Linearized model of the Yardstik aircraft

Paw Yew Chai

April 15, 2007

1 Trim conditions

The trim condition used for getting the linearized model for the Yardstik from the nonlinear model is as follows:

- 1. INPUTS:
 - $\delta_e = -0.2836$ $\delta_r = -0.0066$ $\delta_T = 0.2581$
- 2. STATES:
 - u = 9.00 m/sv = -0.03 m/s
 - w = 0.16 m/s
 - p = -0.00 deg/s
 - q = 0.00 deg/s
 - r = -0.00 deg/s
 - $\phi = -0.16 \deg$
 - $\theta = 0.99 \deg$
 - $\psi = 3.96 \deg$
 - h = 50.00 m
 - $\Omega = 2907 \text{ RPM}$
- 3. OUTPUTS:
 - $V_a = 9.00 \text{ m/s}$ $\beta = -0.22 \text{ deg}$ $\alpha = 0.99 \text{ deg}$ $\phi = -0.16 \text{ deg}$ $\theta = 0.99 \text{ deg}$ $\psi = 3.96 \text{ deg}$

2 Longitudinal model

The longitudinal dynamics extracted from the decoupled linearized model is as follows:

State vector: $\mathbf{x} = \begin{bmatrix} u & w & q & \theta & h & \Omega \end{bmatrix}^T$ Input vector: $\mathbf{u} = \begin{bmatrix} \delta_e & \delta_T \end{bmatrix}^T$ Output vector: $\mathbf{y} = \begin{bmatrix} V_a & \alpha & q & \theta & h \end{bmatrix}^T$ The state matrix A and the control matrix B are given by:

		0.5473				0.0274	1
	-1.9231	-14.4997	5.1014	-0.1687	0.0009	0	
4 _	0.1198	-6.9521	-39.4935	0	-0.0000	0	
$A_{lon} =$	0	0	1.0000	0	0	0	
	0.0172	-0.9998	0	9.0036	0	0	
	80.6358	1.3896	0	0	0.0354	-6.0023	

$$B_{lon} = \begin{bmatrix} 0.5 & 0 \\ -5.0 & 0 \\ -20.8 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1422.1 \end{bmatrix}$$

2.1 Short period and long period modes

From the linearized longitudinal model, we extract the u, w, q and θ states to compute the short period and long period modes.

2.1.1 Short period mode

The short period modes are given by:

- 1. Eigenvalue: -37.9840, Time constant = 0.0263 s
- 2. Eigenvalue: -15.9517, Time constant = 0.0627 s

2.1.2 Phugoid mode

The long period modes are given by:

- 1. Eigenvalue: -0.4780 + 0.1166i
- 2. Eigenvalue: -0.4780 0.1166i and this will give:
 - (a) $\zeta = 0.9715$
 - (b) $\omega_n = 0.4920 \text{ rad/s}$

3 Lat/Directional model

The lat/directional dynamics extracted from the decoupled linearized model is as follows:

State vector: $\mathbf{x} = [v \ p \ r \ \phi \ \psi]^T$ Input vector: $\mathbf{u} = \delta_r$ Output vector: $\mathbf{y} = [\beta \ p \ r \ \phi \ \psi]^T$ The state matrix A and the control matrix B are given by:

$$A_{lat} = \begin{bmatrix} -1.1976 & 0.1551 & -9.0023 & 9.7809 & 0 \\ -37.9670 & -27.8060 & 7.4336 & 0 & 0 \\ 7.4503 & -4.0041 & -1.4873 & 0 & 0 \\ 0 & 1.0000 & 0.0172 & 0.0000 & 0 \\ 0 & 0 & 1.0001 & 0.0000 & 0 \end{bmatrix}$$

$$B_{lat} = \begin{bmatrix} 2.1372 \\ 12.6576 \\ -54.7350 \\ 0 \\ 0 \end{bmatrix}$$

3.1 Dutch roll, roll and spiral modes

3.1.1 Dutch roll mode

The dutch roll mode is given by eigenvalue at -0.8890 \pm 11.3009i and this gives:

- 1. $\zeta = 0.0784$
- 2. $\omega_n = 11.3358 \text{ rad/s}$

3.1.2 Roll mode

The roll mode is given by eigenvalue at -28.7265, which gives a time constant of 0.0348 s.

3.1.3 Spiral mode

The spiral mode is given by eigenvalue at 0.0135 (unstable), which gives a time constant of 73.8613 s.

3.2 Data from other small aircraft for comparison

Airplanes	Span (m)	Mean Geometric Chord (m)	Mass (kg)	Cruise Velocity (m/s)	Average Wing Sweep (deg)
Modified Zagi-400 (Flying Wing)	1.21	0.25	0.65	13	26
StablEyes (BYU Captsone 2004)	0.61	0.15	0.47	15	8
Procerus Prototype (Flying Wing)	0.60	0.23	0.57	16	43

Data from [1] for small UAV is presented below for comparison:

Figure 1: Data for small UAV (Data source [1])

	Zagi 400	StablEyes	Procerus
$\omega_{n, sp}$ (rad/s)	12.4	14.9	16.6
ζ _{sp}	0.68	0.99	0.30
$\omega_{n, ph}$ (rad/s)	1.1	0.94	0.81
ζph	0.05	0.16	0.05
$\omega_{n, d}$ (rad/s)	5.7	9.0	10.3
ζd	0.15	0.16	0.10
$T_{r}\left(s\right)$	0.10	0.06	0.09
$T_{s}\left(s\right)$	-0.15	-0.79	-0.11

Figure 2: Data for small UAV (Data source [1])

References

[1] TYLER M. FOSTER, DYNAMIC STABILITY AND HAN-DLING QUALITIES OF SMALL UNMANNED-AERIAL-VEHICLES, Master of Science thesis, Brigham Young University, 2005.