Wind Tunnel Testing of full-scale Yardstik aircraft : Part 2: Lateral motion derivatives

Paw Yew Chai

April 10, 2007

1 Positive conventions

The positive convention of the sideslip angle β and rudder deflection δ_r are shown in figure 1.

Yardstik plan view in wind tunnel

Figure 1: Positive convention of β and δ_r

2 Side force, drag and moments calculation

2.1 Lift and drag forces

From the measured transverse and axial forces, the side force and drag forces can be calculated by resolving these 2 forces along the body axis at various sideslip angles β that the aircraft holds. Figure 2 shows the relationship between the side force and drag forces with the measured transverse and axial forces.

Figure 2: Relationship between the side and drag forces with the measured transverse and axial forces

The side force, Y, is given by:

$$Y = T\cos\beta - A\sin\beta \tag{1}$$

With the side force calculated, the coefficient is given by:

$$C_Y = \frac{Y}{\frac{1}{2}\rho V^2 S} \tag{2}$$

The drag force is given by:

$$D = A\cos\beta + T\sin\beta \tag{3}$$

2.2 Yaw moment calculation

To calculate the yaw moment at the quarter chord point of the wing $(N_{1/4})$, we need to determine the moment arms from the measurement point to the quarter chord point of the wing. A calibration test using known load was done to determine this moment arm. The yaw moment about the quarter chord is given by:

$$N_{1/4} = -\frac{N_m}{12} + 0.4368Asin\beta - 0.4368Tcos\beta \tag{4}$$

With $N_{1/4}$ calculated, the moment coefficient at quarter chord is given by:

$$C_{n_{1/4}} = \frac{N_{1/4}}{\frac{1}{2}\rho V^2 Sb} \tag{5}$$

2.3 Roll moment calculation

The roll moment is calculated by:

$$L_{1/4} = -\frac{L_m \cos\beta}{12} + 0.328A \sin\beta - 0.328T \cos\beta \tag{6}$$

With $L_{1/4}$ calculated, the moment coefficient at quarter chord is given by:

$$C_{l_{1/4}} = \frac{L_{1/4}}{\frac{1}{2}\rho V^2 Sb} \tag{7}$$

3 Experimental data and result

3.1 Side Forces

Figure 3 shows the plot of C_Y vs β and figure 4 shows the plot of C_Y vs δ_r . From the graph, we can deduce the following data:

- 1. $C_{Y_{\beta}} = -0.321$ /rad
- 2. $C_{Y_{\delta_r}} = 0.113 \text{ /rad}$

Plot of $C_{\gamma} vs \beta$

Figure 3: Plot of C_Y vs β for V = 6 m/s

Figure 4: Plot of C_Y vs δ_r for V = 6 m/s

3.2 Yaw Moment

Figure 5 shows the plot of C_n vs β and figure 6 shows the plot of C_n vs δ_r . From the graph, we can deduce the following data:

- 1. $C_{n_{\beta}} = 0.252$ /rad
- 2. $C_{n_{\delta_r}} = -0.223$ /rad

Figure 5: Plot of C_n vs β for V = 6 m/s

Figure 6: Plot of C_n vs δ_r for V = 6 m/s

3.3 Roll Moment

Figure 7 shows the plot of C_l vs β and figure 8 shows the plot of C_l vs δ_r . From the graph, we can deduce the following data:

- 1. $C_{l_{\beta}} = -0.688$ /rad
- 2. $C_{l_{\delta_r}} = 0.0573$ /rad

Figure 7: Plot of C_l vs β for V = 6 m/s

Figure 8: Plot of C_l vs δ_r for V = 6 m/s