	22.1222 = 12.2
COURSE NUMBER:	COURSE TITLE:
IE 1001	Introduction to Industrial and Systems Engineering
TERMS OFFERE	
TERMS OFFERED:	PREREQUISITES:
Spring	None
TEXTBOOKS/REQUIRED MATERIAL:	PREPARED BY:
Introduction to Industrial and Systems	John Gunnar Carlsson
Engineering, by Turner, Third Edition,	
Prentice-Hall, Inc.	DATE OF PREPARATION:
	October 19, 2011
COURSE LEADER(S):	CLASS/LABORATORY SCHEDULE:
John Gunnar Carlsson	Two 115-minute lectures per week
	·
	CONTRIBUTION OF COURSE TO MEETING
	PROFESSIONAL OBJECTIVES: 100%
	Engineering Topics
CATALOG DESCRIPTION:	COURSE TOPICS:
History and development of industrial and	History and major developments in
systems engineering, operations planning,	industrial and systems engineering in the last
quality control, human factors, resource	100 years, and relevant current examples of
management, financial engineering, facility	successful ISyE practices and principles in use.
location and layout, optimization,	2. Operations and production planning,
<u> </u>	
probabilistic/stochastic models, simulation,	operations and resource management,
project management, management systems	logistics, and quality control.
design, computer and information systems	3. Human factors: equipment design, task
management	design, and environmental design.
	4. Optimization: linear, nonlinear, integer,
	and mixed-integer programming.
	5. Probabalistic and stochastic models:
	modelling, understanding, and simulating
	uncertainty in engineering practice.
COURSE OBJECTIVES	
1. To give students an overview of what	
industrial and systems engineering is, and	
what industrial and systems engineers do.	
2. To help students learn to analyze real-life	
problems encountered in industrial and	
systems engineering scenarios and use the	
appropriate methods to solve them and	
present solutions.	
3. To introduce students to modern	
techniques, algorithms, and software for	
modelling, analyzing, and solving real-life	

problems in industrial and systems	
engineering, including but not limited to	
Excel, MATLAB, CVX, CPLEX, and AMPL.	
4. To engage students in interactive sessions	
with with practitioners of industrial and	
systems engineering in the private and public	
sectors.	
5. To enable students to communicate and	
present their results effectively.	
COURSE OUTCOMES	
1. Students will learn the fundamental	
principles of industrial and systems	
engineering and understand the abilities and	
responsibilities of an industrial and systems	
engineer.	
2. Students will learn how to analyze and	
identify instances of industrial and systems	
engineering problems in real-life examples.	
3. Students will learn how to use modern	
software tools for solving industrial and	
systems engineering problems.	
4. Students will interact with industrial and	
systems engineering practitioners in the	
private and public sector to understand how	
ISyE techniques are adapted and utilized	
outside of the classroom.	
ASSESSMENT TOOLS:	
Weekly assignments organized by topic, a	
final project, one midterm examination, and	
one final examination.	