On the Instantaneous Dynamics of the Large-Scale Structures In The Impinging Round Jet

J. W. Hall & D. Ewing

Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

Turbulent Round Impinging Jet

Flow visualization of impinging round jet, H/D=2.0, Re=20000, Popiel and Trass (1991).

Turbulent Plane Wall Jet

Gogineni and Shih (1997) http://www.eng.fsu.edu/~shih/succeed/flow-vis.htm

Harvey and Perry's Rebounding Vortex

Harvey and Perry (1971)

Three-Dimensionality of Structures?

Tsubokura (2003) Re=2,000 Forced at Strouhal Frequency Fully Developed Pipe Flow H/D = 9

Landreth and Adrian (1991) observed instantaneous flow was not symmetric in PIV measurements

-McMaster

Effect of Nozzle-to-Plate Distance

Jet Exiting a Long Pipe Re=23,000

Perry Fest 2004 Kingston

McMaster

Universit

Pressure Spectra

Perry Fest 2004 Kingston

Azimuthal Spectra

Perry Fest 2004 Kingston

McMaster University

Azimuthal Frequency Spectra, H/D=2.0

r/D=1.0

r/D=1.5

McMaster University

Two-Point, Two Time Correlations

Perry Fest 2004 Kingston

Dynamics of the Instantaneous Structures

- Pressure sampled at 800Hz for 350 blocks of 400 data points
 - ESP scanner system at Boundary Layer Wind Tunnel, University of Western Ontario
 - Signals are phase corrected in post-processing

- Perform Proper Orthogonal Decomposition in <u>Azimuthal</u> Direction
 - Fourier Modes

Pressure Field, H/D=2.0

Mean Pressure

Fluctuating Pressure

Comparison to microphone data

Hall et al. (2003)

Perry Fest 2004 Kingston

McMaster

University

Pressure Spectra

Perry Fest 2004 Kingston

University

Perry Fest 2004 Kingston

University

Imping Jet DNS

Satake and Kunugi (1998) Re=10000 H/D = 6, Confined Tsubokura (2003) Re=2, 000 Forced at Strouhal Frequency H/D = 9

Inlet Condition Fully Developed Pipe Flow

Wavelet Analysis: Instantaneous Pressure

Perry Fest 2004 Kingston

Wavelet Analysis: Azimuthal Modes

H/D =2, r/D =1.5

Perry Fest 2004 Kingston

Universit

Wavelet Coefficients: Mode 0

H/D=2

Perry Fest 2004 Kingston

McMaster

Wavelet Coefficients: Mode 1

H/D=2

Perry Fest 2004 Kingston

McMaster

Azimuthal Mode 1: Precessing?

Perry Fest 2004 Kingston

Wavelet Analysis: Effect of H/D

H/D =2, r/D =1.5

H/D =4, r/D =1.5

Wavelet Analysis: Effect of H/D

Concluding Remarks

- Measurements of the instantaneous wall pressure fluctuations were used to examine the development of the large-scale structures in the near field of the radial wall jet.
- The inclusion of at least azimuthal mode 1 was necessary to reasonable model the dynamics of the flow.
- Contributions from azimuthal mode 0 and 1 underwent variations in magnitude that persisted over periods corresponding to the passage of several structures.
- There were extended periods where the slope of the phase of mode 1 was linear suggesting there may be periods of jet precessing of varying duration and direction.
- Structures contributing to fluctuating wall pressure did not appear to become significantly more intermittent as H/D increased.
- There was less systematic variation of the phase of mode 1 as H/D increased suggesting less systematic jet precessing.

