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Summary

• Dimotakis’ “mixing transition”
• Mixing transition in wall-bounded flows
• Relationship to the inertial subrange
• Importance of the mixing transition to self-

similarity
• Insufficient separation of scales: the mesolayer



Dimotakis’ mixing transition
J. Fluid Mech. 409 (2000)

• Originally observed in free shear layers (e.g. 
Konrad, 1976)

• “Ability of the flow to sustain three-dimensional 
fluctuations” in Konrad’s turbulent shear layer

• Dimotakis details existence in jets, boundary layers, 
bluff-body flows, grid turbulence etc



Dimotakis’ mixing transition
J. Fluid Mech. 409 (2000)

• Universal phenomenon of 
turbulence/criterion for 
fully-developed turbulence

• Decoupling of viscous and 
large-scale effects

• Usually associated with 
inertial subrange

• Transition: Reδ* ~ 104 or 
Rλ ~ 100 – 140



Variation of wake factor with Reθ

From Coles (1962)



Pipe equivalent: variation of ξ
• For boundary layers wake factor from 

• In pipe related to wake factor

• Note that ξ is ratio of ZS to traditional outer 
velocity scales
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Same kind of Re variation in pipe flow
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Identification with mixing transition

• Transition for Rλ ~ 100 – 140, or Reδ* ~ 104

• ReR* = 104 when ReD ~ 75 x 103 (Rλ = 110 when  
y+ = 100, approximately)

• This is ReD where  begins to 
decrease with Reynolds number

• Rλ varies across pipe – start of mixing transition 
when Rλ = 100

• Coincides with the appearance of a “first-order” 
subrange (Lumley `64, Bradshaw `67, Lawn `71)
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Extension to inertial subrange?
• Mixing transition corresponds to decoupling of 

viscous and y scales - necessary for self-
similarity

• Suggests examination of spectra, particularly 
close to dissipative range

• Inertial subrange: local region in wavenumber
space where production=dissipation i.e. inertial 
transfer only

• “First order” inertial subrange (Bradshaw 1967): 
sources,sinks << inertial transfer



Scaling of the inertial subrange

For

K41 overlap

In overlap region, dissipation
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Inertial subrange – ReD = 75 x 103
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Scaling of streamwise fluctuations u2
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Similarity of the streamwise
fluctuation spectrum I

Perry and Li, J. Fluid 
Mech. (1990).  Fig. 1b



Similarity of the streamwise
fluctuation spectrum II
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Outer velocity scale for the pipe data
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Self-similarity of mean velocity profile 
requires ξ = const.

• Addition of inner and outer log laws shows that 
UCL

+ scales logarithmically in R+

• Integration of log law from wall to centerline
shows that U+ also scales logarithmically in R+
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• Thus for log law to hold, the 
difference between them, ξ, 
must be a constant

• True for ReD > 300 x 103



Inner mean velocity scaling

101 102 103 104 1055

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

y+

κ = 0.421

κ = 0.385?

Power law

ψ = U+ - 1/κ ln y+

ψ

A B C



Relationship with “mesolayer”
• e.g. Long & Chen (1981), Sreenivasan (1997), 

Wosnik, Castillo & George (2000), Klewicki et al
• Region where separation of scales is too small for 

inertially-dominated turbulence OR region where 
streamwise momentum equation reduces to balance 
of pressure and viscous forces 

• Observed below mixing transition
• Included in generalized log law formulation 

(Buschmann and Gad-el-Hak); second order and 
higher matching terms are tiny for y+ > 1000 
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Summary
• Evidence for start of mixing transition in pipe flow 

at ReD = 75 x 103.  (Not previously demonstrated) 
• Correspondence of mixing transition with 

emergence of the “first-order” inertial subrange, 
end of mesolayer

• Importance of constant ξ for similarity of mean 
velocity profile (Reynolds similarity)

• Difference between ReD for mixing transition and 
complete similarity
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