with
the same pulse profiles as experiments and showed how the results were identical
to those obtained using idealized top-hat profiles. They developed a regime map
that characterized jet pulsing based on the stroke ratio (L/D, where L is the stroke
length) and velocity ratio (R). They demonstrated three distinct JICF regimes: hairpin
vortices (small R), vortex rings (small L/D, R> 2) and vortex rings with trailing shear
layer (large L/D, R> 2). The three regimes have different mixing characteristics. Sau
& Mahesh (2010) showed that the optimal jet penetration conditions from several
different experiments (Eroglu & Breidenthal 2001; Shapiro et al. 2006), their own
DNS and even zero-net-mass-flux jets (Cater & Soria 2002) all collapsed along a
single line on the regime map.

Megerian et al. (2007) showed that the response of the JICF to pulsing depends on
the stability of the upstream shear layer. They performed experiments on the JICF at
Re of 2000 and 3000 over the range 1 6 R 6 10. They recovered vertical velocity
spectra along the upstream shear layer and observed this region to transition from
absolute to convective instability between R = 2 and R = 4. When R = 2, there was
a strong tone in the upstream shear layer at a single Strouhal number, based on the
jet diameter D and the average jet velocity vjet. Note that elsewhere in this paper, the
Strouhal number (St) is defined based on the maximum velocity at the jet exit (St=
fD/vjet,max). The disturbance originated near the jet exit and was observable further
downstream. This is consistent with an absolute instability, which grows at the point
of origin and travels downstream. Conversely, when R = 4, Megerian et al. (2007)
observed that upstream shear-layer instabilities were weaker and a broader spectrum
formed farther downstream. This behaviour is consistent with a convective instability,
which grows as it travels downstream.

Iyer & Mahesh (2016) performed DNS reproducing the stability transition observed
in the experiments of Megerian et al. (2007), which they explained by proposing that
the upstream shear layer is a counter-current shear layer, which is identified across
the reverse flow upstream, and the jet. Huerre & Monkewitz (1985) showed that the
velocity ratio characterizes the stability of counter-current mixing layers

Rvel =
V1 − V2

V1 + V2
, (1.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

58
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

48
:3

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.582
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Adjoint sensitivity and optimal perturbations of the JICF 333

where V1 and V2 are the velocities of the two mixing layers. Huerre & Monkewitz
(1985) showed that when Rvel > 1.315 a mixing layer is absolutely unstable, whereas
if Rvel < 1.315 a mixing layer is convectively unstable. Iyer & Mahesh (2016)
measured the mixing layer velocities of the JICF as the maximum and minimum
(most negative) vertical velocities across the upstream shear layer of the turbulent
mean flows. The values of Rvel = 1.44 and 1.20 for R = 2 and R = 4, respectively,
which suggested that the stability characteristics for the JICF may be driven by the
same mechanism that drives the stability of free shear layers.

Alves, Kelly & Karagozian (2008) studied the stability of the JICF by means of
local linear stability analysis for two different base flows: a modified potential flow
solution by Coelho & Hunt (1989) and a continuous velocity model still based on
a potential flow solution, but valid for larger values of St. In their analysis they
prescribe a temporal wavenumber, ω, which is real (i.e. zero growth rate), and solve
for the complex spatial wavenumber, α, which makes their analysis a spatial stability
problem. Bagheri et al. (2009) were first to perform global linear stability of the
JICF, which was also one of the first simulation-based linear stability analyses of a
fully three-dimensional base flow. Later, Peplinski, Schlatter & Henningson (2015)
extended the analysis of Bagheri et al. (2009) to include R∗= 1.5 and R∗= 1.6 using
modal (i.e. direct and adjoint) and non-modal (i.e. optimal perturbation) analyses to
study the JICF. They observed an almost identical wavepacket develop for the stable
(R∗ = 1.5) and unstable (R∗ = 1.6) cases, and were able to determine the bifurcation
point of R∗ to lie between 1.5 and 1.6. However, it was shown recently by Klotz,
Gumowski & Wesfreid (2019) that the specific value of R∗ is not constant and
depends on cross-flow Reynolds number.

Ilak et al. (2012) first presented wavemaker results for a fully three-dimensional
base flow. They looked at the direct, adjoint and wavemaker results for the JICF at low
values of R and Re. Both the jet and the cross-flow were laminar, and the pipe was not
included in the simulations. Their study focused on the first bifurcation where hairpin
vortices are observed to shed, and used the wavemaker to suggest that the source was
in the shear layer just downstream of the jet.

The focus of this paper is to further the understanding of the stability and sensitivity
of the JICF by extending the analysis of Regan & Mahesh (2017) with the addition
of adjoint sensitivity and optimal perturbation analyses. Linear stability analysis
is used to determine the dominant eigenvalues and eigenmodes of the linearized
Navier–Stokes equations. This provides information about the dominant instability
modes at asymptotic times. Similarly, adjoint sensitivity analysis solves for the
dominant eigenvalues and eigenmodes of the adjoint linearized Navier–Stokes (LNS)
equations, which yield the dominant sensitivity modes that correspond to the direct
modes. Optimal perturbation analysis uses the direct and adjoint equations in tandem
over different time horizons to determine the ‘most dangerous’ perturbations. This
provides insight into the initial conditions that generate the most energy growth over
different time scales. Understanding the dominant flow instability mechanisms and
their sensitivity to velocity perturbations is key to devising optimal control strategies
for the JICF.

The goal of the present work is to understand the stability, transition and sensitivity
characteristics of an incompressible JICF at Re= 2000 for two velocity ratios R= 2
and 4. The physical conditions of the present simulations match the experiments of
Megerian et al. (2007). This research represents state-of-the-art stability and sensitivity
analyses of three-dimensional turbulent mean flows of the JICF. The combination of
the numerics and high-performance computing platforms allows for high-fidelity
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stability and sensitivity results to be obtained. The rest of the paper is organized as
follows. The numerical methods are discussed in § 2. The simulation set-up for the
JICF is discussed in § 3. Sections 4 and 5 discuss the results from linear, adjoint
sensitivity and optimal perturbation analyses. The paper is summarized in § 6.

2. Numerical methodology
The numerical algorithm for solving the governing equations is discussed in § 2.1,

followed by details regarding the linear stability (§ 2.2), adjoint sensitivity (§ 2.3) and
optimal perturbation analyses (§ 2.4). Concluding this section is an overview of how
to choose an appropriate base flow (§ 2.5).

2.1. Governing equations and numerical algorithm
The Navier–Stokes equations for single-phase, constant-density, incompressible,
Newtonian fluid motion in an inertial reference frame are

∂ui

∂t
+

∂

∂xj
uiuj =−

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
,

∂ui

∂xi
= 0. (2.1a,b)

Here, t, ui(x, y, z), p(x, y, z) and ν are the time, velocity vector, pressure and
kinematic viscosity of the fluid, respectively. For constant fluid density, the density
may be combined with the pressure term.

In this paper, an unstructured, finite-volume algorithm developed by Mahesh,
Constantinescu & Moin (2004) is used to solve the Navier–Stokes equations (2.1).
The spatial discretization emphasizes the simultaneous conservation of discrete
first-order quantities (i.e. momentum) in addition to second-order quantities, such
as kinetic energy. In other words,

∑
ui∂(uiuj)/∂xj over all control volumes only has

contributions from the boundary elements. In this method, Cartesian velocities, ui,
and pressure, p, are stored at the control volume centroid. Additionally, face-normal
velocities, vn, are stored separately at the centroids of the faces. The algorithm
has been validated and used to simulate a variety of complex flows, including a
gas turbine combustor (Mahesh et al. 2004), free jet (Babu & Mahesh 2004) and
transverse jets (Muppidi & Mahesh 2005, 2007, 2008; Sau & Mahesh 2007, 2008;
Iyer & Mahesh 2016; Regan & Mahesh 2017).

A fractional-step (sometimes called predictor-corrector) method is used to solve the
governing equations (2.1). Time is advanced explicitly using the Adams–Bashforth
second-order scheme for the predictor velocities, u∗i , through the momentum equation
using two previous time steps. The predicted velocities are then interpolated using
second-order symmetric averaging to obtain the predicted face-normal velocities.
A Poisson equation for pressure is then derived by taking the divergence of the
momentum equation and satisfying continuity. This is used in a corrector step to
project the solution onto a divergence-free velocity field. The Poisson equation is
solved using the Algebraic Multi-Grid (AMG) solver in the HYPRE library (Falgout
& Yang 2002). After solving for p, ui and vn are corrected using the pressure gradient.

2.2. Linear stability analysis
Modal linear stability analysis is the study of the dynamic response of a base state
(i.e. base flow) subject to external perturbations (see Theofilis (2011) for a review).
In this paper, the incompressible Navier–Stokes equations (2.1) are linearized about a
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base state ui(x, y, z) and p(x, y, z), which can vary arbitrarily in space. The flow field
is decomposed into a base state subject to a small O(ε) perturbation (ũi). Subtracting
the base flow equations yields the LNS equations

∂ũi

∂t
+

∂

∂xj
ũiuj +

∂

∂xj
uiũj =−

∂ p̃
∂xi
+ ν

∂2ũi

∂xj∂xj
,

∂ũi

∂xi
= 0. (2.2a,b)

Note that the same numerical techniques are used to solve the LNS equations (2.2)
and the Navier–Stokes equations (2.1). A molecular viscosity is used to perform linear
stability analysis since the same was used to obtain the base flow obtained by DNS.

The LNS equations may be rewritten as a system of linear equations, where A is
the LNS operator and ũi is the divergence-free velocity perturbation field. Solutions
to the linear system of equations are of the form

ũ(x, y, z, t)=
Nω∑
j=1

ûj
(x, y, z)eωjt + c.c., (2.3)

where Nω is the number of eigenvalues. Also, ωj and ûj can be complex. This
defines Re(ω) as the growth/damping rate and Im(ω) as the temporal frequency of
the complex velocity coefficient (ûi). The system of equations transforms into a linear
eigenvalue problem,

ΩÛ = AÛ, (2.4)

where ωj = diag(Ω)j is the jth eigenvalue and Û = (û1
, û2

, . . . , ûNω) is the matrix of
eigenvectors.

2.2.1. Solutions of the LNS equations
For linear stability analysis, the size of the eigenvalue problem (2.4) can be

O(106–108). This makes solving the eigenvalue problem using direct methods very
computationally expensive, often prohibitively so. Instead, an extension of the Arnoldi
iteration method (Arnoldi 1951) called the implicitly restarted Arnoldi method (IRAM)
is used, which is a matrix-free method. The present work uses the IRAM implemented
in the P_ARPACK library (Lehoucq, Sorensen & Yang 1997) to efficiently calculate
the leading (i.e. most unstable) eigenvalues and their associated eigenmodes.

A temporal exponential transformation of the eigenvalue spectrum is performed. The
eigenvalue problem (2.4) is integrated over some time, τ , which yields the exponential
of the eigenvalue problem (2.4) which can be written as

ΣÛ = BÛ, (2.5)

where σj = diag(Σ)j. The matrix exponential B = eAτ is a time integration operator,
which represents a numerical simulation of the LNS equations (2.2) over time τ . This
method is therefore described as a time-stepper method. Note that the eigenvectors,
Û, are the same between the two eigenvalue problems (2.4) and (2.5). However,
the eigenvalues of the original problem (2.4) must be recovered using the following
relationship:

ωj =
1
τ

ln σj. (2.6)

Readers are referred to Regan & Mahesh (2017) for an extensive validation of the
solver for a variety of flow problems including the JICF.
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336 M. A. Regan and K. Mahesh

2.2.2. Time horizon
When using a time-stepper method, the choice of integration time τ depends on the

time scales of interest for the problem at hand. It is imperative that τ be less than
ts, the smallest time scales of interest; usually τ = ts/2 is appropriate. For capturing
the largest time scales of interest, tL, the number of Arnoldi vectors NA is important.
Once τ is determined, the number of Arnoldi vectors must be greater than tL/τ ;
usually NA > 2tL/τ is appropriate. Overall, some knowledge of the range of time
scales is needed to effectively use the IRAM in conjunction with a time-stepper
method. Additionally, performing stability analysis on problems with a large range of
time scales can drastically affect the computational cost and storage requirements as
each Arnoldi vector must be stored for each Arnoldi iteration.

2.3. Adjoint sensitivity analysis
The adjoint of a linear operator can be defined using the generalized Green’s theorem
(Morse & Feshbach 1953). In this paper, the continuous adjoint to the LNS equations
are defined in the same way as in Hill (1995) and Giannetti & Luchini (2007) (and
similar to Barkley, Blackburn & Sherwin (2008)), using the generalized Lagrange
identity (Ince 1926). The adjoint equations are

∂ũ†
i

∂t
+

∂

∂xj
ũ†

i uj − ũ†
j
∂

∂xi
uj =−

∂ p̃†

∂xi
− ν

∂2ũ†
i

∂xj∂xj
,

∂ũ†
i

∂xi
= 0. (2.7a,b)

Note the opposite sign on the viscous term, which defines that the adjoint equations
must be solved backwards in time. The adjoint equations can also be rewritten as a
system of linear equations, where A† is the adjoint LNS operator and ũ†

i is the adjoint
to the velocity perturbation field. Similar to the direct problem, we assume non-trivial
solutions to (2.7) of the form

ũ†
(x, y, z, t)=

Nω∑
i=1

û†
(x, y, z)e−ωjt + c.c. (2.8)

Note the negative sign in front of ω, which allows for the eigenvalues from linear
stability and adjoint sensitivity to have growth rates that correspond to their time
integration directions (i.e. adjoint Re(ω) > 0 corresponds to growth backwards in
time). The adjoint systems of linear equations can now be simplified to an eigenvalue
problem (similar to (2.9))

−ΩÛ
†
= A†Û

†
, (2.9)

where ωj = diag(Ω)j is the jth eigenvalue (coincident with the eigenvalue from linear
stability analysis) and Û

†
= (û†,1

, û†,2
, . . . , û†,Nω) is the matrix of adjoint eigenvectors.

Hill (1995) explains how ũ†
i , the adjoint velocity perturbation field, highlights

optimal points in the flow where the largest response to unsteady point forcing will
occur in its associated direct eigenmode counterpart. In the present work, adjoint
sensitivity stability analysis is used in conjunction with linear stability analysis to
determine flow regions that are most sensitive to point momentum forcing.

The same time-stepper method is implemented to efficiently compute the leading
adjoint eigenvalues and their associated eigenvectors. The solver has been validated
for obtaining adjoint modes in appendix A.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

58
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

48
:3

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.582
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Adjoint sensitivity and optimal perturbations of the JICF 337

2.3.1. Wavemaker
This paper also discusses the receptivity of the JICF to spatially localized feedback.

Due to the non-normality of the eigenvalue problem associated with the JICF, adjoint
solutions alone cannot describe the whole picture. Therefore, the product for each jth
pair of direct and adjoint global modes is computed as

Wj(x, y, z)=
‖ûj
‖‖û†,j

‖

max(‖ûj
‖‖û†,j

‖)
, (2.10)

which determines the region where the eigenvalues of A are most sensitive to
localized feedback (Giannetti & Luchini 2007) – also called ‘wavemaker’ regions.
Locations where W ≈ 1 are sensitive to localized feedback. The value of W may be
interpreted as a quantification of a possible change in the eigenvalues as a result of
applied perturbations in the given region (Ilak et al. 2012). Additionally, Giannetti
& Luchini (2007) have shown that the eigenvalues from linear stability analysis and
adjoint sensitivity analysis are sensitive to domain size changes when values of the
wavemaker, Wj, are substantially different from zero at locations close to the domain
boundaries. In wavemaker results that follow, all of the isocontours are displayed
with a value of 0.01, and are spatially located far from the edges of the domain.

2.4. Optimal perturbation analysis
Non-modal stability analysis, or optimal perturbation analysis, is widely used in the
literature for a variety of problems, as reviewed by Schmid (2007). The traditional
concept of Lyapunov stability does not coincide with non-modal stability analysis.
Furthermore, the shape of the eigenmodes from optimal perturbation analysis and
traditional asymptotic-time stability analysis can vary significantly, as they describe
stability from different perspectives.

The energy is normalized with the initial energy when describing the transient
growth

E(τ )
E0
=
(ũ(τ ), ũ(τ ))
(ũ0, ũ0)

, (2.11)

where τ is the time scale over which the transient growth is optimized. This value of
τ is often smaller than the τ used in linear stability analysis and adjoint sensitivity
stability analysis in the previous sections. The perturbation energy may also be
expressed in terms of the evolution operators B and B† defined above:

E(τ )
E0
=
(Bũ0, Bũ0)

(ũ0, ũ0)
=
(ũ0, B†Bũ0)

(ũ0, ũ0)
. (2.12)

We are interested in the initial perturbations, ũ0, that result in the largest transient
growth. Equation (2.12) reveals that ũ0 is determined by the eigenvalues and
eigenmodes of the operator B†B. The eigenvalue problem may be expressed as

ΛU∗ = B†BU∗, (2.13)

where λj= diag(Λ)j is the jth eigenvalue (i.e. growth factor) and U∗= (u∗,1, u∗,2, . . . ,
u∗,Nω) is the matrix of perturbation eigenmodes. The leading eigenmode offers the
largest transient growth for the specified value of τ , but sub-optimal eigenmodes often
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provide valuable insight towards other flow mechanisms that generate energy growth.
In the discussions to follow, sub-optimal eigenmodes (i.e. perturbations) have smaller
growth rates, but can become significant to the overall dynamics if their growth rates
are near leading growth rate.

The size of the eigenvalue problem associated with optimal perturbation analysis
is also computationally expensive to solve. The same method, the IRAM, is used to
solve for the leading growth factors and the associated optimal perturbations. However,
for optimal perturbation analysis, the eigenvalue problem is already formulated as
a time-stepper method. The right-hand side of (2.13) is analogous to integrating a
velocity perturbation forward some time τ through the LNS equations, then backwards
for time τ through the adjoint equations. Therefore, the IRAM solves for the leading
eigenvalues and eigenmodes without any further manipulation. This approach has been
validated in appendix B.

2.5. Base flow generation
Linear stability, adjoint sensitivity and optimal perturbation analyses require a base
flow around which the governing equations are linearized. For increasingly complex
and globally unstable flows, obtaining a steady-state solution becomes difficult and
computationally expensive. Hence, other approaches are being followed to solve for
base flow to study more interesting and complex problems. Selective frequency
damping (Åkervik et al. 2006) is one such approach to obtain a steady-state
solution where a forcing term which acts as a temporal low-pass filter is added
to the right-hand side of the governing equations. Some knowledge of the lowest
unstable frequency is required for choosing the filter width. In order to converge
to a steady solution, the filter cut-off frequency must be lower than that of all of
the flow instabilities. Although this method lends itself to easy implementation, the
computational cost is governed by the range of time scales. Additionally, selective
frequency damping fails to dampen instabilities that are non-oscillatory, as shown by
Vyazmina (2010).

Another option is to use a turbulent mean flow as base state. Perhaps the best
known example where linear stability analysis about the turbulent mean flow succeeds
over the steady-state solution is the oscillating wake of a circular cylinder (Barkley
2006). The solutions about both base states agree at the onset of instability, but the
steady-state base flow fails to capture the observed vortex shedding frequency far away
from the bifurcation point. Recent studies by Turton, Tuckerman & Barkley (2015)
and Tammisola & Juniper (2016) used turbulent mean flow as a base state to examine
linear stability around a turbulent mean flow. Barkley (2006) and Turton et al. (2015)
showed that performing linear stability analysis on a turbulent mean flow as base state
results in eigenvalues with small real part and non-zero imaginary part.

Using turbulent mean flow as base state for the present JICF requires further
discussion. Since a turbulent mean flow is a solution to the Reynolds-averaged
Navier–Stokes equations, a nonlinear Reynolds stress term is effectively added to
the governing equations when the base flow equations are used. This translates
into a mode-dependent Reynolds stress being present in the eigenvalue problem.
A scale-separation argument, first introduced by Crighton & Gaster (1976), and more
recently discussed in the review by Jordan & Colonius (2013), can be used to justify
when the mode-dependent Reynolds stress term is negligible. Only for the modes of
interest (typically low frequency and large scale) must the Reynolds stress term be
shown to be unimportant. Regan & Mahesh (2017) demonstrated that St computed
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D

Outflow

16D

16D

16D

8D
13.33D

y

x
z

Jet inflow

Blasius
boundary layer

FIGURE 2. Schematic of the problem set-up showing the computational domain.

using the linearization around turbulent mean flow matches the results of DNS of Iyer
& Mahesh (2016). This proves empirically that using a turbulent mean flow as a base
state for stability and sensitivity analyses can provide meaningful physical insight into
flow dynamics. Additionally, the maximal value of Reynolds shear stress is negligible
in the near field for both the mean flow fields (see appendix C), providing further
justification for using the turbulent mean flows as base states.

Mantič-Lugo, Arratia & Gallaire (2014) proposed a self-consistent model to obtain a
base state identical to turbulent mean flow without requiring full nonlinear DNS. Their
model requires knowledge of the most unstable mode and the saturation amplitude is
determined by requiring the mean flow to be neutrally stable. The model was shown
to give excellent results for flow over a circular cylinder compared to DNS in the
range 50 < Re < 110. Their model, however, may not be directly applicable to a
more complex problem such as JICF where the dynamics is dominated by multiple
frequencies and Re is high.

3. Problem description
The simulation set-up along with details of the computational domain are shown

in figure 2. The domain inflow and outflow boundaries are located 8D upstream and
16D downstream of the jet exit, respectively. The lateral boundaries are located at 8D
from the origin in the spanwise direction. The top of the domain is located 16D above
the origin. The jet nozzle is located at the origin of the computational domain and is
included in all simulations. It has been shown by Iyer & Mahesh (2016) that the jet
nozzle plays a crucial role in setting up the mean flow near the jet exit, thus affecting
the stability characteristics of the flow. A fifth-order polynomial is used to model the
nozzle shape used in the experiments of Megerian et al. (2007). The jet exit diameter
D is 3.81 mm and the average velocity at the jet exit vjet is 8 m s−1. The simulated
nozzle extends 13.33D below the jet orifice.

A laminar Blasius boundary layer is prescribed at the inflow. The physical
parameters, the computational domain and the cross-flow boundary layer are identical
to those used by Iyer & Mahesh (2016), who showed the boundary layer to match
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FIGURE 3. A view of the symmetry plane (a,d), a wall-normal plane near the jet exit
(b,e) and the nozzle (c, f ) are shown for the 80-million-element (a–c) and the 138-million-
element (d–f ) grids.

Case R= vjet/u∞ R∗ = vjet,max/u∞ Re=Dvjet/νjet θbl/D

R2 2 2.44 2000 0.1215
R4 4 4.72 2000 0.1718

TABLE 1. Simulation details for GLSA and GASA. An alternative cross-flow ratio, R∗, is
shown based on the jet exit peak velocity vjet,max. The momentum thickness (θbl) of the
cross-flow boundary layer is described at the jet exit when the jet is off.

well with the experiments of Megerian et al. (2007) at x/D = −5.5. Neumann
boundary conditions are applied to the lateral and top boundaries. A uniform inflow
velocity is prescribed at the nozzle inflow to achieve the desired velocity at the jet
exit. Simulation cases R2 and R4 are performed under the same conditions as in the
experiments of Megerian et al. (2007). Additional simulation details are outlined in
table 1.

The computational grids are shown in figure 3, and are made up of 80 million
and 138 million elements, respectively. The 80-million-element grid has 80 elements
inside the inflow laminar boundary layer in the wall-normal direction and 400
elements around the jet exit. The grid spacings are 1x/D= 0.033 and 1z/D= 0.02,
with 1ymin/D = 0.0013 downstream of the jet exit, which are finer than used by
Muppidi & Mahesh (2007) to simulate a turbulent JICF. Assuming the boundary
layer downstream of the jet exit to be turbulent, grid resolution can be computed
in viscous units (e.g. 1x+ =1xuτ/ν), where the local wall shear stress (τw) is used
to calculate the friction velocity uτ =

√
τw/ρ. Wall spacings (1x+, 1y+min, 1z+) near

the outflow are (2.74, 0.1, 1.66) and (1.48, 0.058, 0.89) for case R2 and case R44,
respectively.
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FIGURE 4. (Colour online) Isocontour of Q-criterion coloured by streamwise velocity for
the instantaneous turbulent flow field for R= 2 (a) and R= 4 (b).

For the 138-million-element grid, 86 elements are inside of the inflow laminar
boundary layer and 320 elements are around the jet exit. Additionally, downstream
of the jet nozzle exit, grid spacings of 1x/D = 0.029 and 1z/D = 0.02, with
1ymin/D= 0.0013 are maintained. Compared to the 80-million-element grid, this grid
is refined in the jet nozzle and cross-flow boundary layer. Grid resolutions in terms of
wall units are 1x+= 2.10, 1y+min= 0.09 and 1z+= 1.45 for case R2 and 1x+= 1.09,
1y+min = 0.05 and 1z+ = 0.75 for case R4.

Instantaneous flow fields are shown using isocontours of Q-criterion (Hunt et al.
1988) coloured by streamwise velocity in figure 4, which illustrates the complexity
of the flow field of the JICF. Important features include the coherent upstream
shear-layer roll-up, and long string-like wake vortices near the wall. Additionally,
downstream shear-layer roll-up is seen that interacts with the upstream shear layer at
the collapse of the potential core. Many fine-scale turbulent flow structures are also
visible downstream in the jet wake.

The turbulent flow is time-averaged for both cases to obtain mean flow field (base
state). The contours of velocity magnitude and spanwise vorticity are shown in
figure 5 for both cases. Except for parts of § 4, results using the 138-million-element
grid are reported. The turbulent mean flows for the 80-million-element grid were
generated by Iyer & Mahesh (2016) using 32 000 and 39 000 temporal samples for
case R2 and R4, respectively. Iyer & Mahesh (2016) have shown that there is good
agreement between the temporally averaged solutions from simulation and experiment.
Similarly, for the 138-million-element grid, 54 000 and 70 000 samples are used for
cases R2 and R4, respectively. The non-dimensionalized time difference between two
successive instantaneous samples 1t = tvjet,max/D≈ 8× 10−4 for both cases and both
grids.

4. Direct and adjoint analyses of the JICF

This section presents results from linear stability and adjoint sensitivity analysis of
cases R2 and R4. The behaviours in the upstream shear layer, CVP, downstream of the
jet exit and downstream shear layer are all discussed. All linear stability and adjoint
sensitivity results were converged to a maximum residual of 1×10−14 while using 100
Arnoldi vectors. For case R2, 18 leading eigenvalues are computed. The integration
time τ is 0.114 time units (non-dimensionalized by D/vjet,max), to allow for adequate
temporal resolution to resolve the highest frequencies in the upstream shear layer from
DNS (St1= fD/vjet,max=0.65). The low-frequency linear stability results were the focus
of the 138-million-element grid. For linear stability of R4, the 8 leading low-frequency
eigenmodes were computed using τ = 0.32. Adjoint sensitivity for case R4 computed
the 14 leading eigenvalues. Since the frequencies were already known from linear
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FIGURE 5. (Colour online) The contours of velocity magnitude (a,c) and spanwise
vorticity (b,d) are shown for the base flows for R2 (a,b) and R4 (c,d) cases in the
symmetry plane.
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FIGURE 6. (Colour online) Non-dimensional eigenvalues, ω∗, from linear stability and
adjoint sensitivity for R2 (a) and R4 (b). The blue dash-dotted lines correspond to the
dominant frequencies observed within the upstream shear layer by Iyer & Mahesh (2016).
The legend subscripts refer to results from the 80-million-element and 138-million-element
grids.

stability, adjoint sensitivity uses a smaller τ = 0.16, allowing it to capture both the
high- and low-frequency eigenvalues.

Figure 6 shows the eigenvalues from the analyses. The complex eigenvalues are non-
dimensionalized as ω∗ so the imaginary part is St:

ω∗ =
ωD

2πvjet,max
. (4.1)
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FIGURE 7. (Colour online) The R2 upstream shear-layer linear stability (a) and adjoint
sensitivity analyses (b) eigenmodes along with their associated wavemaker (c,d). Symmetry
plane contours show the vertical velocity of the base flow v.
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FIGURE 8. (Colour online) Similar to figure 7, but for the R4 upstream shear layer.

The direct and adjoint eigenvalues match, and show good agreement with the upstream
shear-layer spectra results (i.e. vertical blue dash-dotted lines in figure 6a,b) from
experiments (Megerian et al. 2007) and simulations (Iyer & Mahesh 2016). This
implies that the linear assumptions that are used in the analyses herein are valid
when considering the stability and sensitivity of the JICF that is temporally averaged
to obtain a base flow at these conditions.

In this section, modes from linear stability analysis are shown using isocontours of
the streamwise (x-direction) perturbation velocity, Re(û)=±0.0003. Adjoint sensitivity
analysis modes are presented using isocontours of the vertical (y-direction) adjoint
perturbation velocity, Re(v̂†) = ±0.0001, which highlight regions most sensitive to
vertical point momentum forcing. Eigenmodes are normalized such that ‖û‖=‖û†

‖=1.

4.1. Upstream shear layer
The upstream shear-layer linear stability eigenmodes for both case R2 (figure 7a)
and case R4 (figure 8a) were discussed in detail by Regan & Mahesh (2017). The
main difference between the direct modes for each case is that for case R2 the mode
originates near the jet exit plane, whereas for R4 the mode is elevated.

The adjoint eigenmodes (figures 7b and 8b) show that the direct modes are most
sensitive to y-direction momentum forcing along the upstream side of the jet nozzle,
near the jet exit. Interestingly, for R2 the wavemaker region (figure 7c,d) is localized
along the upstream side of the nozzle. Conversely, R4 (figure 8c,d) is most sensitive
to localized feedback along the entire upstream shear layer.

The wavemaker results are consistent with the notion that the upstream shear-layer
region transitions from absolute to convective instability as R changes from 2 to 4.
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ø* = 0.0090 ± i0.3203 ø* = 0.0094 ± i0.3202 Wa,b(x - y)Wa,b(y - z)(a) (b) (c) (d)

x z

y y

FIGURE 9. (Colour online) Similar to figure 7, but for the R2 left-leaning asymmetric
eigenmodes. However, the linear stability mode (a) is highlighted using isocontour levels
of ±0.0001 to highlight the streaks in the CVP.

x z

y
z z

y y
x

y
ø* = 0.0058 ± i0.3365 ø* = 0.0056 ± i0.3356 Wa,b(x - y)Wa,b(y - z)(a) (b) (c) (d)

FIGURE 10. (Colour online) Similar to figure 7, but for the R2 right-leaning asymmetric
eigenmodes. However, the linear stability mode (a) is highlighted using isocontour levels
of ±0.0001 to highlight the streaks in the CVP.

For R2, the region most sensitive to localized feedback is dominated by the formation
of the upstream shear layer, which is in direct contrast to case R4, which is sensitive
to localized feedback along the entire upstream shear layer. The tonal nature of case
R2 is due to the fact that the location where the shear layer begins to roll up (and its
frequency dominates) is in the same location where the ‘wavemaker’ is the strongest.
Case R4 is not only weaker, but the wavemaker region extends along the upstream
shear layer.

4.2. Asymmetries in the CVP
Smith & Mungal (1998) observed in their JICF experiments that asymmetries may
form in the time-averaged CVP for R > 10. Similar observations were made by
Getsinger et al. (2014) in their experiments who concluded that an absolutely unstable
JICF (R2) is less likely to exhibit asymmetric mean profiles compared to the weaker,
convectively unstable JICF (R4). The reason behind this behaviour of the JICF is not
fully understood; specifically, the reason behind why there is a preferential direction
in certain configurations.

In the present work, we observe significant asymmetries in some eigenmodes. The
direct (a) and adjoint (b) eigenmodes in figures 9 and 10 for case R2, and figures 11
and 12 for case R4 are left-leaning and right-leaning, respectively. Their corresponding
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(a) (b) (c) (d)ø* = 0.0018 ± i0.1559 ø* = 0.0071 ± i0.1588 Wa,b(x - y)Wa,b(y - z)

x xz z

z

y yy

y

FIGURE 11. (Colour online) Similar to figure 7, but for the R4 left-leaning asymmetric
eigenmodes.

(a) (b) (c) (d)ø* = -0.0001 ± i0.1618 ø* = 0.0049 ± i0.1633 Wa,b(x - y)Wa,b(y - z)

zx

y y

z

y

z

y

x

FIGURE 12. (Colour online) Similar to figure 7, but for the R4 right-leaning asymmetric
eigenmodes.

wavemaker regions are biased towards each side as well. The adjoint eigenmodes
(b) are most sensitive to vertical point momentum forcing in a similar way to the
upstream shear layers, but with biases to each side. The wavemakers (c,d) are located
along the CVP, directly behind the collapse of the jet potential core. By animating
the linear stability analysis eigenmodes (not shown) it is seen that the eigenmodes for
both cases rotate with the CVP.

It is important to examine if there are asymmetries present in the turbulent mean
flow that are causing asymmetric eigenmodes. For case R2, the turbulent mean flow
was extended to an average over 170 000 samples. A contour plot of a yz-plane at
x = 1.33D is shown in figure 13 for the original base flow (figure 13a) and the
extended base flow (figure 13b). Some small differences are visible between the two
mean flows near the wall and in the middle of the CVP. Linear stability analysis
was performed using the extended base flow, and the results are shown in figure 14.
The eigenvalues from both simulations agree very well in both growth rate and
St. This provides evidence that the asymmetric eigenmodes are not a construct of
an asymmetric mean flow. The turbulent mean flow for case R4 is also shown in
figure 15 using contours on the yz-plane at x= D. The mean flow for case R4 does
not suffer from asymmetries, and therefore does not require an extended statistics
calculation for comparison.

Linear stability analysis results for case R2 originate much closer to the jet nozzle
exit compared to case R4. The adjoint modes provide valuable information regarding
the sensitivity of these asymmetric instabilities to y-direction point momentum forcing.
Note the spatial and temporal length scales that characterize the regions where
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FIGURE 13. (Colour online) The velocity magnitude of two turbulent mean flows is shown
in the yz-plane at x = 1.33D. The first base flow (a) used 54 000 turbulent flow field
samples, whereas the second (b) used 170 000 samples.
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FIGURE 14. (Colour online) Comparison of asymmetric mode eigenvalues after additional
statistic samples. The upstream shear-layer eigenvalue is also shown for both calculations
to provide context.

asymmetric instabilities are most sensitive. For instance, adjoint sensitivity analysis
results for case R2 (figure 9b) show much longer length scales in the circumferential
direction just below the jet nozzle exit when compared to case R4 (figure 11b).
This knowledge, in conjunction with the frequency information, provides valuable
information regarding the best location and frequencies to excite asymmetries.

Growth rates from the linear stability and adjoint sensitivity analyses are often
discussed in terms of their relative strength. We can compute the relative strength
of the asymmetric eigenmodes for each case by comparing them to the strength of
their respective upstream shear-layer growth rates. The difference 1ω∗R2 between the
growth rates of asymmetric eigenmodes and the upstream shear-layer eigenmodes
for case R2 is in the range 0.042 6 1ω∗R2 6 0.047. However, for the R4 case, the
difference 1ω∗R4 is in the range 0.014 6 1ω∗R4 6 0.009. Notice 1ω∗R2 > 1ω∗R4 over
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FIGURE 15. (Colour online) The velocity magnitude of turbulent mean flow is shown in
the yz-plane at x=D.

ø* = 0.0114 ± i0.2098 ø* = 0.0116 ± i0.2095 Wa,b(x - y)Wa,b(y - z)(a) (b) (c) (d)
y yy

x
xz z

y
x
z

FIGURE 16. (Colour online) Similar to figure 7, but for a representative pair of R2
downstream eigenmodes.

their entire ranges, suggesting that asymmetric modes and sensitivity to experimental
asymmetries are more significant for R4 than R2, consistent with experimental results
(Smith & Mungal 1998; Getsinger et al. 2014).

4.3. Downstream of the jet exit
Figure 16 shows one of the pairs of downstream linear stability and adjoint sensitivity
eigenmodes that have lower frequencies and longer length scales as compared to those
previously discussed for case R2. Additionally, they persist far downstream along the
wall. Adjoint sensitivity analysis (figure 16b) reveals sensitivities in the jet nozzle
near the exit, but also in the region where the incoming cross-flow wraps around
the jet nozzle exit, hinting at an increased sensitivity to perturbations from within the
cross-flow boundary layer. The wavemaker region (figure 16c,d) reveals some minor
asymmetries in the sensitivity to localized feedback, but is largely symmetric between
each side of the CVP.

Looking at case R4, the lowest frequency pair of eigenmodes is shown in figure 17.
The linear stability analysis eigenmode (figure 17a) has larger spatial length scales
than all previous eigenmodes, and also branches downwards towards the wall. There
is a bias towards the right-hand side of the symmetry plane. However, this likely only
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ø* = 0.0002 ± i0.0539 ø* = 0.0002 ±i0.0532 Wa,b(x - y)Wa,b(y - z)(a) (b) (c) (d)
y

x
z

y
xz

y y
xz

FIGURE 17. (Colour online) Similar to figure 7, but for the R4 lowest frequency
eigenmodes.

implies that there is another set of eigenmodes that are biased towards the left-hand
side of the symmetry plane, but with a growth rate smaller than that of the resolved
eigenvalues. Adjoint sensitivity analysis (figure 17b) shows that the largest sensitivity
is not around the jet nozzle exit, but is upstream of the jet nozzle exit within the
cross-flow boundary layer. Fric & Roshko (1994) performed experiments that studied
the wake vortices of the JICF by seeding the incoming cross-flow boundary layer
and discovered that wake vortices could be visualized, leading to the conclusion that
fluid inside the incoming cross-flow boundary layer travelled downstream to form
wake vortices. Adjoint sensitivity analysis results add to these experimental results
by showing there is a connection between perturbations in the cross-flow boundary
layer and downstream of the jet exit near the wall. The wavemaker highlights the
asymmetry, which implies that it is likely that a mirrored low-frequency pair of
eigenmodes also exists.

4.4. Downstream shear layer
First shown by Regan & Mahesh (2017), the eigenvalue with the highest growth
rate for case R4 is associated with the downstream shear layer and is shown in
figure 18(a). As R approaches infinity, the JICF becomes a free jet, and the upstream
and downstream sides become indistinguishable. The magnitude of shear in the
downstream shear layer is typically higher for case R4 compared to case R2 (see
figure 45d in appendix C). This makes the downstream shear layer dynamically more
important for case R4 compared to case R2. The linear stability mode is elevated
from the jet nozzle exit and is located along the downstream side of the jet. This
instability is most sensitive at the formation of the downstream shear layer. This
region would be difficult to actuate in a control application, since it would most
likely be invasive to the flow field.

The wavemaker is located where the downstream shear layer forms. By building
upon the previous analysis, figure 18(c,d) shows the localization of the wavemaker,
which has a strong resemblance to the absolutely unstable upstream shear layer of
case R2 (figure 7). This is yet another reason to identify this region of the downstream
shear layer as absolutely unstable. Furthermore, an extension to higher values of R
would suggest that a critical value Rcrit exists, at which point the downstream shear-
layer region becomes convectively unstable.

5. Optimal perturbation analysis of the JICF
The JICF is studied using optimal perturbation analysis in this section. Several

different optimization times are chosen relative to the characteristic time scale of
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y y y y
xx x

z z z

ø* = 0.0168 ± i2.2861 ø* = 0.0162 ± i2.2834 Wa,b(x - y)Wa,b(y - z)(a) (b) (c) (d)

FIGURE 18. (Colour online) Similar to figure 7, but for the R4 leading downstream
shear-layer eigenmodes (figure 6b). Note that (a) is generated using the

80-million-element grid.

the upstream shear-layer roll-up. In this section, the results are introduced and the
observed growth is verified. Optimal perturbations for cases R2 and R4 are then
discussed separately in §§ 5.1 and 5.2.

Global optimal perturbation analysis is performed for the same cases described in
table 1. The same turbulent mean flows from adjoint sensitivity analysis are used as
the base flows for optimal perturbation analysis, using the 138-million-element grid.

For cases R2 and R4, the 19 leading perturbations were computed to a maximum
residual of 10−14. Forty Arnoldi vectors were generated for each iteration in the
IRAM. The time step sizes for each value of R from the direct and adjoint analyses
used were for the optimal perturbation analyses. For optimal perturbation analysis the
LNS equations (2.2) were integrated τ time units (non-dimensionalized by D/vjet,max)
and then the adjoint LNS equations (2.7) were used to integrate backwards τ time
units for each Arnoldi vector. Different τ values were chosen relative to the observed
frequency of the upstream shear layer. The Strouhal numbers present in the upstream
and downstream shear layers give guidance to the temporal scales of the JICF.
Probing in the regions of the upstream and downstream shear layers gives Stup and
Stdn, respectively. For case R2, 1/Stup = 1.54, and for case R4, 1/Stup = 1.28 and
1/Stdn= 0.44. This allowed study of optimal perturbations over times less than, equal
to and greater than the characteristic time scale for each case.

Figures 19 and 20 show the results from optimal perturbation analysis for the
different τ outlined in table 2. Note that the horizontal axis is linear in time, and the
vertical axis is logarithmic in energy growth. Different colours are used for different
values of τ , with vertical dash-dotted lines in the same colour intercepting the x-axis
at τ . Along the vertical coloured lines, the eigenvalues are plotted in order to make
a visual comparison between the eigenvalue λ from optimal perturbation analysis
and the energy growth obtained by applying the associated perturbation to the base
flow, and integrating over the time τ using the LNS equations. Additionally, each
eigenvalue is labelled with a short description of the optimal perturbation shape, with
similar modes grouped together. Finally, the characteristic time scale of the upstream
shear layer is marked with a vertical dashed line in black.

Table 2 also describes the maximum growth observed for different τ , and how well
the eigenvalue and observed growth agree. Overall, good agreement is observed as
the error is shown to be less than 10 %. For a computational domain with inflow
and outflow boundaries, this error is reasonable due to the fact that any perturbation
that escapes the domain will no longer be included in the overall perturbation kinetic
energy. To reduce the amount of error between the eigenvalue and observed growth,
the domain would need to be extended to allow perturbations to travel further before
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FIGURE 19. (Colour online) Transient growth is shown for case R2, optimized for
different τ , which are differentiated by colour and the vertical dash-dotted lines.
Additionally, the upstream shear-layer characteristic time scale, 1/Stup, is shown as a
vertical black dashed line to provide temporal context. Eigenvalues for different τ are
shown on their associated vertical lines. Note that ‘Up’ and ‘Down’ refer to perturbations
that act in the upstream and downstream shear layers, respectively. Also, ‘Hyb’ and
‘Asy’ refer to hybrid modes that act on both shear-layer and asymmetric perturbations,
respectively.

escaping the computational domain. This effect can be observed in table 2 by noting
how the % difference is generally larger for greater values of τ .

In the following subsections, these figures and the associated optimal perturbation
modes are discussed in detail. Both cases are organized into three subsections
describing short, characteristic and long time horizons. The optimal perturbation
modes are shown using either an isometric view or a side-view in an xy-plane. Also,
they are visualized using isocontours of the vertical perturbation velocity, ṽ, at levels
equal to ±0.001 coloured as orange and black, respectively. Additionally, for the
isometric view, contours of the vertical velocity of the base flow, v, are shown for
the symmetry plane at z= 0.
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Case τ max(λ) max(E(τ )/E(0)) |% Difference| Type

R2 0.4 2.26× 101 2.28× 101 0.94 Asymmetric
0.8 1.14× 102 1.20× 102 4.55 Asymmetric
1.6 1.14× 103 1.05× 103 7.35 Down SL
3.2 2.87× 104 2.71× 104 5.62 Up SL
4.9 6.72× 105 6.16× 105 8.29 Up SL

R4 0.4 1.54× 101 1.48× 101 4.09 Down SL
0.8 1.27× 102 1.20× 102 5.07 Down SL
1.6 6.18× 103 5.72× 103 7.35 Down SL
3.1 1.97× 106 1.79× 106 9.24 Down SL
4.7 4.27× 107 4.16× 107 2.48 Hybrid

TABLE 2. Details are shown for optimal perturbation analysis used to study the transient
stability of the JICF. Several different time horizons are chosen that are shorter and longer
than the characteristic time scale of the upstream shear layer, 1/Stup (see text). Additionally,
the leading eigenvalue λ and the observed energy growth are compared as a % difference
of λ. Note that the upstream shear layer and downstream shear layer are abbreviated as
‘Up SL’ and ‘Down SL’, respectively.

5.1. Optimal perturbations for case R2
Figure 19 suggests some overall conclusions from optimal perturbation analysis of
case R2. For short times (i.e. τ < 1/Stup), asymmetric perturbations dominate where
the CVP forms, with sub-optimal perturbations growing along the downstream shear
layer. For τ = 0.8, there are sub-optimal modes that symmetrically perturb both
the downstream shear layer and the CVP. Not until the characteristic time scale
(i.e. τ ≈ 1/Stup) does perturbing the downstream shear layer become optimal. On
this time scale, it becomes clear from figure 19 that asymmetric perturbations of
the CVP are sub-optimal. This gives rise to other sub-optimal perturbations of the
upstream shear layer that quickly become significant for larger time scales. When
optimal perturbations are considered for long time horizons (i.e. τ > 1/Stup), the
modes result in growth along the upstream shear layer. Furthermore, sub-optimal
perturbations move from the downstream shear layer to complex perturbations with
higher circumferential wavenumbers along the upstream shear layer for 3.2 6 τ 6 4.9.
Finally, the group of perturbations that have the lowest growth factors include a
series of hybrid perturbations that grow along both the upstream and downstream
shear layers, as well as a series of increasing circumferential wavenumbers. The three
time horizons are discussed in detail below.

5.1.1. Short time horizon
For the short time horizon, optimal perturbations take advantage of mechanisms

that act much faster than the characteristic time scale 1/Stup= 1.54 to produce energy.
First and foremost are the asymmetric perturbations, which dominate energy growth
over the short time scales 0.4 6 τ 6 0.8. The states of these perturbations at τ = 0.8
are shown in figure 21. These perturbations ride along the CVP in the base flow as
they propagate in helical fashion downstream. Not only are there pairs of asymmetric
perturbations, but a series of increasing circumferential wavenumbers characterize
the next few sub-optimal eigenmodes for τ = 0.4 (not shown). The asymmetric
perturbations originate at the jet nozzle exit and propagate downstream on either side
of the CVP.
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FIGURE 20. (Colour online) Similar to figure 19, but for case R4. Additionally, the time
scale of the downstream shear layer, 1/Stdn, is shown as another vertical black dashed
line.

(a) (b)

FIGURE 21. (Colour online) Case R2, short time horizon, τ = 0.8, final state of the first
(a) and the second (b) leading asymmetric perturbations.
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(a) (b)

FIGURE 22. (Colour online) Case R2, short time horizon, τ = 0.8, origination (a) and
final state (b) of the sub-optimal downstream shear-layer perturbation.

(a) (b)

FIGURE 23. (Colour online) Case R2, short time horizon, τ = 0.8, final state of the first
(a) and the second (b) sub-optimal asymmetric perturbations.

The next sub-optimal perturbations for τ = 0.8 grow along the downstream shear
layer, which are shown in figure 22. The evolution of the downstream shear layer
perturbations is characteristic of the downstream shear-layer roll-up observed in DNS
(figure 4a). These perturbations originate within the nozzle on the downstream side as
shown in figure 22. For τ = 0.4, the sub-optimal downstream shear-layer perturbation
generates ≈68 % of the energy growth compared to the asymmetric perturbation.
Comparatively, when τ = 0.8, the sub-optimal downstream shear-layer perturbation
(figure 22) generates ≈73 % of the energy growth compared to the optimal asymmetric
perturbation (figure 21). This highlights the fact that as τ increases the downstream
perturbations are becoming efficient at producing energy.

The least effective sub-optimal perturbations that generate the lowest energy growth
for 0.4 6 τ 6 0.8 include a series of hybrid and higher wavenumber versions of the
previously shown perturbations. For τ = 0.4, the least efficient perturbations are the
hybrid perturbations that generate energy from both the CVP and the downstream
shear layer. The results are similar for τ =0.8, which have a series of hybrid CVP and
downstream shear-layer perturbations shown in figure 23 with increasing wavenumbers
and decreasing growth factors.

5.1.2. Characteristic time horizon
The characteristic-time-scale optimal perturbations take advantage of processes

that act on times of the order of the characteristic time scale 1/Stup = 1.54 to
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(a) (b)

FIGURE 24. (Colour online) Case R2, characteristic time horizon, τ = 1.6, origination (a)
and final state (b) of the optimal downstream shear-layer perturbation.

(a) (b)

FIGURE 25. (Colour online) Case R2, characteristic time horizon, τ = 1.6, initial (a) and
final (b) state of a sub-optimal hybrid asymmetric downstream shear-layer perturbation.
Note that there is a second perturbation that is mirrored across the z= 0 plane.

increase energy. As τ is increased beyond the short time scale, there is a bifurcation.
The highest energy growth optimal modes change from asymmetric perturbations
(figure 25) to perturbations that grow along the downstream shear layer (figure 24).
Figure 19 clearly shows the significant drop in energy growth for the asymmetric
perturbations, which are now sub-optimal for τ = 1.6.

Sub-optimal perturbations of the upstream shear layer are found for the first time
in the optimal analysis at the characteristic time scale. The upstream shear-layer
sub-optimal modes are shown in figure 26, arranged with decreasing energy growth
and increasing circumferential wavenumbers. It is significant that higher wavenumber
counterparts to the upstream shear-layer mode are also found. This shows that the
upstream shear-layer region is becoming a significant energy growth opportunity
since higher wavenumber downstream shear-layer and asymmetric perturbations are
no longer recovered in the analysis.

5.1.3. Long time horizon
The long-time-scale optimal perturbations take advantage of processes that act

on larger times than the characteristic time scale 1/Stup = 1.54. Another bifurcation
in optimal perturbation analysis for case R2 happens over the long time horizon.
In the range 1.6 6 τ 6 3.2 the optimal perturbations change from acting along the
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(b)

(d)

(a)

(c)

FIGURE 26. (Colour online) Case R2, characteristic time horizon, τ = 1.6, initial (a) and
final (b) state of the sub-optimal upstream shear-layer perturbation, along with the initial
(c) and final (d) state of a higher circumferential wavenumber counterpart with a smaller
growth factor.

(b)(a)

FIGURE 27. (Colour online) Case R2, long time horizon, τ = 3.2, origination (a) and final
state (b) of the sub-optimal downstream shear-layer optimal perturbation.

downstream shear layer (figure 27) to the upstream shear layer (figure 28). Also,
there are several higher wavenumber counterparts to the upstream shear-layer optimal
perturbations (not shown).

The least effective perturbations generate energy along the upstream and downstream
shear layers simultaneously. For the longest time horizon that was studied for case
R2, the optimal perturbations again act along the upstream shear layer to generate
the most energy growth, which are visualized in figure 29. This is consistent with
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(b)

(d)

(a)

(c)

FIGURE 28. (Colour online) Case R2, long time horizon, τ = 3.2, the initial (a) and
final (b) state of the upstream shear-layer optimal perturbation, along with the initial (c)
and final (d) state of a lower growth factor perturbation with a higher circumferential
wavenumber.

the results from the linear stability and adjoint sensitivity analyses in § 4, which
examined the stability and sensitivity at the asymptotic limit of time. Note that the
first few sub-optimal perturbations are also upstream shear-layer modes with higher
circumferential wavenumbers, one of which is shown in figures 29(c) and 29(d) for
its initial and final states, respectively.

Figure 30 shows one of the remaining sub-optimal perturbations that are a set of
hybrid upstream and downstream shear-layer modes. For these modes, there are no
longer any purely downstream shear-layer perturbations. Instead, perturbations act on
both the upstream and downstream side of the jet nozzle exit (figure 30a) to generate
growth along the jet trajectory (figure 30b).

5.2. Optimal perturbations for case R4
Similar to case R2, some overall conclusions from optimal perturbation analysis for
case R4 are highlighted using figure 20. Short-time-horizon optimal perturbations are
dominated by growth along the downstream shear layer for 0.4 6 τ 6 0.8. However,
there are sub-optimal perturbations that grow along the upstream shear layer, as well
as hybrid perturbations for both shear layers when τ = 0.8. For the characteristic time
scale, the downstream shear-layer growth again dominates. However, a group of sub-
optimal hybrid perturbations also have significant growth. For τ = 1.6, there are no
longer purely upstream shear-layer sub-optimal modes, only hybrids that grow along
the upstream and downstream shear layers. Over the long time horizons, it is shown
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(b)

(d)

(a)

(c)

FIGURE 29. (Colour online) Case R2, long time horizon, τ = 4.9, initial (a) and final (b)
state of the upstream shear-layer optimal perturbation, along the initial (c) and final (d)
state of a lower growth factor perturbation with a higher circumferential wavenumber.

(b)(a)

FIGURE 30. (Colour online) Case R2, long time horizon, τ = 4.9, origin (a) and final
state (d) of the sub-optimal hybrid shear-layer perturbation.

that all optimal perturbations are some form of hybrid mode. When τ = 3.1, there
is often a bias towards either the upstream or downstream shear layers. However, for
τ = 4.7, the hybrid modes have less significant biases, with a more evenly spread
perturbation across the upstream and downstream shear layers.

5.2.1. Short time horizon
The short-time-scale optimal perturbations take advantage of processes that act

on times shorter than the characteristic time scale (i.e. less than 1/Stup = 1.28) to
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(b)(a)

FIGURE 31. (Colour online) Case R4, short time horizon, τ = 0.4, origination (a) and
final state (b) of the leading downstream shear-layer perturbation.

(a) (b)

FIGURE 32. (Colour online) Case R4, short time horizon, τ = 0.8, origination (a) and
final state (b) of the leading downstream shear-layer perturbation.

increase energy. Unlike case R2, there are no asymmetric perturbation modes. Instead,
the short-time-scale (0.4 6 τ 6 0.8) optimal modes, and the first few sub-optimal
modes, generate energy growth as they propagate along the downstream shear layer.
The group of downstream shear-layer modes for τ = 0.4 are shown in figure 31, and
for τ = 0.8 in figure 32. For this short time, the perturbation modes do not have much
time to advect along the base flow, which results in the focus on the downstream
shear layer to generate growth.

The next few sub-optimal perturbation modes make use of the upstream shear
layer to grow on top of the base flow. For τ = 0.8, figure 33(a) shows a sub-optimal
perturbation mode with no circumferential wavenumber that generates the highest
growth compared to its higher wavenumber counterparts (figure 33b).

5.2.2. Characteristic time horizon
Optimal perturbations on the characteristic time horizon take advantage of processes

that act on times of the order of the characteristic time scale, 1/Stup=1.28, to increase
energy. The optimal perturbations are again a group of modes that grow along the
downstream shear layer. Figure 34 shows the leading optimal perturbation for τ = 1.6,
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(b)(a)

(d)(c)

FIGURE 33. (Colour online) Case R4, short time horizon, τ = 0.8, initial (a) and final
(b) state of sub-optimal upstream shear-layer perturbation, along with the initial (c) and
final (d) state of a lower growth factor perturbation with a circumferential wavenumber.

along with the first few sub-optimal modes which also grow predominately along the
downstream shear layer, but with higher circumferential wavenumbers.

The remaining sub-optimal perturbation modes are all hybrid perturbation modes
that show growth along upstream and downstream shear layers simultaneously. The
hybrid perturbation with the largest growth factors is presented in figure 35. Hybrid
modes have varying biases towards the upstream and downstream shear layers, and
thus have slightly different evolutions. Interestingly, the final states of the perturbations
at time τ are optimized so that the upstream and downstream perturbations propagate
along the shear layers and meet up at the collapse of the potential core.

5.2.3. Long time horizon
The long-time-scale optimal perturbations take advantage of processes that act on

times longer than the characteristic time scale 1/Stup= 1.28. The optimal perturbation
for τ =3.1 continues to take advantage of the downstream shear layer as the only path
to generate energy growth. The initial perturbation (figure 36) is elevated from the jet
nozzle exit and grows significantly around the downstream shear layer as it travels
further downstream. The sub-optimal hybrid perturbation with the largest growth factor
is shown in figure 37; the other sub-optimal perturbations for τ = 3.1 (not shown)
again have different biases towards the upstream and downstream shear layers.
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(b)(a)

(d)(c)

FIGURE 34. (Colour online) Case R4, characteristic time horizon, τ = 1.6, initial (a) and
final (b) state of the downstream shear-layer optimal perturbation, as well as the initial (c)
and final (d) state of a sub-optimal perturbation with a smaller growth factor and higher
circumferential wavenumber.

(b)(a)

FIGURE 35. (Colour online) Case R4, characteristic time horizon, τ = 1.6, origination (a)
and final state (b) of a sub-optimal hybrid shear-layer perturbation.
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(b)(a)

FIGURE 36. (Colour online) Case R4, long time horizon, τ = 3.1, origination (a) and final
state (b) of the downstream shear-layer optimal perturbation.

FIGURE 37. (Colour online) Case R4, long time horizon, τ = 3.1, sub-optimal hybrid
shear-layer perturbation with the largest growth factor.

For the longest time horizon of τ = 4.7 for case R4, all of the perturbations are
shown to grow in energy along both upstream and downstream shear layers (figure 38).
The initial perturbations of the hybrid modes (leading mode shown in figure 38a)
show biases towards both the shear layers, but their evolutions (leading mode shown
in figure 38b) are qualitatively similar. Therefore, for long time horizons for case
R4, the best way to perturb the base flow is to simultaneously perturb the upstream
and downstream shear layers. This is consistent with the results from linear stability
and adjoint sensitivity analyses in figure 6(b), which highlights that the upstream and
downstream shear-layer instability modes have similar growth rates.
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(a) (b)

FIGURE 38. (Colour online) Case R4, long time horizon, τ = 4.7, the initial
perturbation (a) and the associated final state (b) are shown for sub-optimal hybrid
shear-layer perturbation with the largest growth factor.

6. Summary
Understanding the stability and sensitivity of JICF is critical for developing control

strategies to optimize performance in engineering applications. Low-speed JICF is
studied from a global perspective using linear stability, adjoint sensitivity and optimal
perturbation analyses. The global modes from linear stability analysis highlight the
regions where the largest growth is observed asymptotically. This provides insight
into the best placement of sensors for measuring the flow state. The frequencies of
upstream shear-layer linear stability analysis eigenmodes agree well with past DNS
(Iyer & Mahesh 2016) and experiments (Megerian et al. 2007). The linear stability
analysis results show that case R2 is dominated by the upstream shear-layer instability.
However, there are other eigenmodes that are asymmetric across the mid-plane and
much lower frequency modes that travel far downstream and have finger-like fluid
structures resembling wake vortices. In addition to an upstream shear-layer instability
mode, case R4 also has a downstream shear-layer instability with a higher growth rate.
Furthermore, the asymmetric instabilities for case R4 have higher relative growth rates
than that of case R2, highlighting their increased significance to the overall dynamics.
This behaviour also suggests an explanation for the asymmetric CVP eigenmodes that
were previously observed in experiments at higher R.

Adjoint sensitivity analysis results are complementary, as they provide sensitivity
information that outlines the regions where the linear stability analysis modes are
sensitive to momentum forcing. This information is valuable for efficient actuator
placement. The upstream shear-layer modes for both cases are most sensitive along
the upstream side of the jet nozzle exit. The asymmetric modes for both cases are
most sensitive on each side of the upstream side of the jet nozzle exit. For case R4,
the downstream shear layer is most receptive to actuation at an elevated position from
the jet nozzle exit on the downstream side. Interestingly, the low-frequency modes
are sensitive to perturbations on the upstream side of the jet nozzle, and wrap around
to the outer edge. For case R4, the low-frequency modes are sensitive to an extended
region upstream of the jet nozzle exit in the incoming cross-flow, highlighting the
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connection to perturbations in the cross-flow on the fluid structures that resemble
wake vortices.

The linear stability and adjoint sensitivity analyses can be used in tandem to
compute wavemaker regions. The wavemaker regions for the upstream shear-layer
modes are qualitatively different for cases R2 and R4. For case R2, the wavemaker
region is concentrated to a small region near the upstream edge of the jet nozzle
exit where the upstream shear layer is formed. Conversely, case R4 has a wavemaker
region that extends along a considerable length of the upstream shear layer. These
differences are consistent with the stability transition of the upstream shear layer.
Additionally, the wavemaker regions provide insight into the regions that are most
receptive to retaining and amplifying frequencies that are induced upon them.

Optimal perturbation analysis examines the stability and sensitivity at finite
time scales to determine the ‘most dangerous’ disturbances for the JICF. The
optimal perturbations provide additional information about the regions that are most
sensitive to actuation. The evolutions of the perturbations highlight the paths that the
perturbations follow to generate energy growth, and provide insight into actuation
(initial state) and sensor placement (final state). For case R2, the optimal perturbations
for short time display the ability to grow along each half of the CVP by perturbing
the left- and right-hand sides just above the downstream side of the jet nozzle
exit. For time horizons of the order of the upstream shear-layer shedding period,
the optimal actuation occurs along the downstream side of the jet nozzle exit, and
results in growth along the downstream shear layer. For the longer time scales,
hybrid perturbations that grow along the upstream and downstream shear layers
simultaneously are the most optimal. For case R4, the optimal perturbations along the
downstream shear layer dominate for shorter time scales. However, for time scales
longer than the characteristic time horizon, hybrid perturbations are again the most
efficient at generating energy by leveraging growth along both shear layers.

Overall, the present work uses high-fidelity numerical methods and high-performance
computing to study the stability and sensitivity of the low-speed JICF from a global
perspective. The present results demonstrate state-of-the-art capabilities, and are the
largest stability and sensitivity simulations performed to the best of our knowledge.
Valuable insight gained from the stability and sensitivity analyses of the JICF can be
used to optimize the placement of both sensors and actuators to efficiently manipulate
the JICF.
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Appendix A. Validation of adjoint sensitivity analysis
A.1. Blasius boundary layer

Hill (1995) studied the stability and sensitivity of the Blasius boundary layer. The
parallel flow assumption is valid here, which allows us to assume streamwise
homogeneity in the form of the wavenumber α (no spanwise component). To be
consistent with the study by Hill (1995), the following ansatz is defined for this
validation case:

ũ†
i (x, y, t)=

∑
α,ω

û†
i (y)e

iαx+ωt
+ c.c. (A 1)
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FIGURE 39. (Colour online) The eigenmodes obtained from spatial adjoint sensitivity
analysis of a Blasius boundary at Re = U∞δ/ν = 1274 subject to a T-S wave with f =
Im(ω)/Re=20×10−6 are compared to the results of Hill (1995) showing good agreement.

The base state is the Blasius boundary layer solution. Distances are non-dimensional-
ized by δ =

√
νL/U∞, where L is the dimensional distance from the leading edge of

the plate. The distance from the wall where u= 0.99U∞ is δ99 = 4.93δ.
The Blasius boundary layer at Re = U∞δ/ν = 1274 is subjected to a streamwise

T-S wave with f = Im(ω)/Re = 20 × 10−6. Here, an imaginary ω is prescribed,
and α is the complex eigenvalue, which makes this a spatial sensitivity problem.
The leading adjoint eigenvalue calculated by Hill (1995) is α = 0.0895 − i0.00377,
compared to α = 0.0894 − i0.00381 from the present work. The associated adjoint
eigenmodes (normalized by max(|ûi|)) show good agreement with Hill (1995) as
shown in figure 39.

A.2. Laminar channel flow
The final validation problem compares two leading eigenvalues from direct parallel
linear stability (Juniper, Hanifi & Theofilis 2014), global linear stability and the global
adjoint sensitivity of laminar channel flow. The parallel flow assumption holds, and
therefore the streamwise and spanwise directions can be assumed homogeneous. In
other words, for the parallel flow analysis the following ansatz will be used:

ũ†
i (x, y, z, t)=

∑
α,β,ω

û†
i (y)e

i(αx+βz)+ωt
+ c.c. (A 2)

However, in global linear stability and global adjoint sensitivity analyses, the ansatzes
defined in § 2 ((2.3) and (2.8), respectively) are used.

A steady base flow is used in the stability and sensitivity analyses corresponding
to the laminar channel flow at Re = 1000, based on the centreline velocity and the
channel half-height (h). The domain size is 4πh × 2h × 4hπ/3 in the streamwise,
the wall-normal and the spanwise directions. Periodic boundary conditions are applied
in the streamwise and the spanwise directions, and no-slip condition is applied at
the walls.

Any combination of streamwise and spanwise wavenumbers may be present in
the global linear stability and adjoint sensitivity results. However, the eigenmodes
from global linear stability (figure 40a) and global adjoint sensitivity (figure 41a,b)
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−1.0

−0.5

0

0.5

1.0

y/h
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|ûi
�|Re(ûi
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FIGURE 40. (Colour online) Real part of the first adjoint eigenmode corresponding to the
first adjoint sensitivity eigenvalue ω1 in table 3 for laminar channel flow at Re=1000. The
results are shown in z= 0 plane with contours of w̃† (note ũ†

= ṽ†
= 0). The streamwise

and spanwise wavenumbers (α = 1, β = 0) are extracted and used as input to classic
parallel flow stability analysis. The adjoint sensitivity eigenmode Fourier coefficients (û†

i )
are also shown (b).

Reference Type ω1 [α = 1, β = 0] ω2 [α = 1, β = 1.5]

Juniper et al. (2014) LSA −2.33610× 10−2
+ i0.977640 −2.56110× 10−2

+ i0.977640
Regan & Mahesh (2017) GLSA −2.33374× 10−2

± i0.977638 −2.55906× 10−2
± i0.977638

Present GASA −2.33374× 10−2
± i0.977638 −2.55906× 10−2

± i0.977638

TABLE 3. Two leading eigenvalues (ω1 and ω2) from adjoint sensitivity for laminar
channel flow at Re= 1000 are compared to results from parallel (Juniper et al. 2014) and
global linear stability. Streamwise wavenumbers, α, and spanwise wavenumbers, β, are
observed in the global adjoint eigenmodes (see figures 40 and 41) and are used as input
to the parallel flow stability analysis of Poiseuille flow. The parallel flow stability results
are produced using a code available in the supplementary material of Juniper et al. (2014).

are specifically chosen because they show clear streamwise (α) and spanwise (β)
wavenumbers. These wavenumbers are recovered by performing a two-dimensional
fast Fourier transform in the x and z directions. Next, the recovered α and β are
used as input for the parallel flow linear stability analysis. A detailed description of
the input parameters and eigenvalue results are shown in table 3.

Figure 40 shows the adjoint sensitivity eigenmode (figure 40a) and the associated
Fourier coefficients (figure 40b) corresponding to α = 1 and β = 0. Note that the
streamwise and spanwise velocity components are negligible as shown in figure 40(b).
This adjoint mode highlights that the associated direct eigenmode is most sensitive to
spanwise point momentum forcing near the centre of the channel. Figure 41 shows
an additional adjoint sensitivity eigenmode (figure 41a,b) and its associated Fourier
coefficients (figure 41c) corresponding to α = 1 and β = 1.5. Table 3 compares the
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FIGURE 41. (Colour online) Real part of the second adjoint eigenmode corresponding
to the eigenvalues ω2 in table 3 from adjoint sensitivity for laminar channel flow at
Re = 1000. The results are shown as xy (z = 0) and zx (y = 0.25) slices with contours
of ũ†, ṽ† and w̃†. The adjoint sensitivity eigenmode Fourier coefficients (û†

i ) are shown
for completeness (c).
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6

FIGURE 42. (Colour online) Validation for lid-driven cavity at Re = 1000 for optimal
perturbation analysis. The energy growths are plotted as lines of different shades of blue,
and the corresponding eigenvalues, λ, are shown as symbols at τ = 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 43. (Colour online) The first four leading perturbations (corresponding to table 4)
showing the initial perturbations (a–d) and their evolution at τ (e–h) for the lid-driven
cavity.

present eigenvalues to past work available in the literature showing good agreement
between parallel linear stability and the global linear/adjoint analyses, as well as the
degree of precision to which the global linear stability and global adjoint sensitivity
eigenvalues are coincident with each other.

Appendix B. Validation of optimal perturbation analysis
Validation for optimal perturbation analysis is performed using the lid-driven cavity

at Re = 1000, using the same base flow that was used to validate linear stability
in Regan & Mahesh (2017). Barkley et al. (2008) showed that an efficient way
to validate optimal perturbation analysis is to compare the leading eigenmode and
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FIGURE 44. (Colour online) The contours of u′v′ are shown for the base flows of R2
(a) and R4 (b) cases in the symmetry plane.

eigenvalue for a specific τ to the observed energy growth when the eigenmode is
provided as a perturbation to the LNS equations over the same time τ . They showed
that

E(τ )
E0
≈ λ, (B 1)

where λ is the eigenvalue from optimal perturbation analysis. Therefore, the eigenvalue
is compared to the observed perturbation energy growth over τ to ensure that the
energy growth is captured correctly.

Optimal perturbation analysis results are shown in figure 42 by using the optimal
perturbations as input to the LNS equations and integrating forward for τ = 3 time
units. The eigenvalues are also shown in figure 42 as symbols along the vertical blue
dash-dotted line in colours that match the corresponding growth line. The resulting
eigenvalues λ from optimal perturbation analysis are quantitatively compared in table 4
showing good agreement for the 14 leading perturbations. The four leading optimal
modes are visualized in figure 43 with figure 43(a–d) being the initial perturbation
and figure 43(e–h) being the respective solutions at τ .

Appendix C. Reynolds stress and shear layers in the base flows

The contours of u′v′ are shown in figure 44 for both the R2 and R4 cases. The
small magnitudes of the Reynolds shear stress justify using the turbulent mean flows
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FIGURE 45. (Colour online) The upstream and downstream shear layers in the base
flows are visualized in the symmetry plane using the contours of spanwise vorticity for
R2 (a) and R4 (b) cases. Profiles of velocity magnitude (|u|) are extracted along the solid
black lines shown and compared in the upstream (c) and the downstream (d) shear layers
between R2 and R4 cases. The |u| profiles in the upstream and the downstream shear
layers are also compared with each other for R2 (e) and R4 ( f ) cases. Here, n is the
position along the solid black lines which are normal to the shear layers with n=0 marked
by circles (◦).
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Re τ λ E(τ = 3)/E(0) |% Difference|

1000 3.0 6.056 6.058 0.03
— — 5.870 5.872 0.03
— — 3.884 3.884 0.01
— — 3.389 3.387 0.06
— — 3.173 3.163 0.33
— — 3.129 3.118 0.35
— — 2.277 2.277 0.00
— — 2.117 2.112 0.20
— — 1.948 1.945 0.15
— — 1.893 1.889 0.17
— — 1.799 1.796 0.18
— — 1.792 1.788 0.20
— — 1.483 1.476 0.48
— — 1.554 1.549 0.37

TABLE 4. Details are shown for validation of optimal perturbation analysis for a cubic
lid-driven cavity at Re= 1000. A characteristic time scale of 3 was chosen, which is non-
dimensionalized by the lid velocity and cavity dimension. The leading eigenvalue λ and
the observed energy growth are compared as a % difference of λ.

as base states for the analyses performed in the present work. Figure 45 shows the
shear-layer profiles in both base flows. The profiles are extracted along the solid black
lines as shown in the contour plots of spanwise vorticity (figure 45a,b). The upstream
(figure 45c) and the downstream (figure 45d) shear layers are compared between the
R2 and R4 cases. The shear layers are also compared with each other for the R2
(figure 45e) and the R4 (figure 45f ) cases.
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