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Nomenclature

m Mass, kg

I Moment of inertia, kg m2

g Gravity, m/s2

φ, θ, ψ Attitude angles, rad

u, v, w Body-axis velocities, m/s

p, q, r Body-axis angular rates, rad/s

ax, ay, az Body-axis measured accelerations, m/s2

δelev Elevator deflection, rad

δail Aileron deflection, rad

δrud Rudder deflection, rad

X, Y, Z Aerodynamic forces, N

L,M,N Aerodynamic moments, N m

T Thrust force, N

S Spectral density function

γ2 Coherence function

I. Introduction

Unmanned aerial vehicles (UAVs) have become popular as fight test platforms in control

research applications. An important task for the development of these platforms is modeling

the aircraft dynamics. System identification techniques, which rely on experimental data

obtained in flight, have been developed to accomplish this task efficiently. However, the

application of system identification techniques to small, low-cost UAVs poses a challenge.

Physical airframe size and cost restrictions limit the availability and quality of onboard

sensors. For example, sensors required to measure angle-of-attack or angle-of-sideslip may

not be available. Furthermore, the available sensors may be susceptible to high levels of

noise. This challenge is addressed with a practical procedure to identify the dynamics of

small, fixed-wing UAVs using a commercial low-cost inertial sensor.

Foundations and mathematical background of system identification theory are covered

in detail by References 1 and 2. References 3, 4, and 5 summarize various engineering ap-

proaches to system identification, including time domain and frequency domain methods.

Novel identification techniques have been published in recent literature, detailing advance-

ments in areas such as real-time identification and efficient control surface input design.6–12

Computational software tools are also readily available to automate parts of the system
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identification process.1,3, 4 What remains unclear, however, is the viability of the various

techniques for application to small, low-cost UAVs. For example, some techniques assume

that highly accurate sensor measurements are available, while others require measurement

of the full aerodynamic state. These assumptions are unrealistic for low-cost platforms.

The procedure described in this paper is based on system identification in the frequency

domain. A linear state-space model is derived from the generic nonlinear equations of motion

for aircraft. Parameters in the linear model are identified by fitting the model to frequency

responses extracted from flight data, based on the approach in Reference 3. This approach is

similar to the frequency domain output-error methods in References 4 and 12, but relies on a

different cost function. It also implements a different algorithm to transform flight data into

the frequency domain. Both methods share the advantage of fitting models over frequency

ranges relevant to aircraft dynamics, and neither requires measurement of every state in the

model. Using frequency responses, however, preserves insightful ties to flight dynamics and

Bode plots. Its drawbacks include the need for longer and less efficient flight experiments.12

The procedure is applied to an Ultra Stick 25e UAV operated by the University of Min-

nesota,13 shown in Figure 1. Similar analysis has been applied to small, low-cost, rotorcraft

UAVs.6–8 This paper broadens the preliminary fixed-wing results given in Reference 14.

Figure 1. University of Minnesota Ultra Stick 25e UAV.

Remaining sections of the paper are organized as follows: Section II provides the nonlin-

ear equations of motion, linearized model, and simplifying assumptions. Physical properties

of the UAV and the first principles analysis used to obtain a baseline model are described in

Section III. Flight experiments used to collect informative data are designed using the base-

line model and operational constraints in Section IV. Section V briefly describes the theory

behind frequency domain system identification, and results are given in Section VI. The

identified parameters are integrated into the nonlinear equations of motion, and Section VII

shows time domain validation results for both linear and nonlinear models. Section VIII

describes a sensitivity and residual analysis, and Section IX gives concluding remarks.
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II. Fixed-Wing Aircraft Dynamics

A nonlinear model for fixed-wing aircraft dynamics can be derived from the generic rigid-

body equations of motion. Conventional aircraft are subject to external forces and moments

due to gravity, propulsion, and aerodynamics. The central modeling task is to determine

expressions for these external forces and moments. A simple nonlinear model is obtained

when the equations of motion are written in the vehicle body-axis (see References 4 and 15).

Standard nomenclature is used for the states: x-y-z body-axis velocities (u, v, w), x-y-z

body-axis angular rates (p, q, r), and a standard 3-2-1 ordered rotation sequence of Euler

angles (φ, θ, ψ). The x-y-z body-axis aerodynamic forces are denoted X, Y , and Z, and the

x-y-z body-axis aerodynamic moments are denoted L, M , and N .

For simplicity, gyroscopic effects of the rotating mass of the motor are assumed to be

insignificant, and the thrust T is assumed to act through the center of gravity and coincide

with the body x-axis. The resulting system is summarized by the following equations:4

Force Equations:

u̇ = (rv − qw) +X/m− g sin θ + T/m (1)

v̇ = (pw − ru) + Y/m+ g cos θ sinφ (2)

ẇ = (qu− pv) + Z/m+ g cos θ cosφ (3)

Moment Equations:

ṗ− (Ixz/Ix)ṙ = −qr(Iz − Iy)/Ix + qpIxz/Ix + L/Ix (4)

q̇ = −pr(Ix − Iz)/Iy − (p2 − r2)Ixz/Iy +M/Iy (5)

ṙ − (Ixz/Iz)ṗ = −pq(Iy − Ix)/Iz − qrIxz/Iz +N/Iz (6)

Kinematic Equations:

φ̇ = p+ tan θ(q sinφ+ r cosφ) (7)

θ̇ = q cosφ− r sinφ (8)

ψ̇ = sec θ(q sinφ+ r cosφ) (9)

The dynamic response of an aircraft can be recorded with an Inertial Measurement Unit

(IMU). Low-cost sensors measure angular rates (p, q, r) and translational accelerations (ax,

ay, az).
16 The measured accelerations, however, exclude the effect of gravity:4

ax = u̇− (rv − qw) + g sin θ (10)

ay = v̇ − (pw − ru)− g cos θ sinφ (11)

az = ẇ − (qu− pv)− g cos θ cosφ (12)
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The nonlinear model is linearized by assuming small perturbations from a steady, level

trim condition. For simplicity, state variables in the nonlinear equations of motion are

recast using the same notation as perturbation states in the linear model. The longitudinal

dynamics are decoupled from the lateral/directional dynamics, and the thrust is assumed to

be constant.

1. Longitudinal Dynamics

The longitudinal dynamics are described by the states xlon = [u,w, q, θ]>, which correspond

to Equations 1, 3, 5, and 8. The forces X and Z, and the moment M are assumed to be

linear functions of u, w, q, and the elevator deflection δelev, resulting in the following system:

ẋlon = Alonxlon +Blonδelev (13)

where

Alon =


Xu Xw Xq −We −g cos θe

Zu Zw Zq + Ue −g sin θe

Mu Mw Mq 0

0 0 1 0

 Blon =


Xδelev

Zδelev

Mδelev

0


The terms We, Ue, and θe represent the trim condition. The X, Z, and M terms with

subscripts are the dimensional aerodynamic derivatives to be identified. Coefficients in the

Alon matrix are the stability derivatives, and the Blon matrix holds the control derivatives.

Finally, the linearized acceleration measurements are given by:

ax = u̇+ qWe + g cos θe θ + g sin θe (14)

az = ẇ − qUe + g sin θe θ − g cos θe (15)

The longitudinal dynamics can be decoupled further into the phugoid and the short-

period modes. The phugoid mode is typically very slow, lightly damped, and dominates the

response in u, θ, and ax. The short-period mode is typically fast, moderately damped, and

dominates the response in w, q, and az. For control applications, accurate knowledge of the

phugoid mode is not crucial due to the low frequency of the oscillation, which is compensated

for with feedback control. Stability and performance characteristics also depend primarily on

the short-period mode.15 System identification is applied to the short-period model shown

in the following system, where the state vector is xlon = [w, q]>:

Alon =

Zw Zq + Ue

Mw Mq

 Blon =

Zδelev
Mδelev

 (16)

5 of 32



Terms in Equations 14 and 15 that depend on θ are neglected for the short-period model.

Furthermore, the short-period aircraft response captured by ax is small relative to the mea-

surement noise on a low-cost IMU. Hence, ax is not used in this identification analysis.

2. Lateral/Directional Dynamics

The lateral/directional dynamics are described by the states xlat = [v, p, r, φ, ψ]>, which

correspond to Equations 2, 4, 6, 7, and 9. Force Y , and moments L and N are described

by linear functions of v, p, r, and aileron and rudder deflections (δail and δrud, respectively).

The resulting system is given by the following:

Mlatẋlat = A′latxlat +B′lat

 δail
δrud

 (17)

where

Mlat =



1 0 0 0 0

0 1 −Ixz/Ix 0 0

0 −Ixz/Iz 1 0 0

0 0 0 1 0

0 0 0 0 1



A′lat =



Yv Yp +We Yr − Ue g cos θe 0

Lv Lp Lr 0 0

Nv Np Nr 0 0

0 1 tan θe 0 0

0 0 sec θe 0 0


B′lat =



Yδail Yδrud

Lδail Lδrud

Nδail Nδrud

0 0

0 0


The Y , L, and N terms with subscripts in A′lat and B′lat are the dimensional aerody-

namic derivatives to be identified. Unlike the longitudinal dynamics, the lateral/directional

dynamics cannot be decoupled into independent modes. They are governed by a slow spiral

mode, a fast lightly damped dutch roll mode, and an even faster roll mode. Finally, the

linearized acceleration measurement is given by:

ay = v̇ − pWe + rUe − g cos θe φ (18)

The longitudinal and lateral/directional systems form a linear parametric model that is

used as a basis for frequency domain system identification. Stability and control derivatives

are identified by fitting these models to frequency responses extracted from flight data.
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III. UAV Airframe and Preliminary Analysis

This section presents the physical properties of the Ultra Stick 25e vehicle, its hardware

and sensing capabilities, and the preliminary analysis used to generate a baseline model of

the aircraft dynamics. The baseline model is analyzed to determine the approximate gain

and bandwidth of the system. This a priori insight is used to design informative and efficient

flight experiments for the subsequent frequency domain system identification.

A. Airframe and Instrumentation

The Ultra Stick 25e has a conventional fixed-wing airframe with aileron, rudder, and elevator

control surfaces. The aircraft is also equipped with flaps, but these are not used in this

analysis. All control surfaces are actuated via electric servos with a maximum deflection of

25 degrees in each direction. The propulsion system consists of an electric motor that drives

a fixed-pitch propeller. Physical properties of the airframe are summarized in Table 1, where

the moments of inertia are calculated using swing tests. More details on the University of

Minnesota Ultra Stick 25e platform can be found in References 13 and 17.

Table 1. Physical properties of the Ultra Stick 25e airframe.

Property Symbol Value Units

Mass m 1.959 kg

Wing Span b 1.27 m

Wing Area S 0.31 m2

Mean Aerodynamic Chord c 0.25 m

Moment of Inertia Ix 0.089 kg m2

Moment of Inertia Iy 0.144 kg m2

Moment of Inertia Iz 0.162 kg m2

Cross Moment of Inertia Ixz 0.014 kg m2

The aircraft is instrumented with an IMU that provides measurements of angular rates

and translational accelerations.16 Three gyroscopes form the angular rate sensor, and three

accelerometers form the acceleration sensor. A ground test, with the throttle set to around

70%, resulted in a noise amplitude is approximately 2 deg/s in each angular rate channel,

and 0.5 m/s2 in each acceleration channel. The aircraft is also equipped with an on-board

flight computer.18 Manual pilot commands are recorded by the flight computer prior to

being delivered to the actuators. This is useful for system identification flight experiments,

where augmenting manual pilot commands with automatically generated excitation signals

helps maintain the aircraft near the trim condition. The flight computer delivers actuator

commands at 50 Hz, and the IMU data is recorded at the same rate.
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Flight tests are limited to line-of-sight range to avoid communication dropout, for safety,

and to satisfy FAA regulations for radio controlled aircraft. The pilot on the ground must

always be able to re-gain manual control of the aircraft, and performs all take-offs and

landings. The aircraft systems are battery powered, allowing 20 minutes of flying time on a

single charge.

B. Preliminary Analysis

The task of system identification can be greatly simplified by incorporating a priori knowledge

of the aircraft dynamics into the analysis. A baseline model is generated to gain insight into

the general characteristics of the system, such as its gain and bandwidth. This information

is used as a guide to design informative and efficient system identification flight experiments,

for which a rough approximation of the dynamics is sufficient.

Various methods can be applied to obtain a baseline model. If the airframe is similar to

an already modeled aircraft, its model can be scaled. However, if the aircraft configuration

and airfoils are new, empirical methods and/or simple wind tunnel tests can be implemented.

For example, the Digital DATCOM19 is a purely empirical guide to estimating stability and

control derivatives based on aircraft configuration and the experience of engineers. Simple

wind tunnel tests can also be used, in particular to obtain estimates of control derivatives

and stability derivatives associated with the body velocity components u, v, and w. The

key point is that various methods exist to obtain a baseline model, and depending on the

available resources, a combination of methods can be used.

A baseline model of the Ultra Stick 25e flight dynamics is generated using aerodynamic

data from two similar airframes. Control derivatives and stability derivatives associated with

the body velocities are estimated from wind tunnel tests performed with an Ultra Stick Mini.

This airframe is smaller than the 25e and fits in the wind tunnel available at the University

of Minnesota. The 25e and the Mini have similar aerodynamics but are not exact geometric

scales of each other. Stability derivatives associated with the angular rates are taken from

an aerodynamic model for the Ultra Stick 120.13 This airframe is larger than the 25e, has

similar aerodynamics, yet it also is not an exact geometric scale. The aerodynamic model for

the 120 was developed at NASA Langley Research Center, using both static and dynamic

wind tunnel testing.20,21 Due to these approximations in the aerodynamics, the baseline

model for the Ultra Stick 25e is only used as a guide to design flight experiments.

For the wind tunnel tests performed on the Ultra Stick Mini, airspeed is held constant

while aerodynamic forces and moments on the aircraft are measured by a sensor. The first

two tests consist of static variations in angle-of-attack and angle-of-sideslip. These tests are

sufficient to obtain estimates of the stability derivatives associated with the body velocity

components. A third wind tunnel test is conducted to estimate the control derivatives.
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In this test, each control surface is deflected independently while aerodynamic forces and

moments are measured.

1. Longitudinal Dynamics

The longitudinal control derivatives, velocity stability derivatives, and equilibrium terms are

estimated using wind tunnel data acquired with the Ultra Stick Mini. The angular rate

stability derivatives are taken from values estimated for the Ultra Stick 120.20,21 Along with

mass data from Table 1, the longitudinal baseline model is constructed and given by:

Alon =


−0.38 0.60 −0.36 −9.80

−0.98 −7.81 15.32 −0.21

0.18 −8.31 −35.21 0

0 0 1 0

 Blon =


−0.36

−3.62

−106.32

0


The modes of the longitudinal dynamics are computed from an eigenvalue decomposition

of the system state matrix and presented in Table 2.

Table 2. Estimated modes of the longitudinal dynamics.

Mode Natural Frequency [rad/s] Damping Ratio

Phugoid 0.48 0.43

Short-Period Pole 1 13.70 -

Short-Period Pole 2 29.28 -

The phugoid mode has a natural frequency of 0.48 rad/s with a damping ratio of 0.43.

The typical short-period mode does not appear in the baseline model. Instead, it is replaced

by two stable real poles at 13.70 and 29.28 rad/s. This is unconventional for fixed-wing

aircraft and is a result of estimating derivatives using the Ultra Stick Mini and 120. However,

this result is not a major concern for the baseline model since the approximate bandwidth

associated with the longitudinal dynamics can still be inferred.

2. Lateral/Directional Dynamics

The lateral/directional control derivatives, velocity stability derivatives, and equilibrium

terms are estimated using wind tunnel data acquired with the Ultra Stick Mini. The angular

rate stability derivatives are taken from values estimated for the Ultra Stick 120.20,21 The
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populated matrices are shown by the following:

Mlat =



1 0 0 0 0

0 1 −0.157 0 0

0 −0.086 1 0 0

0 0 0 1 0

0 0 0 0 1



A′lat =



−1.64 0.64 −18.90 9.50 0

−2.14 −13.71 13.71 0 0

0.93 −0.12 −7.28 0 0

0 1 0.03 0 0

0 0 1 0 0


B′lat =



0 6.99

−68.65 18.32

−8.03 −19.01

0 0

0 0


(19)

The modes of the lateral/directional dynamics are computed from an eigenvalue decom-

position of the system state matrix, and are presented in Table 3.

Table 3. Estimated modes of the lateral/directional dynamics.

Mode Natural Frequency [rad/s] Damping Ratio

Spiral 0.05 -

Dutch Roll 6.03 0.77

Roll 12.38 -

The spiral mode is represented by a pole at 0.05 rad/s, the dutch roll mode has natural

frequency of 6.03 rad/s with damping ratio 0.77, and the roll mode is represented by a pole

at 12.38 rad/s.

IV. Design of Flight Experiments

Typical flight experiments for small UAVs platforms under development are divided into

three segments: take-off, research experiments, and landing. Each flight begins with a

manual take-off by the pilot. Once airborne, the pilot flies the aircraft into a race track

pattern with constant altitude and obtains a steady, level trim. The race track pattern is

used to maximize the available straight and level flight time. Dimensions of the pattern

are defined by line of sight requirements. In an emergency, the pilot must always be able

to re-gain manual control of the aircraft and visually guide it back to safe operation. As a

result of these constraints, the Ultra Stick 25e can only achieve a 20 second maximum time

window of straight and level flight.
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Research experiments begin when the pilot is ready to engage the on-board flight com-

puter. Immediately following a turn in the race track pattern, the pilot trims the aircraft to

a desired flight condition. In this case, the flight condition for the Ultra Stick 25e is straight

and level flight at approximately 19 m/s. The pilot then engages the flight computer to

execute the research experiment. When the experiment is complete, the pilot disengages the

flight computer and continues the race track pattern. The pilot can choose to realign the

aircraft for additional experiments, or to conclude the flight test with a manual landing.

A. System Identification Experiments

The aircraft dynamics must be excited during a flight experiment in order to successfully

perform system identification. Automatic frequency sweep inputs are used to accomplish

this over a broad frequency range. These inputs are computer generated sinusoids with

frequencies that vary logarithmically with time. The flight computer applies signals for one

control surface at a time in order to prevent correlation between the inputs. Frequency sweeps

are designed using the default logarithmic chirp function in MATLAB,22 which implements

the following equation:

δ(t) = A sin
(
f(t)t

)
, where f(t) = f0

(
f1
f0

)t/t1
(20)

In this relationship, the amplitude A is specified, as well as a frequency interval given by f0

and f1 (in Hz). A time vector t is required, where the final time is given by t1.

Frequency sweep inputs can take the aircraft away from the trim condition.3,4 To counter

this effect, the inputs are augmented with a manual pilot input via the flight computer. The

pilot counters the drift by ensuring that the nose and wings remain level over the course of the

maneuver. Pilot augmentation is only permitted for the control surface on which the active

frequency sweep is applied. All remaining control surfaces are fixed at their trim values

throughout the experiment. If multiple inputs were active simultaneously, the extracted

frequency response would need to be conditioned for the effect of the secondary input on the

primary input-output response. To ensure that each experiment begins with airspeed close

to 19 m/s, the throttle setting is fixed to 70%. Besides frequency sweep experiments, flight

data from doublet maneuvers is collected to validate the identified dynamics in the time

domain. To obtain this data, the pilot executes a manual doublet for each control surface.

Several practical factors constrain the design of frequency sweeps experiments. Due to

trimming requirements before and after each turn, a 10 second experiment time window is

the approximate limit for the Ultra Stick 25e. As a result, dynamics at frequencies below

0.1 Hz cannot be identified accurately. Given a data sampling rate of 50 Hz, the Nyquist

limit indicates that signals above 25 Hz cannot be recorded accurately. A more practical
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limit for system identification is closer to 10 Hz.3 The fastest pole in the baseline model is

located around 30 rad/s, or about 5 Hz. Hence, the upper frequency limit is not a major

concern. The phugoid and spiral modes are located below 0.1 Hz. They cannot be identified

accurately due to a lack of excitation in this frequency range. However, this is not of great

concern as the slow nature of these dynamics can be easily handled by a pilot or a control

system.

Servo actuator dynamics must also be considered in the design of system identification

experiments. Specifications on actuator bandwidth are often unavailable from low-cost hobby

manufacturers. Ground tests on the Ultra Stick 25e indicated that the bandwidth of the

servos is below 15 Hz. Therefore, frequency sweeps from 0.1 to 15 Hz would adequately

excite the flight dynamics relevant for control applications as well as the actuator dynamics.

B. Frequency Sweep Design

Figure 2 shows the baseline model frequency response for each control surface to its cor-

responding primary angular rate response. Conventional aircraft dynamics are dominated

by these input-output relationships. Accurate models for these relationships are thus a key

requirement for control applications. The 0.1 to 15 Hz frequency range is highlighted by the

solid curves.

(a) Elevator to pitch rate. (b) Aileron to roll rate. (c) Rudder to yaw rate.

Figure 2. Baseline model frequency response with range for system identification.

To achieve a sufficiently high signal-to-noise ratio (SNR) on the Ultra Stick 25e, the

measured output response must exceed 6 deg/s for the angular rates, and 1.5 m/s2 for the

accelerations. This accounts for about a factor of 3 between the magnitude of the noise and

the magnitude of the response, which represents the minimum desired SNR.3 Experience

has shown that higher SNR, closer to a value of 6, can improve the quality of the frequency

responses. A frequency sweep with amplitude of 4 degrees is chosen for safety and to satisfy
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SNR requirements. Higher amplitudes would generally be considered unsafe due to the

uncertainty in the baseline model.

The identification frequency range is broken down into two intervals: low and high fre-

quency. Each interval has a dedicated experiment to ensure that the entire frequency range

is excited sufficiently. The low frequency interval spans 0.1 to 5 Hz, and the high frequency

interval spans 4 to 15 Hz. Five frequency sweep experiments are conducted for each interval

on each control surface to obtain a rich data set. Multiple runs are required because fre-

quency responses are ultimately extracted from the flight data using an averaging process.

Figure 3 shows both simulation and flight results from a low frequency aileron sweep. The

pilot command augmentation is clearly visible on the right.

(a) Aileron sweep baseline model simulation. (b) Aileron sweep flight experiment data.

Figure 3. Sample aileron frequency sweep input signal and response.

The flight data in Figure 3 shows that the manual pilot augmentation helps keep the

aircraft around the desired trim condition during the frequency sweep experiment. The pilot

is able to maintain oscillations about the trim condition without canceling out the input

excitation, eliminating the bias noted at the end of the maneuver in the baseline simulation.

The true aircraft exhibits higher gain in the roll rate channel than predicted by the baseline

model. However, the baseline model accurately predicts low gain in the off-axis, particularly

in the y-component acceleration response.
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V. Frequency Domain System Identification

The frequency domain system identification process is comprised of two steps. The first

identification step extracts frequency responses using spectral quantities computed from the

input-output flight data. In this paper, control surface commands recorded by the flight

computer are considered inputs because sensors are not available to measure the true sur-

face deflections. The second identification step fits the linear state-space models (described

by Equations 16 and 17) to the extracted frequency responses. Parameters in the linear

models are identified through a nonlinear optimization that minimizes the fitting error in

the frequency domain.

A. Extracting Frequency Responses

The basic frequency domain identification problem is cast for a two-input, single-output

system without the loss of generality.23 This formulation can easily be modified to include

additional inputs. A multiple-output model, such as the lateral/directional aircraft model,

is constructed by superposing sets of multiple-input, single-output relationships. The block

diagram in Figure 4 shows the fundamental transfer functions and signals:

Hu2→y(ω)

Hu1→y(ω)

-
u2

-
u1

i
��

��
��*

HHH
HHHj ?

v

-
y

Figure 4. Diagram of a two-input, single-output system.

Signals u1 and u2 are inputs to the system, which are represented by transfer function

blocks Hu1→y(ω) and Hu2→y(ω). Signal v introduces measurement noise on the output mea-

surement signal y. It is assumed that the noise disturbance is white and uncorrelated with

the inputs u1 and u2.

Identifying transfer functions Hu1→y(ω) and Hu2→y(ω) is simple if the input signals u1

and u2 are uncorrelated. Uncorrelated inputs are obtained in practice by exciting each

control surface independently, justifying why frequency sweep experiments are executed for

one control surface at a time. To prevent biases due to correlation between the measurement

noise and the inputs,2 it is best to perform open-loop experiments. Operating in open-loop is

particularly beneficial for systems equipped with sensors that are susceptible to high levels of

measurement noise. Under these conditions, the spectral input-output relationship is given
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by the following equation:

Sy,y(ω) = |Hu1→y(ω)|2 Su1,u1(ω) + |Hu2→y(ω)|2 Su2,u2(ω) + Sv,v(ω) (21)

In this relationship, S(ω) represents a complex-valued spectral density function. Hu1→y(ω)

and Hu2→y(ω) are obtained from cross- and auto-spectral density functions for the input and

output signals:

Hu1→y(ω) =
Sy,u1(ω)

Su1,u1(ω)
Hu2→y(ω) =

Sy,u2(ω)

Su2,u2(ω)
(22)

Spectral quantities are estimated from the input and output flight data. For more details

on spectral analysis, see References 3 and 23. Applying a standard Hanning window with 50%

overlap is one simple approach to obtain a smooth frequency response estimate. Experience

has shown that this windowing technique works well for aircraft systems. An appropriate

window length remains to be selected. Window length is directly related to the low frequency

limit of the estimated frequency response, where longer windows allow lower frequencies. The

maximum window length is given by the data record length, which in this case is 10 seconds.

Longer windows, however, reduce the total number of windows applied to the data record

and diminish the averaging effect. As a result, the estimated frequency response exhibits

more random error, particularly at frequencies where the SNR is low and averaging would

have been the most helpful. Hence, there is no single optimal window length that provides

both high accuracy and broad dynamic range in an estimated frequency response.

A frequency response estimate can be improved by using data from several individual

frequency responses, each obtained with a different window length, to form a composite fre-

quency response. The composite frequency response blends the averaging benefits of shorter

windows with the dynamic range advantages of longer windows. In this analysis, 5 frequency

responses are obtained using 2, 4, 6, 8, and 10 second windows. The basic principle used to

generate the composite frequency response emphasizes frequency response data from the re-

sponse with the highest coherence at each individual frequency point. Coherence functions,

denoted γ2(ω), measure the linear correlation between signals. For example, a coherence

value of 1 indicates that the entire output response is accounted for by the input via a linear

transfer function. Hence, the composite frequency response is generated by emphasizing data

from the frequency response with the highest coherence. More complex optimization-based

approaches have been developed to obtain more accurate composite frequency responses.3

However, coherence weighting alone yields sufficiently accurate results for small UAVs.

In general, coherence values less than one imply the presence of “non-ideal” effects in the

input-output relationship, such as nonlinear dynamics, unmeasured inputs, disturbances, or
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measurement noise. High coherence, in practice above 0.7, is desired for accurate frequency

domain system identification. Coherence functions for the system in Figure 4 based on

spectral density functions, assuming uncorrelated inputs, are given by:

γ2u1,y(ω) =
|Sy,u1(ω)|2

Su1,u1(ω) Sy,y(ω)
γ2u2,y(ω) =

|Sy,u2(ω)|2

Su2,u2(ω) Sy,y(ω)
(23)

Transfer functions Hu1→y(ω) and Hu2→y(ω) are used as estimates for the system frequency

response in the subsequent parametric identification analysis. This basic insight on the

spectral estimation process must be incorporated into the design of flight experiments in

order to achieve the most accurate frequency response estimates.

B. Parametric Identification

The longitudinal and lateral/directional aircraft dynamics are identified by fitting their cor-

responding linear parametric models to estimated frequency responses. This is implemented

as a nonlinear optimization that aims to minimize the error of the fit in the frequency do-

main. The decision variables in the optimization are the stability and control derivatives

from the state and input matrices of the linear parametric models. Hence, the identification

subspace is described by the set of aerodynamic parameters that determine the state-space

representation of the aircraft dynamics. The optimization uses a cost function to capture

errors in the frequency domain (over a desired interval) between the linear parametric mod-

els and the estimated frequency responses. The cost function is weighted based on high

coherence to emphasize the fit where the estimated frequency responses accurately capture

the system response.

The ability to identify a physically meaningful aircraft model depends on the number of

free parameters in the linear model relative to the information captured by the estimated

frequency responses. In general, the information captured is limited by the available sensor

measurements and the experimental constraints. Small, low-cost UAVs are equipped with

a limited quantity of sensors, which restricts the number of available estimated frequency

responses. Furthermore, the 10 second experiment time window for the Ultra Stick 25e

implies that the phugoid mode cannot be excited. This mode is also significantly decoupled

from the remaining longitudinal dynamics. Including free parameters in the optimization

that describe this non-excited, decoupled mode would result in over-parametrization. To

address this issue, parameters associated with the phugoid mode are fixed to their baseline

values. This assumption can introduce errors in the identified model in the form of a low

frequency mismatch. However, low frequency errors can easily be handled by feedback control

and hence are not of great concern.

Flight dynamics relevant for control applications can be identified with the proposed ap-

16 of 32



proach using measurements from an IMU alone. This is a significant advantage for low-cost

systems with limited sensor equipment. Other approaches, such as the state-space formu-

lation of the equation-error method,4 require measurement of every state of the aircraft

model. This is not a feasible requirement for low-cost UAVs. Frequency domain paramet-

ric identification also has some general advantages over time domain identification. Flight

dynamics relevant to control are dominant in a particular frequency range. Identification in

the frequency domain allows accurate modeling to be emphasized in this frequency range.

The parametric identification is performed using CIFER R©, a frequency domain system

identification tool in the aerospace industry.3 Originally developed for rotorcraft identifi-

cation, this tool has also been applied to fixed-wing aircraft.12,14 A nonlinear optimization

is implemented for the parametric identification, emphasizing a close model fit in portions

of the frequency response with high coherence. Additional known dynamics, such as actu-

ator dynamics and system time delay, can be augmented to the linear parametric models.

These additional dynamics allow the optimization to identify a model that closely matches

the estimated frequency responses. Actuator dynamics and system time delay are identified

separately using a method described in the next section.

VI. Identification Results

The longitudinal and lateral/directional Ultra Stick 25e models are identified separately.

The simple structure of the short-period model is exploited first to identify the actuator dy-

namics and system time delay using the concept of Low-Order Equivalent Systems (LOES).

This approach which was originally developed in the 1970s to certify aircraft handling qual-

ities.24 Parametric identification in CIFER R© is performed using the linear aircraft models

presented in Section II to determine the longitudinal and lateral/directional flight dynamics.

1. Longitudinal Dynamics

Figure 5 shows the estimated frequency responses and the final parametric identification

results for the elevator input to the pitch rate and z-axis acceleration measurements. The

frequency response for the pitch rate is on the left, and for the z-axis acceleration on the

right. The baseline model is also shown for comparison, indicating a significant deviation

from the final results.

The short-period mode has a known structure that can be fitted with a LOES.12 Analysis

based on LOES is performed first in order to identify the actuator dynamics and system

time delay. Once these additional dynamics have been determined, they are appended to

the short-period state-space model and fixed for the parametric identification in CIFER R©.

This approach is expected to introduce errors in the final identification results. However, it is
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(a) Elevator input to pitch rate. (b) Elevator input to z-axis acceleration.

Figure 5. Longitudinal dynamics identification for elevator input.

necessary in order to avoid having too many free parameters that need to be identified. LOES

modeling is based on using on a transfer function plus a time delay to match an experimental

frequency response. The transfer function for the elevator to pitch rate response, which

represents the short-period mode, is given by the following:

Hsp(s) =
Ksp(s+ asp)

s2 + 2ξsp ωsps+ ω2
sp

(24)

This transfer function has relative degree one, hence its frequency response must exhibit a

first order roll-off. The corresponding estimated frequency response on the left in Figure 5,

however, exhibits a third order roll-off. This mismatch suggests that the actuator dynamics

should be modeled as a transfer function with relative degree two.

Parameters in Equation 24 are tuned to fit the estimated frequency response up to the

bandwidth of the short-period mode. The resulting LOES short-period model has a natural

frequency ωsp = 17.3 rad/s, damping ratio ξsp = 0.65, gain Ksp = -107.4, and zero asp =

14.5 rad/s. The actuator is identified as a second-order low-pass filter with a 50.27 rad/s

bandwidth. Together, the LOES short-period model and the actuator dynamics provide a

good fit of the magnitude curve. A 50 msec first-order Pade approximation is included to

model the system time delay, which provides a good fit of the phase curve. Part of this delay

is attributed to the 20 msec computer computation time. The remaining time delay captures
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unmodeled and higher-order dynamics, such as the nonlinear effect of actuator rate limits.

Parametric identification is used to fit the short-period state-space model (shown in Equa-

tion 16) to the estimated frequency responses, given fixed actuator dynamics and system time

delay. The results are used to update the baseline model, which completes the longitudinal

axis identification process. Derivatives corresponding to the phugoid mode are not updated

since they are fixed to their baseline values. The final identified model is shown by the

frequency responses in Figure 5. The results indicate that the identified model successfully

captures the longitudinal dynamics of the Ultra Stick 25e, along with actuator dynamics

and time delay. Based on the coherence functions, the model is expected to be accurate

from 1 rad/s up to 70 rad/s in the angular rate channel, and up to 20 rad/s in the acceler-

ation channel. Dynamics near the bandwidth are most important for control applications,

and the results indicate that they are captured accurately by the identified model. Table 4

summarizes the modal characteristics of the longitudinal dynamics.

Table 4. Identified longitudinal dynamics of the Ultra Stick 25e.

Mode Frequency [rad/s] Damping Time Constant [s]

Phugoid 0.51 0.38 12.32

Short-Period 16.33 0.83 0.39

Actuator 50.27 0.80 0.13

Time Delay - - 0.05

Equation 25 provides the system matrices that represent the identified model shown in

Figure 5 and Table 4. Note that the stability and control derivatives corresponding to the

phugoid dynamics are maintained at their baseline values.

Alon =


−0.38 0.60 −0.36 −9.80

−0.98 −10.65 16.74 −0.21

0.18 −5.39 −16.55 0

0 0 1 0

 Blon =


−0.36

−3.62a

−141.57

0

 (25)

The identified model deviates significantly from the baseline model, notable particularly

from the magnitude plots in Figure 5. Further, a standard oscillatory short-period mode is

identified and shown in Table 4. The poor accuracy of the baseline model is attributed to

the approximations made during its construction.

aParametric identification found the cost function to be highly insensitive to the Zδelev control derivative,

indicating poor accuracy in the identified value of this parameter. The derivative was fixed at the baseline

value and the optimization reconverged for the remaining parameters. More details in Section VIII.
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2. Lateral/Directional Dynamics

The lateral/directional dynamics are more complicated to identify than the longitudinal dy-

namics. Although the spiral mode is very slow and cannot be excited given the experimental

constraints, it cannot be decoupled in the state-space model and fixed to a baseline value. As

a result, the lateral/directional model has a large number of free parameters relative to the

information captured by the estimated frequency responses. Low gain in some cross-coupling

relationships, such as in the rudder to roll rate channel, complicate the problem further.

The lateral/directional actuator model is assumed to be the same as in the longitudinal

dynamics. This assumption is valid because all control surfaces are actuated by the same

type of servo. The time delay, in general, captures unmodeled and higher-order effects and

hence could be different in the lateral/directional axes. However, it is assumed that the time

delay is the same throughout the aircraft to avoid introducing another unknown parameter.

These assumptions simplify the lateral/directional identification problem, for which over-

parametrization is already a significant concern. Figure 6 shows the identification results for

the aileron and rudder control surface inputs to the roll rate response. Figure 7 shows the

yaw rate response, and Figure 8 shows the y-axis acceleration response.

(a) Aileron input to roll rate. (b) Rudder input to roll rate.

Figure 6. Lateral/directional dynamics identification for roll rate output.

Figure 6 shows the identification results for the control surface inputs to the roll rate

response. Based on the coherence functions, the model is expected to be accurate from
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around 1 rad/s to 40 rad/s for the aileron channel, and from around 1 rad/s to 8 rad/s

for the rudder channel. The roll rate is expected to be identified accurately throughout

the bandwidth of the dynamics for both channels. Note that the aileron dynamics roll off

at -20 dB/dec, while the rudder dynamics roll off at -40 dB/dec. As a result, gain in the

rudder channel is attenuated more at higher frequencies. This is confirmed by the coherence

function dropping at a lower frequency in the rudder channel than in the aileron channel.

(a) Aileron input to yaw rate. (b) Rudder input to yaw rate.

Figure 7. Lateral/directional dynamics identification for yaw rate output.

Figure 7 shows the identification results for the control surface inputs to the yaw rate

response. Gain in the aileron to yaw rate channel is about 10 dB lower than in the aileron

to roll rate channel, which reduces quality in the estimated frequency response due to lower

SNR. The aileron to yaw rate channel is accurately modeled from around 1 rad/s to 10

rad/s, which captures the bandwidth of the dynamics. The rudder to yaw rate dynamics

show a pair of complex-conjugate zeros near 1 rad/s. The frequency response has low gain

near this frequency, which makes the damping of the zero dynamics challenging to identify.

This effect is confirmed by the low coherence function in the neighborhood of 1 rad/s in the

rudder to yaw rate channel. Overall, the rudder to yaw rate channel is accurately modeled

from 2 rad/s to 70 rad/s, which captures the bandwidth of the dynamics.
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(a) Aileron input to y-axis acceleration. (b) Rudder input to y-axis acceleration.

Figure 8. Lateral/directional dynamics identification for y-axis acceleration output.

Figure 8 shows the identification results for the control surface inputs to the y-axis

acceleration response. The coherence function in the aileron channel is only sufficiently high

from 1 rad/s to 4 rad/s, which is a narrower range than desired. The bandwidth of this

frequency response is not accurately identified due to a sharp drop in the gain. The rudder

to y-component acceleration has higher gain than the aileron. Hence, the coherence function

is high and the model is accurately identified from 1 rad/s to 20 rad/s, which covers the

relevant dynamic range.

Table 5 summarizes the modal characteristics of the identified lateral/directional dynam-

ics. The slow response associated with the spiral mode is impossible to excite given the

prevailing experimental constraints. This is expected to lead to poor identification of the

spiral mode. Similar to the phugoid mode, however, this is not a critical issue for control

applications. Actuator dynamics and system time delay for the lateral/directional model are

assumed to be the same as for the longitudinal model, which were given in Table 4.

Table 5. Identified lateral/directional dynamics of the Ultra Stick 25e.

Mode Frequency [rad/s] Damping Time Constant [s]

Spiral 0.02 - 314.16

Dutch Roll 4.96 0.33 1.27

Roll 12.53 - 0.50
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The identified A′lat and B′lat matrices are presented in Equation 26. Unlike for the longitu-

dinal case, the entire set of lateral/directional stability and control derivatives are updated.

The matrix Mlat is not updated since the mass properties are assumed to be known.

A′lat =



−0.64 0.46 −18.21 9.50 0

−2.02 −12.47 4.05 0 0

1.30 0.86 −3.09 0 0

0 1 0.03 0 0

0 0 1 0 0


B′lat =



−2.06 2.98

−139.10 6.52

17.22 −26.42

0 0

0 0


(26)

The results in Figures 6 - 8 indicate that the identified lateral/directional model is most

accurate in the roll rate response due to both aileron and rudder inputs, and for the yaw

rate and y-component acceleration due to rudder input. Overall, the identified model is

significantly more accurate than the baseline model in all channels. This first iteration of

frequency domain system identification provides crucial insight regarding the true aircraft

dynamics of the Ultra Stick 25e. The findings also provide guidelines for the design of

additional flight experiments to be used in refining the model.

VII. Time Domain Model Validation

The accuracy of an identified model is ultimately predicated on its ability to predict

responses. For validation purposes, the identified model is simulated using pilot inputs

recorded from a doublet flight maneuver. Simulation results are compared to flight data

using the Theil Inequality Coefficient (TIC).25 The TIC is a normalized metric between 0

and 1 used to compare time histories, where 0 indicates a perfect match and 1 indicates a

worst case deviation. Values of TIC < 0.25 correspond to accurate predictions for fixed-wing

aircraft.3,26 The TIC is defined by the following relationship:

TIC =

√
1
n

∑n
i=1(xi − x̃i)2√

1
n

∑n
i=1 x

2
i +

√
1
n

∑n
i=1 x̃

2
i

, (27)

where x is the simulation time history, x̃ is the flight data time history, and n is the number

of data samples. Although the identified model is linear, the aerodynamic derivatives can be

extracted and integrated into in the nonlinear equations of motion. The resulting nonlinear

model is also simulated using the doublet input signal, and the TIC is computed.

The doublet input signal is comprised of an elevator doublet, followed by an aileron

doublet, and completed with a rudder doublet. The results are shown in Figure 9. Pilot
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command signals are plotted on the same axis as their corresponding primary angular rates.

The corrections made with the aileron and elevator at the end of the maneuver are used to

return the aircraft to its original trim condition.

Figure 9. Time domain model validation of the identified Ultra Stick 25e dynamics.

Figure 9 shows that the identified models accurately predict the aircraft response, and

moreover, that the linear and nonlinear responses match closely. The elevator doublet re-

sponse confirms that the longitudinal and lateral/directional dynamics are mostly decoupled.

Roll and pitch rate responses are captured with high accuracy, and their nonlinear models

yield TIC values of 0.07 and 0.12, respectively. The yaw rate response exhibits a slight

discrepancy from the identified models, yielding a TIC value of 0.26 for the nonlinear case.

This is near the limit for accurate models. The mismatch is attributed to low damping in

the dutch roll mode that was not captured with sufficient accuracy by the flight experiment.

Coupling between the pitch and yaw axes (seen in the flight data) can be attributed to

unmodeled asymmetries in the airframe and the neglected motor effects.
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VIII. Sensitivity and Residual Analysis

The process of validating model accuracy is extended beyond time domain validation with

a sensitivity and residual analysis. Analysis presented in Reference 3 is used to construct

an uncertainty model based on sensitivities to parameter variation. Residuals obtained

from the spectral analysis are used to generate an output disturbance model. Together, the

uncertainty and disturbance models complement the identified model and provide additional

insight into its accuracy.

A. Sensitivity to Parameter Variation

Uncertainty in the identified model is quantified using properties of the converged cost func-

tion from the parametric identification process. This cost function depends on the identified

parameters and captures the model fit error in the frequency domain. Its sensitivity to pa-

rameter variations, or combinations of parameter variations, is used to model uncertainty.

Cramér-Rao (CR) bounds represent this type of sensitivity in the cost function, and hence

are used as a basis for a parametric uncertainty model.

CR bounds depend on the diagonal entries of the inverse Hessian matrix H−1, evaluated

for the converged cost function. The Hessian matrix is estimated and CR bounds are calcu-

lated as part of the identification process. A large CRi bound indicates either low curvature

in the cost function (high insensitivity) with respect to the ith parameter, or that the ith

parameter is correlated with another parameter.3 Separately, CR bounds also represent a

lower bound on the standard deviation σ of the statistical scatter expected from running

multiple experiments.2,3 This is shown by the following relationship:

σi ≥ CRi =
√

(H−1)ii (28)

Experience has shown that a factor of 2 can be used to obtain an approximation of the

standard deviation, resulting in Equation 29:3

σi ≈ 2CRi = 2
√

(H−1)ii (29)

A parametric uncertainty model is constructed based on CR bounds. The uncertainty

describes a family of identified models expected from running multiple experiments. High

CR bounds are attributed to several factors. For example, a parameter may be physically

insignificant with respect to the measured aircraft response. This kind of parameter is

difficult to identify and hence associated with a high CR bound. Reduced coherence in the

estimated frequency response can also lead to high CR bounds. Due to weighting based on

high coherence in the identification process, low coherence can mask the effect of varying a
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parameter. Finally, correlation between parameters indicates that they can vary together,

making their individual values difficult to determine. Relating parametric uncertainty to

CR bounds is one way to collect these identification problems and form a comprehensive

uncertain aircraft model.

The uncertainty model is constructed by letting the model parameters vary on an interval

centered at their nominal identified values. Each parameter is modeled as a fixed interval

uniform distribution. This type of model is useful since it can be analyzed directly with

existing robustness tools, such as µ-analysis. To provide a conservative estimate of the

uncertainty, the interval is selected to include 3 standard deviations from the nominal value.8

Figure 10 illustrates how uncertainty in all the parameters manifests as a variation in the

frequency response. The uncertainty model is randomly sampled to generate a family of

frequency responses. In this example, two families of frequency responses are shown. The

aileron input to roll rate channel is on the left, and the rudder input to yaw rate channel is

on the right. The nominal identified model is highlighted by the darker dashed curves.

(a) Aileron input to roll rate. (b) Rudder input to yaw rate.

Figure 10. Selected uncertain frequency responses.

Figure 10 is useful because it provides a visual representation of the expected variation

in the frequency response due to parametric uncertainty. The aileron to roll rate channel is

accurately identified, as indicated by the high coherence function. Accordingly, low variation

due to uncertainty is noted. The rudder to yaw rate model, however, is poorly identified

near 1 rad/s. This is due to low gain in the transfer function. Uncertainty is high due to the
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low coherence, and significant variation is noted in the frequency response. The uncertainty

shows that the damping of a pair of complex conjugate zeros in the transfer function is not

accurately modeled. Due to the low coherence, the optimization is unable to determine the

damping, which leads to high uncertainty in the identified parameters of that mode.

The effect of uncertainty must be considered in every relevant input-output channel.

Exhaustive analysis of each remaining channel in the aircraft model is left out in the interest

of brevity. However, visualizing the uncertainty is a straightforward process. The full set of

CR bounds obtained from the identification process (including the factor of 2) is given in

Table 6. The bounds are given as percentage deviations from the nominal identified values

of their corresponding aerodynamic derivatives, which were provided in the identified system

matrices.

Table 6. Cramér-Rao bounds for the identified aircraft model.

Deriv. 2CR (%) Deriv. 2CR (%) Deriv. 2CR (%) Deriv. 2CR (%)

Zw 14.88 Yv 5.17 Lv 9.16 Nv 3.49

Zq 8.41 Yp 20.20 Lp 8.20 Np 16.30

Zδelev (129.4) Yr 0.74 Lr 16.82 Nr 6.58

Mw 20.69 Yδail 38.42 Lδail 7.25 Nδail 7.07

Mq 16.28 Yδrud 11.96 Lδrud 41.94 Nδrud 4.34

Mδelev 8.49

The CR bounds indicate that most parameters are identified accurately. Experience has

shown that identification results are reliable when most 2CRi < 20%.3 The rule of thumb is

exceeded significantly by the Zδelev parameter. This derivative represents the elevator z-axis

force, which has a limited effect on the response relative to other forces and moments acting

on the aircraft. The manifestation of the elevator z-axis force on az and q is negligible, and

hence Zδelev can vary greatly without having a significant impact on the measured input-

output dynamics (or the cost function). Due to insensitivity in the cost function,3 noted by

the 129.4% CR bound, the identified value is nearly arbitrary. Therefore, Zδelev was fixed

at the baseline value and the optimization reconverged for the remaining parameters. The

original CR bound associated with Zδelev , however, was retained as uncertainty.

The Yδail and Lδrud derivatives represent cross-coupling relationships with low gain for

the Ultra Stick 25e, which elevates their CR bounds. Yδail represents the aileron effectiveness

in generating a y-axis force. Lδrud represents the rudder effectiveness in generating a rolling

moment. It is difficult to obtain measurements with sufficiently high SNR and estimate

accurate frequency responses for these relationships, primarily due to their low gain. As a

result, errors and variations in the model fit are not significantly penalized in the parametric

identification process, which results in elevated CR bounds for Yδail and Lδrud .
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B. Residual Disturbance Modeling

The effect of disturbances acting on the aircraft is captured by residual spectra computed

for the output measurements. Residual spectra contain the portion of the output measure-

ment that cannot be accounted for by the inputs via linear transfer functions. For this

analysis, residual spectra are computed for the three angular rate measurements. An output

disturbance model is generated, which complements the identified aircraft model.

The system diagram in Figure 4 shows the identification problem cast for a two-input,

single output system. In the ideal scenario, the system is linear and subject to a white noise

output disturbance v. Hence, the output disturbance is uncorrelated with the inputs. The

inputs and outputs are related via linear transfer functions, and the coherence functions have

values near 1. Therefore, in ideal conditions, the residual spectrum for the output is white

noise. The output residual spectrum is computed with the following relationship:23

Sv,v(ω) = [1− γ2u,y(ω)]Sy,y(ω) (30)

In practice, these ideal conditions cannot be fully satisfied because the aircraft is not a

linear system and the output disturbance is not white noise. The effects of nonlinear dynam-

ics, wind gusts, turbulence, and correlated noise on the measured output are compounded

into the output residual spectrum. Hence, the inputs and outputs are no longer perfectly

related via linear transfer functions, as assumed by the ideal scenario and in conjunction

with Equation 30.

The residual spectrum of the output (computed with Equation 30) is used to infer a

disturbance model for the aircraft dynamics. The disturbance on the measured output is

modeled with a transfer function, denoted Dy(ω). This transfer function is driven by a unit

amplitude white noise input signal v. The magnitude of the disturbance model transfer

function is given by the following equation:

|Dy(ω)| =
√
|Sv,v(ω)| (31)

Disturbance models are computed for the three angular rate measurements on the Ultra

Stick 25e. Spectra and coherence functions obtained from the frequency sweep experimental

data are used in this analysis. Figure 11 shows a diagram that describes how the output

disturbance enters the system. Three estimated transfer functions (obtained using Equa-

tion 22) relate the inputs to their primary angular rate responses. In the longitudinal axis,

the disturbance model Dq(ω) is calculated for the elevator to pitch rate channel. In the

lateral/directional axes, disturbance model Dp(ω) is calculated for the aileron to roll rate

channel, and disturbance model Dr(ω) is calculated for the rudder to yaw rate channel.
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Figure 11. System diagram for output disturbance modeling.

The computed disturbance models are presented in Figure 12. Coherence functions are

included below as a reference to indicate the predicted accuracy of the identified model. The

roll rate disturbance model Dp(ω) is shown on the left, the pitch rate disturbance model

Dq(ω) in the middle, and yaw rate disturbance model Dr(ω) on the right. The results show

that the output disturbance entering the system is not white noise, as assumed in the ideal

scenario. This discrepancy can be attributed to the effects of nonlinear dynamics, wind

gusts, turbulence, and correlated noise on the measured output.

Figure 12. Output disturbance models for angular rate measurements.
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The expected output disturbance is the measurement noise introduced by the IMU sensor.

For each angular rate channel, noise with amplitude ± 2 deg/s is observed. This type of

noise corresponds to a disturbance model with flat magnitude near -29 dB. However, the

magnitudes of all three disturbance models in Figure 12 are greater than -29 dB, indicating

the presence of additional disturbances. Moreover, the disturbance models are qualitatively

similar in frequency domain characteristics to their corresponding identified aircraft models.

For example, the roll rate disturbance model on the left in Figure 12 is similar to the

aileron to roll rate identified model on the left in Figure 6. The two models have similar

bandwidth and roll-off characteristics. The same finding holds for the pitch and yaw rate

disturbance models. This general observation suggests that input disturbances dominate the

total disturbances captured in the measured aircraft response.

Input disturbances propagate through the aircraft dynamics, and their effects manifest

directly on the residual output spectra (such as those shown in Figure 12). Hence, each

output residual spectrum is “colored” with the aircraft dynamics, which means they have

similar frequency domain characteristics. The results in Figure 12 indicate that the distur-

bance models are “colored” with the identified aircraft dynamics. Therefore, disturbances

acting on the input, such as wind gusts or turbulence, dominate the disturbances acting

directly on the output, such as sensor noise. This result is important for understanding

key performance limitations of small, low-cost UAVs. In particular, it shows that although

low-cost sensors, such as the IMU on the Ultra Stick 25e, are susceptible to high levels of

noise, the presence of noise is not significant in comparison to the effect of wind gusts or

turbulence experienced by the aircraft.

IX. Conclusion

A practical system identification procedure was developed to accurately model the dy-

namics of small, low-cost, fixed-wing UAVs. The procedure addresses requirements and good

practices to obtain models that are useful in control applications for aircraft equipped with a

limited set of low-cost sensors. The approach to system identification is based on estimating

frequency responses, which are obtained using flight data. Aircraft dynamics are identified

in the frequency domain by fitting linear parametric models to the estimated frequency re-

sponses. The identified models are validated with flight data in the time domain, as well as

through a sensitivity and residual analysis. The main advantage of the proposed approach

is the successful identification of aircraft dynamics using flight data from a single, low-cost

inertial sensor. A drawback to the approach is the multi-step analysis process that cannot

be performed in real-time.
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