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FicURE 14. Symbolic representation of a discrete system of hierarchies.



Cumulative Construction of
Mean Momentum Field
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FicUuRE 18. Mean-velocity profile interpreted in terms of quantum-jump model.
A, is a universal constant.



Physical Evidence: Vortex

Packets

(Adrian et al. 2000, plus others)
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Ficure 11. Near-wall realization at Rey = 930 showing four hairpin vortex

signatures aligned in

the streamwise direction. Instantaneous velocity vectors are viewed in a frame-of-reference moving

at U, = 08U, and scaled with inner vaniables. Vortex heads and inclined she
schematically, along with the elements triggering a VITA event.

ar layers are indicated



Physical Model

Figuke 22. Idealized model of hairpin packets nesting within larger hairpin packets, and travelling
at different velocities The nested hierarchy creates the appearance of multiple uniform-momentum
zones, and & progressively lower velocity ag one approaches the wall



Some Interesting Questions

Do the scaling behaviors of the mean dynamical
equations,

o naturally favor hierarchical models?
e reflect the Iinstantaneous observations?



Scaling and Theory
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Primary Assumptions

1) RANS equations describe the mean
dynamics

2) Monotonicity: velocity Is monotone
Increasing and the velocity gradient is
monotone decreasing with distance from the
wall



Scaling Patch

A “scaling patch” exists when:

1) the scaled independent variable is O(1)

11) the variation In the scaled dependent variable
Is O(1), and

111) the derivatives of the scaled dependent
variable are all O(1)

(These conditions are satisfied when the relevant terms
In the scaled equations are free of large/small

parameters)



Mean Momentum Balance Data

Fully developed channel flow,

1 d*UT duvt

ot dy+2 dy*

2-D boundary layer flow,
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Stress Gradient Ratios: Limiting Cases

|1B/C| = |‘f;[£ / dgf | < 1, inertial force &~ mean advection
|B/C| = |‘f;[g d;?j | >~ 1, viscous force = inertial force
|1B/C| = |ny[i§ dgf | > 1, viscous force &~ mean advection



Viscous to Reynolds Stress Gradient Ratio
(Pipe Flow, Zagarola and Smits 1997)
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Four Layer Structure of Boundary Layer

Pipe and Channel Flows
(At any fixed Reynolds number)

Ratio of stress
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Layer Structure Prescribed by the
Mean Dynamics

Layer I: Inner Viscous/Advection Balance Layer
(traditional viscous sublayer)

Layer Il: Stress Gradient Balance Layer

Layer I1l: Meso Viscous/Advection/Inertial Balance
Layer

Layer 1V: Inertial/Advection Balance Layer




Reynolds Number Scalings: Inner

Layer I: A;UT ~ O(1) (=~ 3), A"~ O(1) (~ 3)

Layer II: AUt ~ O(UL) (= %2),  Apy® ~ /67

Layer I1I: A;;;UT ~O(1) (= 1), Ayt ~ /ot

Layer IV: AjyUT ~ O(UY) (— %;), Ayt — 6t

(Note that layer IV properties are apparently asymptotic as Ry — 00)



Layers Il and Il
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Multiscale Analysis of Channel Flow

Streamwise Momentum Equation:

Inner variables (y",U", and T' = —uw)

d*U T x. dl
dyt2  dyt
1

where €2 = pes such that € — 0 as Re — oo.

+€2:O,

Outer variables (n, U ", and T' = —uv)

dT+ U
11 € — 0
ar +1+4¢€ e




Layer |

y - =0(1), T (y") =0

and thus the momentum equation reduces to,

d2U+
and so
[Tt ~o gyt

(traditional viscous sublayer)



Layer Il

For a region outside the sublayer, both the viscous and Reynolds

stress gradients are O(1) > O(eg). Thus, the inner-normalized mo-
mentum equation becomes,

Ut | 4T )
dy” "yt T

(Stress Gradient Balance Layer)



Balance Breaking and Exchange From
Layer Il to Layer Il

Across layer 11, the viscous and Reynolds stress gradients balance to
within O(EQ). Both, however, are decreasing functions of y™. Thus,
at some Reynolds number dependent wall-normal position, y™(¢),
they will become O(¢?) eventhough their formal appearance in the
full momentum equation,

Ut | dTt 2

p

does not indicate this fact.



Layer |ll Rescaling

In layer IIT all the terms are of the same order of magnitude (except
right at ), and thus the goal is to find a scaling that renders all of
the terms O(1). To this end, let,

dy™ = ady, and dT+ = 3dT,

and require that,

2+ :
ddgg and % be O(1)

This yields,
dij = edy™, and dT+ = edT



Layer lll Rescaling (continued)

With this transformation, the mean momentum equation becomes,

d2Ut | dT

with

=t +19, T =TF 4l

(ie., the “hat” variables are centered around the peak in 77)



Layer |l Properties

Overall, the characteristics of layer III include:

9] < 0(1), y*=00), ¥ =0(), Y~ =0(1),

+ ~
and the higher order derivatives of d{% and 1" are O(l).

Furthermore, note that:

Y~ /nyt

(geometric mean of the inner and outer scales)

3;‘, — {y_yml
AV us

(meso normalized distance)



Layer |V

In this layer the O(€®) term in the outer-normalized form of the
momentum equation may be neglected. This results in,

T~
WJrl:O

Integration yields
I'(n)=1-n

(traditional outer layer result, valid only for y > ¥, )



Multiscale Analysis of Couette Flow

Because Couette flow is entirely composed of a stress gradient balance
laver,

cut | art

a? T =Y

Its study should be especially instructive in elucidating how the mean
dynamics of such a layer are established.



A Remarkable Transformation

Define an adjusted Reynolds stress,

T T+ . €2y+

'Then the streamwise momentum equation becomes,

d°U~+ | 4T

2
dy"‘g | dyt € =0

3

(i.e., is identical in form to the equation for channel flow)



Generalized Adjusted
Reynolds Stresses

Consider now the generalization of this transtormation,

TP =THy") — py™,

where p is a small positive number. (Note that p is a superscript not
an exponent. )



Adjusted Reynolds Stresses
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FIGURE 3. Adjusted Reynolds stress profile for various values of p. The case p = €* corresponds to within O(e?) to
the genuine Reynolds stress for Couette flow (see Section 3.4.6), and p = * is an approximation to that for pressure
driven channel flow. The DNS data is from Kawamura, Abe & Shingai (2000), §* = Re. = 181.3 and ¢ = .074.



Hierarchy Equations

Under this generalized transformation (for each value of p) the mo-
mentum equation becomes,

Ut | dTP _
a7 T tP=Y



Scaling Layer Hierarchy

For each value of p, these equations undergo the
same balance exchange as described
previously (associated with the peaks of Tr)

For each p this defines a layer, L, comprising a
stress gradient balance layer/meso layer
structure (i.e., an intermediate scaling patch)



Balance Exchange for Each Tr

As before, for each 17 a transformation is derived,

gt =yh(p) +p VP, TP = TP+ pPTY,

vielding,

d2U++dTP+1 0,

and thus verifying the existence of a scaling patch for each p.



Hierarchy Properties

e A continuum of layers exists, and within each layer d‘r”; = O(1);

avr = Olp 1/2)' and the higher order derivatives of d‘r’: and T

dy+ _ )
are less than or equal to O(1) (i.e., each layer is a scaling patch)

e 'T'he thickness of each layer is proportional to the distance of the
center of its corresponding “mesolayer” from the wall

e '['he spatial extent of the hierarchy is given by:
(20 to 36) < yn(p) < 1/€” when,
(0.0035 t0 0.14) > p > O(e?)



Logarithmic Dependence

Within each L,, the corresponding 1* reaches a maximum at y = 0
(Le., at y* =y (p)). At that location, define:

Alp) = =570

— dg}g



Logarithmic Dependence
(continued)

It can be shown that A(p) = O(1) function that
may on some sub-domains equal a constant

If A = const., a logarithmic mean profile is
identically recovered (i.e., Is rigorously
analytically proven)

If A varies slightly, then the profile is bounded
above and below by logarithmic functions.



Behavior of A(y*)
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FIGURE 5. A(yt) for different Reynolds numbers as estimated by finite difference of T (y™). These estimates indicate
a trend to larger internal intervals of relatively constant A for larger Re, thus agreeing with the present theory. The
total range of the function A also increases with Re. The values of A were calculated from finite differencing DNS

data of Bech et al (1995) and Kawamura et ol (2000), (3.35), with locations 4 determined from Fig. 3.



Relation to Channel Flow

Consider now the channel-to-Couette transformation, combined with

the adjusted Reynolds stress transformation,
TP(y*) =T"(y") + eyt — py™.
This transforms the channel low momentum equation to,

d2Ut | drP -
a2 gy TP =0

This is identically the “hierarchy equation” for Couette flow, and
thus all the results for the Couette flow are recovered for the channel
— the hierarchy extends to y/d == 0.5.



Physical Model of Boundary Layer Dynamics

fully three-dimensional detached eddies
o field (dT/dy <0)
Iy »Ty,
A as freestream
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Conclusions

Under the monotonicity assumption (and completely
Independent of any inner/outer overlap ideas), rigorous
analysis of the RANS equations reveals that,

« Turbulent channel and Couette flows intrinsically contain
a hierarchical layer structure

« The hierarchy constitutes a continuum of scaling
patches and adjusts with Reynolds number to connect
the traditional inner and outer scaling patches

 The hierarchy provides a firm analytical basis for the
often invoked distance-from-the-wall scaling

 The question of a logarithmic mean profile depends on
the properties of the hierarchy defined function, A(p).



Questions?

DATE S/2 Joty| SCORER ATIESKD /7 // i A’f

= ¢ P, 7 =

_ p.
MEN'S TEE 205 | 255 | 265 | 335 | 315 | 133 | (145 | 170 | 185 | 2008
MEN'S HANDICAP STROKES 6 4 5 1 2 9 7 8 3
MEN'S PAR 3 4 4 4 4 3 3 3 3 31
2 5 2 5 2 e B & ) 52
Joe, s oo B S L T I R*] 3 3+] 3
e

WOMEN'S PAR 4 4 4 4 4 3 3 3 3 32
WOMEN'S HANDICAP STROKES 6 4 5 1 2 9 7 8 3
WOMEN'S YARDAGE 180 | 230 | 250 | 305 | 275 | 120 | 115 | 146 | 180 | 180
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