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Synopsis

Self-similarity — what should we be looking for?
Log law: self-similar scaling - (y,u, )

Local-equilibrium approximation as a self-similar
energy balance 1n physical space.

Spatial transport — interaction between inner and
outer regions.

Self-similarity of energy balance appears as inertial
subrange 1n spectral space.

Consistent physical- and spectral- space views.

Self-similarity as a pre-requisite for universality.



What 1s self-similarity?

v = : ln(yufjnLB, Z:lln(lj+3**
u, K 1% u, kK \k

Simultaneous overlap analysis for v/u, << y << R indicates
motion independent of inner and outer lengthscales

Therefore the constant in the log argument 1s merely a
constant of integration and may be freely chosen.

It 1s usually taken to be the dominant imposed lengthscale so
that 1ts influence on B or B** 1s removed: as

y" >0, B—>5.56 %—)oo, B** 8.5

Overlap analysis indicates x 1s universal: but self-similarity 1s
a pre-requisite.



The local-equilibrium approximation

* Application of self-similar (y,uf) scaling to the energy
balance gives P = ¢

« Therefore expect log-law and local-equilibrium regions to be
coincident.

 Inertial subrange is self-similar spectral transfer, 7(k), as
demonstrated by simultaneous overlap with mner and outer
scaling.

* Wavelet decomposition (DNS data, JEM 491) shows T(k)
much more spatially intermittent than equivalent terms for
either P or &.

» Therefore 7(k) 1s unlikely to scale simply.

* Even then, energy balance at any point 1n space 1s an
integration over all k —so P = & will only ever be an
approximation.

« Usefulness of a “first-order” subrange (Bradshaw 1967)?



Self-similarity of the second moment

« Examine self-similarity using distinction between inner
(y" =yu_/v>>1) and outer (R* = Ru_ /v) influences in wall
region.
« Examine possibility of self-similarity in ¢, (k).
« If ¢{(k;) not self-similar, then uw? s very unlikely to be
either.

e Comparison of Townsend’s 1956 1deas with those of 1976
— are outer-layer influences “inactive”?

« Use these 1deas to highlight principal differences between
scaling of @, (k) in pipes and boundary layers, and even
between different flows at the same R”.



“Strong” asymptotic condition:
=00
As R" — o ,and y/R—0 , “large eddies are
weak” (Townsend 1956).
“Neglecting this possibility of outside influence”:
¢11(k19y9ur) — ufzyl)”(kly)
where ' 1s a “universal” function.

Therefore, provided ¢, is independent of y,
collapse on 1nner variables alone 1s sufficient to
demonstrate self-similarity.

Then: ¢11 o uf kl—l



“Strong” asymptotic condition

Neglecting streamwise gradient of Reynolds stress:

0, — 0°U
—(~uv) =vo; —way V-
oy oy

z[ll)((!)

Write u=u; +uwith @, =0

%(—MV) ~ [“i Xmi]x + [WL

Last term negligible (scale separation again) and removal of
cross product linearizes the outer influence.

“Inactive motion 1s a meandering or swirling made up from
attached eddies of large size...... ” (Townsend 1961).



Conclusions from*strong”
asymptotic condition

0
. + + +
Write u=u;+u,; uw’ =u’ +u; +2ij/_il. ;o+

Blocking means that v, = u()%

27

Therefore, v> and v are, to first order, F( )only

But: u_l.2+ = E.(y+), u? = F, (R+) and outer influence

(0]

appears as a linear superposition.

Therefore, at the same R™, internal and external flows
are the same.
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What’s wrong with this picture?
Superpipe
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What’s wrong with this picture ?
Self-similar structure

—1 . : : . : :
k1 implies hierarchy of self-similar, non-interacting
attached wall eddies that makes valid the assumption of
linear superposition.

e Then:

p YOO _y

Vz()ﬁ) Y1

« Even atmospheric surface layer show that this is not the
case: the absence of direct viscous effects 1s an insufficient
condition.
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Hunt et al. (Adv. Turb 2, Springer 1989)

Linear superposition:
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Fig.2 Schematic eddy shapes for analysing (a) shear-free boundary layers, and (b) shear boundary
layers. :

eddy below the boundary (which is present to satisfy the boundary condition (2.1¢)). So at y,
v(y) = vs + (y/y1)vr; and therefore (as the statistical theory confirms),

- . v(y)v(y
— () ( 1) e-'y/y1

) = (u/1)v%(y1) or Ryp = LY (2.4)
v?(y1)



Hunt et al. (Adv. Turb 2, Springer 1989)
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Fig.3 - .

Cross correlation of v at heights ¥y and y; normalised by v2 at y;. (a) Computed from
direct numerical simulations of the zero pressure gradient boundary layer (Spala._rt .1987),
and the plane channel (Moin & Moser 1987). Also shown are the theoretical predictions of

Hunt (1984) (R,, =~ y/y1)- (b) From atmospheric measurements at Boulder Atmospheric
Observatory.
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What’s wrong with this picture?

Wall-pressure fluctuations

Integration of spectrum ¢pp (k)= Aﬁ

in the approximate range (().1}3)‘1 < k, lg U, /301/
gives: p—fv —BInR" +C
where B :“JTVIV6 and C > 0.

Therefore, even consideration of the active motion alone
shows that:

1. wall-pressure fluctuations increase with R™,

2. large scales penetrate to the wall: the near-wall region
is not “sheltered”.

13



A “weak’ asymptotic condition:
R —o0
“Superpipe” data show that outer influence:
1. 1s not “inactive” and interacts with inner component

2. increases with R”

3. increases with decreasing distance from the wall.
Therefore, linear decomposition 1s not possible, 1.e:

—Q~ +
u’ =F(Q";y/R)=G(H";R")

Therefore to demonstrate complete similarity, we must have
simultaneous collapse on inner and outer variables.

“It now appears that simple similarity of the motion 1s not
possible with attached eddies and, in particular, the stress-
intensity ratio depends on position in the layer”

(Townsend 1976).
14



15

05

Superpipe spectra
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Laban’s Mills surface layer (Hogstrom

"Sorbus" - Outer Scaling

"Sorbus" - Inner Scaling
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Observations

* Both the “strong” and “weak” asymptotic conditions
lead to complete similarity.

* ¢,(k,) spectra in both the “superpipe” and the
atmospheric surface layer show only incomplete
similarity. In both cases, R" is too low to show
complete similarity.

* As the Reynolds number increases, the receding
influence of direct viscous effects has to be
distinguished from the increasing influence of outer-
layer effects, because the inner/outer interaction 1s

-I1 : —
non-linear u2+ _F(y*1y/R)

17



Nature of the inner-outer interaction

* Streamwise momentum: i(_ﬁ) =V, — W)y + WU
qy

« The mesolayer defined by ai(—a/) =0

V
« Balance of viscous and 1nertial forces gives length scale

1
o v f
* The energy balance in the mesolayer involves turbulent and
viscous transport, as well as production and dissipation.

: +5 :
+ Since 1<< R 2 << R a mesolayer exists at any R".

* The lower limit to the log law1 should be expected to

increase approximately as R 2. 18



The mesolayer:
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Nature of the inner-outer interaction

* The occurrence of a self-similar g~ 1range cannot be
expected 1n or below the mesolayer.

e The full decomposition rnot small

0
5(—uv) ~ [ul- X(’)i]x + [ul- Xm, | + [uo xmi]x + [uo xcoOL
shows how 1deas concerning widely separated wavenumbers
can be misleading — inner/outer interaction 1s a more

important consideration if looking for self-similarity, R — o

* Does inner/outer interaction preclude self-similarity of
inertial-range statistics?

* [s this most likely 1n the local-equilibrium region?

20



A first-order 1nertial subrange

Bradshaw (1967) suggested that a sufficient condition for a
“first-order” subrange 1s that 7(k) >> sources or sinks.

This occurs in a wide range of flows for R; >100
No local isotropy: R;,(k;) > 0, but decreasing rapidly as
kl —> O

Local-equilibrium region is a physical-space equivalent,
where small spatial transport appears as a (small) source or
sink at each k (JFM 241).

Saddoughi and Veeravalli (1994) show two decades of -5/3:
lower one, Ry, (k) > 0: higher one R\, (k;) ~ 0 for
R, >1500

How does the requirement of self-similar 7(k) fit in?

21



A self-similar 1nertial subrange

* Simultaneous collapse
2
S

( - " T (k1y2)§ th1lky)=C = (klz)% d1(kan)

—uy Uz Ve

« ¢£and 77 can be estimated from local-equilibrium
approximation and the log law: y/R=0.096

* No specific requirement for local 1sotropy:

Re, R,
55k 105
75k 140
150k 210
230k 270

1.0m 575



Inertial subrange scaling: u
outer scale
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Outer velocity scale — second moment
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Outer velocity scale — fourth moment
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v, -U) scaling
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Inertial subrange scaling: (v.,-0)
outer scale
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Conclusions - 1

Statistics 1n boundary layers at short fetch and high
velocity will not be the same as those at long fetch
and low velocity.

—5+

u” and ¢,(k) in pipes and boundary layers at the
same R are not the same.

“fully-developed pipe flow” does not appear to be a
universal condition.

But, self-similarity does lead to universal properties
(log law, inertial subrange?), but R"=constant does
not.

28



Conclusions - 11

Inner/outer interaction dominates: “top-down”
influence increases with increasing R", and
decreasing y/R.

1
Mesolayer ~ (R“LF determines lower limit to log
region.

(U el U ) 18 a better velocity scale for Rep =75x 10°

. +\73 .
The pressure velocity scale ./ = [Rz] 1s only a
second-order correction:

_ at R*= 5000, u; =7%.
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Conclusions 111

In local-equilibrium region, self-similar inertial
subrange appears above R; =500

Departures from self-similarity: retain -5/3 scaling,
but relax condition £ = constant (Lumley 1964):

_ ek e/ k]%
305
where T(k)=E(k)2k? .
Then, if T(k)=¢, y =1
Need to look 1n outer region: larger spatial transport,
but R, larger.
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