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Summary

Dimotakis’ “mixing transition”

Mixing transition in wall-bounded flows
Relationship to the inertial subrange
Importance of the mixing transition to self-
similarity

Insufficient separation of scales: the mesolayer



Dimotakis’ mixing transition
J. Fluid Mech. 409 (2000)

 Originally observed in free shear layers (e.qg.
Konrad, 1976)

o “Ability of the flow to sustain three-dimensional
fluctuations” in Konrad’s turbulent shear layer

« Dimotakis details existence In jets, boundary layers,
bluff-body flows, grid turbulence etc



Dimotakis’ mixing transition
J. Fluid Mech. 409 (2000)

Universal phenomenon of
turbulence/criterion for
fully-developed turbulence

Decoupling of viscous and
large-scale effects

Usually associated with
Inertial subrange
Transition: Reg. ~ 10% or
R, ~ 100 — 140
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Fiiure 19. Reynolds number dependence of spatial scales for a turbulent

jet.



Variation of wake factor with Re,
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Pipe equivalent: variation of &

* For boundary layers wake factor from

U~ :iln Al +B+EWC(%j

K K

ZE:U;—(£|n§++Bj
K K

* Inpipe §=(UCL —U)/uf related to wake factor

US -U* =Ug —(iln R +B-—+C, —C4(ReD)j
K 2K

* Note that € is ratio of ZS to traditional outer
velocity scales



Same kind of Re variation in pipe flow
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Identification with mixing transition

Transition for R, ~ 100 — 140, or Re;. ~ 10
Reg. = 104 when Rey ~ 75 x 103 (R, = 110 when
y* =100, approximately)

This is Rey where ¢ = (UCL —U)/UT begins to
decrease with Reynolds number

R, varies across pipe — start of mixing transition
when R, = 100

Coincides with the appearance of a “first-order”
subrange (Lumley 64, Bradshaw 67, Lawn 71)



Extension to Inertial subrange?

Mixing transition corresponds to decoupling of
viscous and y scales - necessary for self-
similarity

Suggests examination of spectra, particularly
close to dissipative range

Inertial subrange: local region in wavenumber
space where production=dissipation I.e. inertial
transfer only

“First order” inertial subrange (Bradshaw 1967):
sources,sinks << inertial transfer



Scaling of the Inertial subrange

For % <<y<<R
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Inertial subrange — Re, = 75 x 103
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Scaling of streamwise fluctuatlons u?

Outer velocity scale ey
Superpipe with data of den Toonder
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Similarity of the streamwise
fluctuation spectrum |

Extra energy irom attached eddies which
contribute to Coles’ wake function

Contrihution from attached eddies with w = |

N

Contribution from Kolmogorov
and other detached eddies

ky 2y, K, 2)
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Start of —2 law

—1 law %

Energy deficiency #{z_) due
to finite Reynolds number
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Perry and Li, J. Fluid
Mech. (1990). Fig. 1b



Similarity of the streamwise
fluctuation spectrum ||
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Outer velocity scale for the pipe data

Us -U

U, -U

= N
6] [6)]
1 I LI 1 I L

o
a1
LI I L

O i L L L L L Ll I

<
N

| \:Lo_ 0 | | | | | Ll 100 lo- 2 io- T
/R
y y /R

— < 3
Rep <100x 10 ZS outer scale gives better
100x10° < Rep <200 x 103 collapse in core tegion for all

== Re > 200 x 10° Reynolds numbers




Self-similarity of mean velocity profile
requires & = const.

 Addition of inner and outer log laws shows that
U, * scales logarithmically in R*

* Integration of log law from wall to centerline
shows that U* also scales logarithmically in R*

e Thus for log law to hold, the

difference between them, &,

must be a constant -
* True for Rep > 300 x 10°




Inner mean velocity scaling
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Relationship with “mesolayer”

e.g. Long & Chen (1981), Sreenivasan (1997),
Wosnik, Castillo & George (2000), Klewicki et al

Region where separation of scales is too small for
Inertially-dominated turbulence OR region where
streamwise momentum equation reduces to balance
of pressure and viscous forces (du%yzo)

Observed below mixing transition

Included in generalized log law formulation
(Buschmann and Gad-el-Hak); second order and
higher matching terms are tiny for y* > 1000



Summary

Evidence for start of mixing transition in pipe flow
at Rep = 75 x 103. (Not previously demonstrated)

Correspondence of mixing transition with
emergence of the “first-order” inertial subrange,
end of mesolayer

Importance of constant € for similarity of mean
velocity profile (Reynolds similarity)

Difference between Rep for mixing transition and
complete similarity
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