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Synopsis
• Self-similarity – what should we be looking for?
• Log law: self-similar scaling -
• Local-equilibrium approximation as a self-similar 

energy balance in physical space.
• Spatial transport – interaction between inner and 

outer regions.
• Self-similarity of energy balance appears as inertial 

subrange in spectral space.
• Consistent physical- and spectral- space views.
• Self-similarity as a pre-requisite for universality.
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What is self-similarity?
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• Simultaneous overlap analysis for                            , indicates 
motion independent of inner and outer lengthscales

• Therefore the constant in the log argument is merely a 
constant of integration and may be freely chosen.

• It is usually taken to be the dominant imposed lengthscale so 
that its influence on B or B** is removed: as

• Overlap analysis indicates κ is universal: but self-similarity is 
a pre-requisite.
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The local-equilibrium approximation
• Application of self-similar              scaling to the energy 

balance gives P = ε
• Therefore expect log-law and local-equilibrium regions to be 

coincident.
• Inertial subrange is self-similar spectral transfer, T(k), as 

demonstrated by simultaneous overlap with inner and outer 
scaling.

• Wavelet decomposition (DNS data, JFM 491) shows  T(k) 
much more spatially intermittent than equivalent terms for 
either P or ε.

• Therefore T(k) is unlikely to scale simply.
• Even then, energy balance at any point in space is an 

integration over all k – so P = ε  will only ever be an 
approximation.

• Usefulness of a “first-order” subrange (Bradshaw 1967)?
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Self-similarity of the second moment
• Examine self-similarity using distinction between inner

and outer                       influences in wall 
region.

• Examine possibility of self-similarity in              .
• If              not self-similar, then         is very unlikely to be 

either. 
• Comparison of Townsend’s 1956 ideas with those of 1976 

– are outer-layer influences “inactive”?
• Use these ideas to highlight principal differences between 

scaling of                 in pipes and boundary layers, and even 
between different flows at the same R+.
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“Strong” asymptotic condition: 
R+=∞

• As                 , and                 , “large eddies are 
weak” (Townsend 1956).

• “Neglecting this possibility of outside influence”:

where       is a “universal” function.
• Therefore, provided         is independent of y,  

collapse on inner variables alone is sufficient to 
demonstrate self-similarity.

• Then:
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“Strong” asymptotic condition
• Neglecting streamwise gradient of Reynolds stress:

• Write                   with 

• Last term negligible (scale separation again) and removal of 
cross product linearizes the outer influence.

• “Inactive motion is a meandering or swirling made up from 
attached eddies of large size……”  (Townsend 1961).
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Conclusions from“strong” 
asymptotic condition

• Write                 :   

• Blocking means that 

• Therefore,       and        are, to first order,           only.

• But:                    ,                      and outer influence 
appears as a linear superposition.

• Therefore, at the same R+, internal and external flows 
are the same.
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What’s wrong with this picture?
Superpipe
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What’s wrong with this picture ?
Self-similar structure

• implies hierarchy of self-similar, non-interacting 
attached wall eddies that makes valid the assumption of 
linear superposition.

• Then:

• Even atmospheric surface layer show that this is not the 
case: the absence of direct viscous effects is an insufficient 
condition.
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Hunt et al. (Adv. Turb 2, Springer 1989)
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Linear superposition:



Hunt et al. (Adv. Turb 2, Springer 1989)
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What’s wrong with this picture? 
Wall-pressure fluctuations

• Integration of spectrum

in the approximate range
gives:

where B ≈ 1.6 and C > 0.
• Therefore, even consideration of the active motion alone 

shows that:
1. wall-pressure fluctuations increase with R+,
2. large scales penetrate to the wall: the near-wall region 
is not “sheltered”.
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A “weak” asymptotic condition: 
R+→∞
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• “Superpipe” data show that outer influence:
1. is not “inactive” and interacts with inner component
2. increases with R+

3. increases with decreasing distance from the wall.
• Therefore, linear decomposition is not possible, i.e:

• Therefore to demonstrate complete similarity, we must have 
simultaneous collapse on inner and outer variables.

• “It now appears that simple similarity of the motion is not 
possible with attached eddies and, in particular, the stress-
intensity ratio depends on position in the layer”

(Townsend 1976).
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Superpipe spectra
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Laban’s Mills surface layer (Högström)
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Observations

• Both the “strong” and “weak” asymptotic conditions 
lead to complete similarity.

• spectra in both the “superpipe” and the 
atmospheric surface layer show only incomplete 
similarity.  In both cases, R+ is too low to show 
complete similarity.

• As the Reynolds number increases, the receding 
influence of direct viscous effects has to be 
distinguished from the increasing influence of outer-
layer effects, because the inner/outer interaction is 
non-linear:
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Nature of the inner-outer interaction
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• Streamwise momentum:

• The mesolayer defined by                  

• Balance of viscous and inertial forces gives length scale

• The energy balance in the mesolayer involves turbulent and 
viscous transport, as well as production and dissipation.

• Since                          ,  a mesolayer exists at any R+.

• The lower limit to the log law should be expected to 
increase approximately as       .
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The mesolayer:
locus of outer peak in
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Nature of the inner-outer interaction
• The occurrence of a self-similar        range cannot be 

expected in or below the mesolayer.

• The full decomposition

shows how ideas concerning widely separated wavenumbers
can be misleading – inner/outer interaction is a more 
important consideration if looking for self-similarity,

• Does inner/outer interaction preclude self-similarity of 
inertial-range statistics?

• Is this most likely in the local-equilibrium region?                 
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A first-order inertial subrange
• Bradshaw (1967) suggested that a sufficient condition for a 

“first-order” subrange is that T(k) >> sources or sinks.
• This occurs in a wide range of flows for 
• No local isotropy:                    , but decreasing rapidly as

• Local-equilibrium region is a physical-space equivalent, 
where small spatial transport appears as a (small) source or 
sink at each k  (JFM 241).

• Saddoughi and Veeravalli (1994) show two decades of -5/3: 
lower one,                     : higher one                     for

• How does the requirement of self-similar T(k) fit in?
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A self-similar inertial subrange
• Simultaneous collapse

• ε and η can be estimated from local-equilibrium 
approximation and the log law: y/R=0.096

• No specific requirement for local isotropy:
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Inertial subrange scaling: uτ
outer scale
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Outer velocity scale – second moment
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Outer velocity scale – fourth moment

10-2 10-1 1000

25

50

75

100

125

150

175

ReD

y/R

___

u4+

4.9x103

1.0x104

1.8x104

2.5x104

5.5x104

7.5x104

1.5x105

2.3x105

4.1x105

1.0x106

3.1x106

5.7x106

Outer velocity scale
Superpipe with data of den Toonder

uτ

10-2 10-1 1000

0.1

0.2

0.3

0.4

0.5

ReD

y/R

___

u4∆

4.9x103

1.0x104

1.8x104

2.5x104

5.5x104

7.5x104

1.5x105

2.3x105

4.1x105

1.0x106

3.1x106

5.7x106

Outer velocity scale
Superpipe with data of den Toonder

Ucl-U
__

25



( )UUcl − scaling
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Inertial subrange scaling:                
outer scale
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Conclusions - I
• Statistics in boundary layers at short fetch and high 

velocity will not be the same as those at long fetch 
and low velocity.

• and             in pipes and boundary layers  at the 
same R+ are not the same.

• “fully-developed pipe flow” does not appear to be a 
universal condition.

• But, self-similarity does lead to universal properties 
(log law, inertial subrange?), but R+=constant does 
not.
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Conclusions - II
• Inner/outer interaction dominates: “top-down” 

influence increases with increasing R+, and 
decreasing y/R.

• Mesolayer determines lower limit to log 
region.

• is a better velocity scale for
• The pressure velocity scale                   is only a 

second-order correction:
– at R+ = 5000,                  7%.
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Conclusions III     
• In local-equilibrium region, self-similar inertial 

subrange appears above
• Departures from self-similarity: retain -5/3 scaling, 

but relax condition ε = constant (Lumley 1964):

where                       .
• Then, if 
• Need to look in outer region: larger spatial transport, 

but        larger.
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