# Dissipation integral method for turbulent boundary layers

PD Dr.-Ing. habil. M. H. Buschmann Institute of Fluid Mechanics, University of Dresden, Germany

> May , 2004 Kingston - Meeting

## Outline

- → Looking for a calculation procedure for three-dimensional fully turbulent boundary layers
- → robust and applicable for engineering applications
- → they should not compete with LES or other approaches





### Combining an old a new idea



Perry , A. E. et al.: Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis, Phys. Fluids 6 (2), 1994, pp. 1024-1035

$$U_{\tau} = -\frac{1}{r} \ln \eta + \frac{\Pi}{r} W_{c}[1,\Pi] - \frac{\Pi}{r} W_{c}[\eta,\Pi]$$

where  $U_1$  is the local free-stream velocity. The mean continuity equation is

$$\frac{\partial U}{\partial x} + \frac{\partial W}{\partial z} = 0 \tag{5}$$

where W is the mean velocity component normal to the wall. Note that two-dimensional mean flow is being assumed.

The mean momentum equation is

$$U\frac{\partial U}{\partial \dot{x}} + W\frac{\partial U}{\partial z} = -\frac{1}{\rho}\frac{dp}{dx} + \frac{1}{\rho}\frac{\partial \tau}{\partial z}$$
(6)

Substituting (4) and (5) into (6) and making use of relations derived from the logarithmic law of the wall and momentum integral equation we obtain, after much algebra

$$\frac{\tau}{\tau_0} = f_1[\eta, \Pi, S] + f_2[\eta, \Pi, S] \delta_c \frac{d\Pi}{dx} + f_3[\eta, \Pi, S] \frac{\delta_c}{U_1} \frac{dU_1}{dx}.$$

Here

(4)

$$S = U_1 / U_\tau = \sqrt{2/C_f'} \tag{9}$$

where  $C'_{f}$  is the local skin friction coefficient, given by

Perry, Marušić, and Li 1025

# **Boundary layer equations**



$$\frac{u \, \P u}{h_1 \, \P x} + \frac{v \, \P u}{h_2 \, \P y} + w \frac{\P u}{\P z} - v^2 \frac{1}{h_1 h_2} \frac{\P h_2}{\P x} + uv \frac{1}{h_1 h_2} \frac{\P h_1}{\P y} = -\frac{1}{r h_1} \frac{\P p_{\mathfrak{X}}}{\P x} + \frac{1}{r} \frac{\P t_x}{\P z}$$
$$\frac{u \, \P v}{h_1 \, \P x} + \frac{v \, \P v}{h_2 \, \P y} + w \frac{\P v}{\P z} - u^2 \frac{1}{h_1 h_2} \frac{\P h_1}{\P y} + uv \frac{1}{h_1 h_2} \frac{\P h_2}{\P x} = -\frac{1}{r h_2} \frac{\P p_{\mathfrak{X}}}{\P y} + \frac{1}{r} \frac{\P t_y}{\P z}$$

$$\mathbf{t}_{x} = \mathbf{m} \frac{\|\mathbf{u}\|}{\|\mathbf{z}\|} - \mathbf{r} \overline{\mathbf{u}' \mathbf{v}'}$$
$$\mathbf{t}_{y} = \mathbf{m} \frac{\|\mathbf{v}\|}{\|\mathbf{z}\|} - \mathbf{r} \overline{\mathbf{u}' \mathbf{w}'}$$

$$\frac{\P(\mathbf{h}_{2}\mathbf{u})}{\P\mathbf{x}} + \frac{\P(\mathbf{h}_{1}\mathbf{v})}{\P\mathbf{y}} + \mathbf{h}_{1}\mathbf{h}_{2}\frac{\P\mathbf{w}}{\P\mathbf{z}} = 0$$

### **Two steps to obtain the integral equations**

- Step 1: Continuity equation and the momentum equations are multiplied with weighting functions. To obtain the general dissipation integral equations these weighting functions have to be chosen as power functions of the mean velocity profiles.
- Step 2: Integration of the momentum equation versus the wall normal coordinate. The integration boundaries are the wall and the outer edge of the boundary layer. The velocity component perpendicular to the wall is eliminated using the continuity.

|                     | x-component               | y-component                        |
|---------------------|---------------------------|------------------------------------|
| continuity equation | $\frac{u^{(k+1)}}{(k+1)}$ | $\frac{\mathbf{v}^{(k+1)}}{(k+1)}$ |
| momentum equations  | u <sup>k</sup>            | v <sup>k</sup>                     |

# **General form of dissipation integral equations**

$$\frac{1 \, \prod f_{k}}{h_{1} \, \prod x} + \frac{1 \, \prod m_{k}}{h_{2} \, \prod y} + f_{k} \frac{\acute{e}}{eh_{1} \, u_{e}} \frac{1 \, (k+2)}{\Pi x} \frac{\Pi u_{e}}{\Pi x} + \frac{1 \, h_{1}h_{2}}{h_{1}h_{2}} \frac{\Pi h_{2} \, \mathring{u}}{\Pi x \, \mathring{u}} m_{k} \frac{\acute{e}}{eh_{2} \, u_{e}} \frac{1 \, (k+2) \, \Pi u_{e}}{\Pi y} + \frac{(k+2) \, \Pi h_{1} \, \mathring{u}}{h_{1}h_{2}} \frac{\Pi h_{1} \, \mathring{u}}{\Pi y \, \mathring{u}} \frac{\acute{u}}{\Pi y \, \mathring{u}} \frac{\acute{e}}{H_{2} \, u_{e}} \frac{\Pi u_{e}}{\Pi y} + \frac{(k+2) \, \Pi u_{e}}{h_{1}h_{2}} \frac{\Pi h_{1} \, \mathring{u}}{\Pi y \, \mathring{u}} \frac{\acute{e}}{H_{2} \, u_{e}} \frac{\Pi u_{e}}{\Pi y} + \frac{(k+2) \, \Pi h_{2} \, (k+2) \, \Pi h_{1} \, (k+1) \, \Pi h_{1} \,$$

$$\frac{1}{h_{1}} \frac{\P s_{k}}{\P x} + \frac{1}{h_{2}} \frac{\P r_{k}}{\P y} + s_{k} \underbrace{\stackrel{\bullet}{e}}{\stackrel{\bullet}{h_{1}}}_{1} \frac{(k+2)}{u_{e}} \frac{\P u_{e}}{\P x} + \underbrace{\frac{(k+2)}{h_{1}h_{2}}}_{1} \frac{\P h_{2}}{\P x} \underbrace{\stackrel{\bullet}{u}}{\stackrel{\bullet}{h_{1}}}_{1} r_{k} \underbrace{\stackrel{\bullet}{e}}{\stackrel{\bullet}{h_{2}}}_{1} \frac{(k+2)}{\P x} \frac{\Pi u_{e}}{\frac{H}{e}} + \frac{1}{h_{1}h_{2}} \frac{\Pi h_{1}}{\Pi y} \underbrace{\stackrel{\bullet}{u}}{\stackrel{\bullet}{h_{1}}}_{1} \frac{(k+2)}{u_{e}} \frac{\Pi u_{e}}{\frac{H}{e}} + \frac{1}{h_{1}h_{2}} \frac{\Pi h_{1}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{u}}{\frac{H}{h_{1}}}_{1} \underbrace{\stackrel{\bullet}{h_{2}}}_{1} \frac{(k+2)}{u_{e}} \frac{\Pi u_{e}}{\frac{H}{e}} + \frac{1}{h_{1}h_{2}} \frac{\Pi h_{1}}{\frac{H}{h_{1}}}_{1} \underbrace{\stackrel{\bullet}{h_{1}}}_{1} \underbrace{\stackrel{\bullet}{h_{2}}}_{1} \underbrace{\stackrel{\bullet}{u}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{u}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_{2}}}_{1} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{h_{2}}}{\frac{H}{h_{2}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_{1}}} \underbrace{\stackrel{\bullet}{H}}{\frac{H}{h_$$

### **Dissipation integral equations of interest**

Momentum balance  $-\frac{1}{h_{1}}\frac{\|\mathbf{d}_{11}}{\|\mathbf{x}\|} + \frac{1}{h_{2}}\frac{\|\mathbf{d}_{12}}{\|\mathbf{y}\|} + \mathbf{d}_{11}\frac{\mathbf{\dot{e}}_{1}}{\mathbf{\dot{e}}_{1}}\frac{2}{\mathbf{u}_{e}}\frac{\|\mathbf{u}_{e}}{\|\mathbf{x}\|} + \frac{1}{h_{1}h_{2}}\frac{\|\mathbf{h}_{2}\mathbf{\dot{u}}}{\|\mathbf{x}\|} + \frac{1}{h_{1}h_{2}}\frac{\|\mathbf{h}_{2}\mathbf{\dot{u}}}{\|\mathbf{x}\|} + \frac{1}{h_{1}h_{2}}\frac{\|\mathbf{u}_{e}\|}{\|\mathbf{x}\|} + \frac{2}{h_{1}h_{2}}\frac{\|\mathbf{h}_{1}\mathbf{\dot{u}}}{\|\mathbf{y}\|} + \frac{2}{h_{1}h_{2}}\frac{\|\mathbf{h}_{1}\mathbf{\dot{u}}\|}{\|\mathbf{u}\|} + \frac{2}{h_{1}h_{2}}\frac{\|\mathbf{u}\|}{\|\mathbf{u}\|} + \frac{2}{h_{1}h_{2}}\frac{\|\mathbf{u}$ in x-direction (Momentum balance in y-direction)  $+\mathbf{d}_{2} \frac{\mathbf{\hat{e}}_{1}}{\mathbf{\hat{e}}_{1}} \frac{1}{\mathbf{u}} \frac{\mathbf{u}}{\mathbf{u}} - \frac{1}{\mathbf{h}_{1} \mathbf{h}_{2}} \frac{\mathbf{n} \mathbf{h}_{2}}{\mathbf{q} \mathbf{x}} \frac{\mathbf{v}}{\mathbf{\dot{c}}} \frac{\mathbf{v}}{\mathbf{\dot{c}}} + \frac{1}{\mathbf{h}_{1} \mathbf{h}_{2}} \frac{\mathbf{n} \mathbf{h}_{1}}{\mathbf{q} \mathbf{x}} \frac{\mathbf{v}}{\mathbf{\dot{c}}} \frac{\mathbf{n}}{\mathbf{\dot{c}}} \frac{\mathbf{n}}{\mathbf{\dot{c}}} \frac{\mathbf{n}}{\mathbf{h}_{1} \mathbf{h}_{2}} \frac{\mathbf{n}}{\mathbf{q}} \frac{\mathbf{n}}{\mathbf{c}} \frac{\mathbf{n}}{\mathbf{c$  $+\mathbf{d}_{1}\frac{1}{\mathbf{h}_{1}}\frac{1}{\mathbf{u}_{e}}\frac{\P\mathbf{u}_{d}}{\P\mathbf{x}}-\mathbf{d}_{22}\frac{1}{\mathbf{h}_{1}}\frac{\P\mathbf{h}_{2}}{\P\mathbf{x}}\left(=\frac{\mathbf{c}_{fx}}{\underline{2}}\right)$ **Balance of kinetic**  $-\frac{1}{h_{1}}\frac{\|\mathbf{D}_{11}}{\|\mathbf{x}\|} + \frac{1}{h_{2}}\frac{\|\mathbf{D}_{12}}{\|\mathbf{y}\|} + \mathbf{D}_{11}\frac{\mathbf{e}_{1}}{\mathbf{e}_{1}}\frac{3}{\mathbf{u}_{e}}\frac{\|\mathbf{u}_{e}}{\|\mathbf{x}\|} + \frac{1}{h_{1}h_{2}}\frac{\|\mathbf{h}_{2}\|}{\|\mathbf{x}\|}\frac{\mathbf{e}_{1}}{\|\mathbf{x}\|}\frac{3}{\mathbf{u}_{e}}\frac{\|\mathbf{u}_{e}\|}{\|\mathbf{x}\|} + \frac{3}{h_{1}h_{2}}\frac{\|\mathbf{h}_{1}\|}{\|\mathbf{y}\|}\frac{\mathbf{e}_{1}}{\|\mathbf{x}\|}\frac{3}{\mathbf{u}_{e}}\frac{\|\mathbf{u}_{e}\|}{\|\mathbf{x}\|} + \frac{3}{h_{1}h_{2}}\frac{\|\mathbf{h}_{1}\|}{\|\mathbf{y}\|}\frac{\mathbf{e}_{1}}{\|\mathbf{x}\|}$ energy in x-direction (Balance of kinetic energy in y-direction)  $+ \mathbf{D}_{2} \frac{\mathbf{e}_{1}}{\mathbf{e}_{1}} \frac{2}{\mathbf{u}_{0}} \frac{\|\mathbf{u}_{d}}{\|\mathbf{y}\|} - \frac{2}{\mathbf{h}_{1} \mathbf{h}_{2}} \frac{\|\mathbf{h}_{2}}{\|\mathbf{x}\|_{\mathbf{v}}} \frac{\mathbf{e}_{1}}{\mathbf{v}_{1}} \frac{\mathbf{e}_{1}}{\mathbf{v}_{1}} \frac{2}{\mathbf{h}_{1} \mathbf{h}_{2}} \frac{\|\mathbf{h}_{1}}{\|\mathbf{y}\|_{\mathbf{v}}} \frac{\mathbf{e}_{1}}{\mathbf{v}_{1}} \frac{\mathbf{e}_{1}}{\mathbf{v}_{1}}$  $-\mathbf{D}_{3}\frac{2}{\mathbf{h}_{1}\mathbf{h}_{2}}\frac{\P\mathbf{h}_{2}}{\P\mathbf{x}}=\frac{2}{\mathbf{r}\mathbf{u}_{e}^{2}}\mathbf{\mathbf{0}}\mathbf{\mathbf{\xi}}\mathbf{\mathbf{u}}_{e}\mathbf{\mathbf{\dot{\theta}}}\mathbf{\mathbf{\dot{\theta}}}\mathbf{\mathbf{x}}^{\mathbf{x}}_{\mathbf{x}}\,\mathrm{d}\,\mathbf{z}$ 

### **Two-dimensional case**

| <b>k</b> = 0<br>momentum balance      | $\frac{\mathrm{d}\mathbf{d}_2}{\mathrm{d}x} + \left(2 + \mathrm{H}_{12}\right)\frac{\mathrm{d}_2}{\mathrm{u}_{\mathrm{d}}}\frac{\mathrm{d}\mathrm{u}}{\mathrm{d}\mathrm{x}} = \mathrm{c}_{\mathrm{f}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k = 1<br>balance of mechanical energy | $\frac{d\mathbf{d}_{3}}{dx} + 3\frac{\mathbf{d}_{3}}{u_{\mathbf{d}}}\frac{du}{dx} = -2\frac{\mathbf{a}_{u}}{\mathbf{b}_{\mathbf{d}}}\frac{\ddot{\mathbf{o}}^{3}}{\ddot{\mathbf{b}}_{\mathbf{d}}}\frac{\mathbf{a}_{\mathbf{b}}}{\ddot{\mathbf{b}}_{\mathbf{d}}}\frac{\ddot{\mathbf{b}}^{3}}{\dot{\mathbf{b}}_{\mathbf{b}}}\frac{\mathbf{a}_{\mathbf{b}}}{\mathbf{b}_{\mathbf{b}}}\frac{\ddot{\mathbf{b}}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{a}_{\mathbf{b}}}{\mathbf{b}_{\mathbf{b}}}\frac{\ddot{\mathbf{b}}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{a}_{\mathbf{b}}}{\mathbf{b}_{\mathbf{b}}}\frac{\ddot{\mathbf{b}}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{a}_{\mathbf{b}}}{\mathbf{b}_{\mathbf{b}}}\frac{\ddot{\mathbf{b}}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{a}_{\mathbf{b}}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}\frac{\mathbf{b}^{3}}{\mathbf{b}_{\mathbf{b}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| k = 2                                 | $\frac{d\mathbf{d}_{4}}{dx} + (4 - 3H_{42})\frac{\mathbf{d}_{4}}{u_{d}}\frac{du}{dx} = -3\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{u}}_{\mathbf{d}}\frac{\mathbf{b}}{\mathbf{c}}^{4} + \underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}^{4} + \underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}^{2} + \underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\frac{\mathbf{b}}{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{a}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}_{\mathbf{c}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace{\mathbf{b}}\underbrace$ |

$$\frac{\mathbf{u}(\mathbf{z})}{\mathbf{u}_{t}} = \frac{1}{\mathbf{k}} \ln \left[ \mathbf{z}^{+} \right] + \mathbf{C} + \mathbf{w}(\mathbf{h}) , \quad \mathbf{h} = \frac{\mathbf{z}^{+}}{\mathbf{K}_{t}}$$
$$\mathbf{w}(\mathbf{h}, \mathbf{p}) = 2\mathbf{h}^{2} \left( \mathbf{3} - 2\mathbf{h} \right) - \frac{1}{\mathbf{p}} \mathbf{h}^{2} \left( \mathbf{1} - \mathbf{h} \right) \left( \mathbf{1} - 2\mathbf{h} \right)$$
$$\frac{\mathbf{t}}{\mathbf{t}_{w}} = \mathbf{f}_{1}(\mathbf{h}, \mathbf{p}, \mathbf{S}) + \mathbf{f}_{2}(\mathbf{h}, \mathbf{p}, \mathbf{S}) \mathbf{d} \frac{\mathbf{d} \mathbf{p}}{\mathbf{d} \mathbf{x}} + \mathbf{f}_{3}(\mathbf{h}, \mathbf{p}, \mathbf{S}) \frac{\mathbf{d}}{\mathbf{u}_{d}} \frac{\mathbf{d} \mathbf{u}_{d}}{\mathbf{d} \mathbf{x}}$$

### **Dissipationintegral for two-dimensional case**

$$c_{D} = -2 \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{u}}_{\mathbf{d}} \mathbf{\hat{g}}^{3} \mathbf{\hat{g}}^{1} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}^{0} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}^{0} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}^{0} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}^{1} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}^{1} \mathbf{\hat{g}}_{\mathbf{\hat{g}}} \mathbf{\hat{g}}_$$

 $c_{p} = \frac{S - [1.353(4.569 + 8.419p + 6.316p^{2} + 1.859p^{3} - 1.248S - 2.218pS - 1.525p^{2}S - 1$  $\mathbf{z} * \frac{[7.66940^{6}(-32.772-180.230\mathbf{p}-347.099\mathbf{p}^{2}-313.663\mathbf{p}^{3}-146.036\mathbf{p}^{4}-29.008\mathbf{p}^{5}+24.177\mathbf{S}+99.770\mathbf{p}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{2}\mathbf{S}+139.145\mathbf{p}^{$  $\frac{87.542 p^{3} S+21.956 p^{4} S-4.570 S^{2}-15.695 p S^{2}-15.616 p^{2} S^{2}-5.266 p^{3} S^{2}-0.305 S^{3}+0.800 p S^{3}+0.407 p^{2} S^{3})}{\left[8(8.43740^{6}+1.33440^{7} p+6.2440^{6} p^{2}-3.4591740^{6} S-5.46940^{6} p S-2.5584 x 10^{6} p^{2} S+694253 S^{2}+706020 p S^{2})\right]^{+}$  $h^{*} \frac{1.57240^{6} (0.385+9.454 p+25.361 p^{2}+26.410 p^{3}+13.506 p^{4}+2.900 p^{5}-2.657 8-9.128 p 8-100 p^{2}-2.657 8-100 p^{2}-2.657 8-9.128 p 8-100 p^{2}-2.657 8-100 p^{2}-2.657 8-9.128 p 8-100 p^{2}-2.657 8-9.128 p 8-100 p^{2}-2.657 8-100 p^{2}-2.657 8-100 p^{2}-2.557 8-100 p^{2}-2.55$ 12.672**p**<sup>2</sup>S-8.256**p**<sup>3</sup>S-2.157**p**<sup>4</sup>S+0.5286S<sup>2</sup>+1.371**p**S+1.239**p**<sup>2</sup>S<sup>2</sup>+0.397**p**<sup>3</sup>S<sup>2</sup>)

**t** / **t**<sub>w</sub>

(0.240+0.244p)(8.437x10°+1.334x107p+6.240x10°p<sup>2</sup>-3.45917x10°S-5.469x10°pS-2.558x10°p<sup>2</sup>S+694253S<sup>2</sup>+706020pS<sup>2</sup>)

z / **d** 



### **Three-dimensional case**

Momentum balance in s-direction

(momentum balance in n-direction,

balance of kinetic energy in s-direction,

balance of kinetic energy in n-direction,

additional equations)

$$\mathbf{d}\frac{\Pf_{11}}{\P\mathbf{p}}\frac{\P\mathbf{p}}{\P\mathbf{s}} + \mathbf{d}\frac{\Pf_{11}}{\P\mathbf{s}}\frac{\P\mathbf{s}}{\P\mathbf{s}} + \mathbf{f}_{11}\frac{\P\mathbf{d}}{\P\mathbf{s}} + \mathbf{d}\frac{\Pf_{12}}{\P\mathbf{p}}\frac{\P\mathbf{p}}{\P\mathbf{n}} + \mathbf{d}\frac{\Pf_{12}}{\P\mathbf{s}}\frac{\P\mathbf{s}}{\P\mathbf{s}} + \mathbf{d}\frac{\Pf_{12}}{\P\mathbf{s}}\frac{\P\mathbf{s}$$

### **Dissipationintegral for three-dimensional case**

$$-\frac{2 d}{t_{w}/\frac{r}{2}u_{e}^{2}} \underbrace{\underbrace{\underbrace{e}}_{u} \underbrace{\underbrace{e}}_{u} \underbrace{\underbrace{h}}_{u} \underbrace{\frac{h}{1}(\underline{u}/\underline{u}_{e})}{\underline{1}x} dh}_{u} - \frac{1}{h_{10}} \underbrace{\underbrace{h}}_{10} \underbrace{\underbrace{\frac{h}{1}x}}{\underline{1}x} dh + \frac{1}{h_{1h_{2}}} \underbrace{\underbrace{\frac{h}{1}}_{v} \underbrace{\frac{h}{2}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \frac{e}{b}}{\underline{1}x} dh + \frac{1}{h_{10}} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{2}h_{2}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \frac{e}{b}}{\underline{1}x} dh + \frac{1}{h_{20}} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}{b}}_{u} dh + \frac{1}{h_{20}} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{h}{1}h_{2}}_{u} \underbrace{\frac{e}{b}}_{u} \underbrace{\frac{e}$$

#### **Two-dimensional test case** IDENT 2100 - G. B. Schubauer, P. S. Klebanoff



#### **Two-dimensional test case** Backward facing Step - M. D. Driver, H. L. Seegmiller



### **Sixteen two-dimensional test cases**

W(c<sub>f</sub>) = 100% 
$$\frac{\dot{a}_{j=1}^{n} \left| c_{f,Cal}^{*} - c_{f,Exp}^{*} \right|}{\dot{a}_{j=1}^{n} c_{f,Exp}^{*}}$$

 $c_{f}^{*}$  ... wall skin friction at the last position of test case

$$\mathbf{V}(\mathbf{g}) = \frac{100\%}{\mathbf{m}} \stackrel{\mathbf{m}}{\overset{\mathbf{a}}{\mathbf{a}}} \left| \frac{\mathbf{g}_{i,\text{Cal}} - \mathbf{g}_{i,\text{Exp}}}{\mathbf{g}_{i,\text{Exp}}} \right|$$

m ... number of experimental points

|                                  | V(Re <sub>d2</sub> ) | V(Re <sub>d</sub> ) | V(H <sub>12</sub> ) | W(c <sub>f</sub> ) |
|----------------------------------|----------------------|---------------------|---------------------|--------------------|
| A1                               | 4.6 %                | 4.7 %               | 2.7 %               | 8.5 %              |
| A2                               | 5.0 %                | 4.9 %               | 2.6 %               | 8.2 %              |
| k, <b>e</b> - model <sup>*</sup> |                      |                     |                     | 36 -58 %           |
| k, <b>w</b> - model <sup>*</sup> |                      |                     |                     | 4.0 -6.0 %         |

\*D. C. Wilcox: AIAA-Journal, vol. 31, 1993



### **Three-dimensional test case**

## **Summary and open issues**

- The general form of dissipation integral algorithms for three-dimensional turbulent boundary layers is derived
- The approach can be used for engineering applications
- The two-dimensional problem can be improved by using an inverse formulation
- The three-dimensional problem can be improved by using profiles which are mor "universal" and using an inverse formulation

**The author thanks** the Gesellschaft der Freunde und Förderer der TU-Dresden e. V. for the financial support. This work was done under the grant DFG Bu 1082 / 1-1