| COLIDCE ALLIANDED. | COURCE TITLE. | |--|---| | COURSE NUMBER: IE 3012 | COURSE TITLE: | | 12 3012 | Optimization II | | TERMS OFFERED: Spring | PREREQUISITES: | | TEXTBOOKS/REQUIRED MATERIAL: | PREPARED BY: | | Rangarajan K. Sundaram, A First Course in Optimization Theory, Cambridge University Press, 1996. | Shuzhong Zhang DATE OF PREPARATION: October 21, 2011 | | COURSE LEADER(S): | CLASS/LABORATORY SCHEDULE: | | | CONTRIBUTION OF COURSE TO MEETING PROFESSIONAL OBJECTIVES: | | CATALOG DESCRIPTION: | COURSE TOPICS: | | Nonlinear programming, convexity, gradient method, constrained optimization, Lagrangian function, the KKT condition, duality theory, dynamic optimization. | Optimality conditions for
unconstrained optimization; Gradient method; The KKT optimality condition for
constrained optimization; Concept of dynamic optimization; Applications of nonlinear optimization. | | COURSE OBJECTIVES | To help students understand the optimality conditions for an optimization model; To train students to use Excel and Matlab to solve linear and quadratic optimization models; To introduce students basic solution methods, such as the gradient method for nonlinear optimization, and the dynamic optimization principle; To get students acquainted with the modeling power of nonlinear programming to solve practical problems. | | COURSE OUTCOMES | Students learn to solve engineering design problems by optimization models. Students learn the basic solution techniques, such as the gradient method, the KKT optimality conditions, and the dynamic programming principle; Students learn to use Excel and Matlab to solve optimization models. Students learn to interpret the solutions, and communicate their findings in a scientific manner. | |-------------------|--| | ASSESSMENT TOOLS: | 1. 1 midterm examination and a final examination. 2. Biweekly assignments. |