<u>Generating control and stability derivatives of Yardstik Model using</u> <u>Tornado software</u>

27th Jan 2007 by Paw Yew Chai

The control and stability derivatives of Yardstik to be used for simulation are generated using the Tornado software. Tornado is a 3-D vortex lattice program written in Matlab environment which makes use of the vortex lattice method for obtaining the forces and moment acting on the aerodynamic surfaces [2].

From these forces and moment generated, we are able to obtain the stability and control derivatives with respect to different trim points in the angle of attack, angle of sideslip, angular rates and control surfaces deflection [1].

1. Aircraft Geometry setup in Tornado

We must first generate the Yardstik aircraft Geometry into the Tornado, by creating different panels to model the aircraft geometry. In this modeling, we only model the surfaces that generated aerodynamic forces, which are the:

- 1. Wing
- 2. Horizontal tail
- 3. Vertical tail
- 4. Rudder control surface
- 5. Elevator control surface

Figure 1 shows the 3-D mesh of the Yardstik model in the Tornado. The Yardstik has 8 degrees dihedral on its wings and the wings are mounted at positive angle of attack with the fuselage reference line (FRL). These details are modeled in the Tornado model.

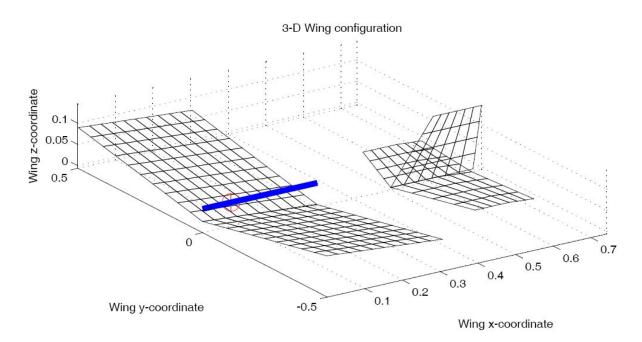


Figure 1. 3-D mesh of the Geometry of Yardstik model in Tornado

2. Trim condition for analysis.

The trim condition that we are using for the analysis and extracting the stability and control derivatives are based on the experience from flight testing the Yardstik aircraft that has been instrumented. The following is the trim condition that is used:

Alpha	2 deg
Beta	0 deg
Airspeed	8 m/s
р	0 deg/sec
q	0 deg/sec
r	0 deg/sec
Rudder	0 deg
	4 degrees
Elevator	(positive)

3. Result

Figure 2 shows the pressure coefficient plot for the run with the trim condition that is in the previous section.

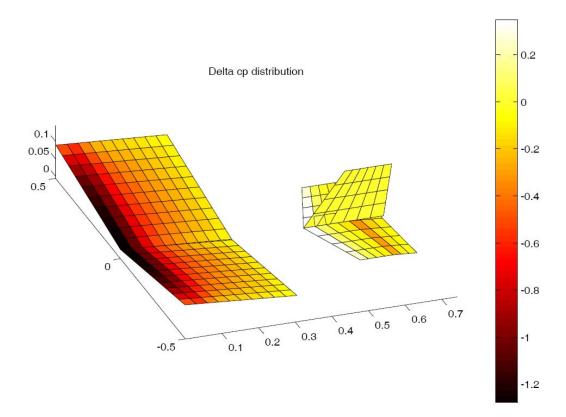


Figure 2 Plot of the pressure coefficient distribution

3.1 Result for coefficients for forces and moments

Tornado Computation Results										
JID:		111		Downwash matrix condition:		32.3875				
Reference area:		0.30713								
Reference chord:		0.305		Reference point pos:		0.07625 0 0.05	50037			
Reference span:		1.007								
Net Wind Forces: (N)			Net Body Forces: (N) Net B		Net Body	ody Moments: (Nm)				
Drag:	0.24152		X:	0.050058	Roll:	0.00021995				
Side:	0.0027074		Y:	0.0027074	Pitch:	-0.15295				
Lift:	5.482		Z:	5.4871	Yaw:	0.0014811				
CL	0.45532		CZ	0.45575	Cm	-0.041651				
CD	0.020061	1		0.0041578	Cn	0.00012216				
CY	0.00022488	022488		0.00022488	CI	1.8142e-005				
STATE:										
alpha:	2	P:		0		0				
beta:	0	Q:		0 Rudders	setting [deg]: 0				
Airspeed	l: 8	R:		0		4				
Density:	1.225									

From the result above, we can see that the lift generated is about 5.5 N and this is almost equal to the weight of the instrumented Yardstik aircraft, which is 0.56 kg. Hence, this result seems to be reasonable for the trim flight condition where the weight is equal to the lift generated.

3.2 Result for control and stability derivatives

TORNADO CALCULATION RESULTS, Central difference

JID:		111								
Reference area:		0.30713	Alpha:			2	P:		0	
Reference chord:		0.305	Beta:			0	Q:		0	
Reference span:		1.007	Airspeed		:	8	R:	0		
CL derivatives :			CD derivatives :			CY derivatives :				
CL-alfa	3.9398		CD-alfa		0.34011			CY-alfa		0.040354
CL-beta	0.000648	00064819		CD-beta		-0.0010522		CY-beta		6.391
CL-P	-0.0013392		CD-P		0.00026054		CY-P		-3.132	
CL-Q	23.9894		CD-Q		1.4945			CY-Q		1.7057
CL-R	0.015582		CD-R		-0.011333			CY-R		89.1406
Roll derivatives :			Pitch derivatives :				Yaw derivatives :			
CI-alfa	0.003838	37	Cm-	alfa	- 0.9	8096		Cn-alfa		0.02198
Cl-beta	0.56558		Cm-	beta	- 0.0	016133		Cn-beta		3.5168
CI-P	-0.57427		Cm-	Р	0.00	02654		Cn-P		-1.8176
CI-Q	0.15552		Cm-	Q	-27.	.0261		Cn-Q		0.93269
CI-R	7.0487		Cm-	R	- 0.0	34846		Cn-R		48.6573

References:

- [1] Tomas Melin, "*User's guide and reference manual for Tornado*", Royal Institute of Technology (KTH) Department of Aeronautics, 2000.
- [2] Tomas Melin, "A Vortex Lattice MATLAB Implementation for Linear Aerodynamic Wing Applications", Royal Institute of Technology (KTH) Department of Aeronautics, 2000.