Math 1241 Calculus and dynamical systems in biology

Prerequisites: 4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]

Credits: 4

Tentative Text: Modeling the Dynamics of Life: Calculus and Probability for Life Scientists, Third Edition, by Frederick Adler

Catalog description: Differential and integral calculus with biological applications. Discrete and continuous dynamical systems. Models from fields such as ecology and evolution, epidemiology, physiology, genetic networks, neuroscience, and biochemistry.

Course objectives:

- 1. Introduce the connections biological questions and mathematical concepts.
- 2. Develop the mathematics of calculus and dynamical system through modeling biological systems.
- 3. Explore the utility of using mathematical tools to understand the properties and behavior of biological systems.
- 4. Develop facility in interpreting mathematical models and the conclusions based on the models.

Course topics:

1. One-dimensional discrete dynamical systems

cobwebbing, equilibria, long versus short-time behavior stability of equilibria

2. Differentiation continuity and differentiability tangent line, limit definition of derivative derivative of basic functions: polynomials, exponentials, sinusoids brief overview of methods of differentation: product, chain rules second derivative partial derivative of function of two variables

3. *Optimization and root finding* intermediate and extreme value theorems

4. Integration

indefinite integral as solution to ODE basic anti-derivatives: polynomials, exponentials, sinusoids definite integral as change in solution to ODE definite integral as signed area under curve fundamental theorem of calculus Euler's method as approximate solution of ODE and numerical integration

5. 1D Ordinary differential equations

exponential as solution to linear ODE steady states and stability

6. *Linear algebra* matricies and determinants eigenvectors and eigenvalues

7. *Two dimensional dynamical systems* equilibria and stability phase plane, direction field, nullclines

8. *Partial differential equations* recognition of meaning of terms in a PDE