Wind Tunnel Testing of full-scale Yardstik aircraft : Part 2: Lateral motion derivatives

Paw Yew Chai

April 10, 2007

1 Positive conventions

The positive convention of the sideslip angle β and rudder deflection δ_{r} are shown in figure 1.

Yardstik plan view in wind tunnel

Figure 1: Positive convention of β and δ_{r}

2 Side force, drag and moments calculation

2.1 Lift and drag forces

From the measured transverse and axial forces, the side force and drag forces can be calculated by resolving these 2 forces along the body axis at various sideslip angles β that the aircraft holds. Figure 2 shows the relationship between the side force and drag forces with the measured transverse and axial forces.

Figure 2: Relationship between the side and drag forces with the measured transverse and axial forces

The side force, Y, is given by:

$$
\begin{equation*}
Y=T \cos \beta-A \sin \beta \tag{1}
\end{equation*}
$$

With the side force calculated, the coefficient is given by:

$$
\begin{equation*}
C_{Y}=\frac{Y}{\frac{1}{2} \rho V^{2} S} \tag{2}
\end{equation*}
$$

The drag force is given by:

$$
\begin{equation*}
D=A \cos \beta+T \sin \beta \tag{3}
\end{equation*}
$$

2.2 Yaw moment calculation

To calculate the yaw moment at the quarter chord point of the wing $\left(N_{1 / 4}\right)$, we need to determine the moment arms from the measurement point to the quarter chord point of the wing. A calibration test using known load was done to determine this moment arm. The yaw moment about the quarter chord is given by:

$$
\begin{equation*}
N_{1 / 4}=-\frac{N_{m}}{12}+0.4368 A \sin \beta-0.4368 T \cos \beta \tag{4}
\end{equation*}
$$

With $N_{1 / 4}$ calculated, the moment coefficient at quarter chord is given by:

$$
\begin{equation*}
C_{n_{1 / 4}}=\frac{N_{1 / 4}}{\frac{1}{2} \rho V^{2} S b} \tag{5}
\end{equation*}
$$

2.3 Roll moment calculation

The roll moment is calculated by:

$$
\begin{equation*}
L_{1 / 4}=-\frac{L_{m} \cos \beta}{12}+0.328 A \sin \beta-0.328 T \cos \beta \tag{6}
\end{equation*}
$$

With $L_{1 / 4}$ calculated, the moment coefficient at quarter chord is given by:

$$
\begin{equation*}
C_{l_{1 / 4}}=\frac{L_{1 / 4}}{\frac{1}{2} \rho V^{2} S b} \tag{7}
\end{equation*}
$$

3 Experimental data and result

3.1 Side Forces

Figure 3 shows the plot of C_{Y} vs β and figure 4 shows the plot of C_{Y} vs δ_{r}. From the graph, we can deduce the following data:

1. $C_{Y_{\beta}}=-0.321 / \mathrm{rad}$
2. $C_{Y_{\delta_{r}}}=0.113 / \mathrm{rad}$

Figure 3: Plot of C_{Y} vs β for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

Plot of C_{Y} vs δ_{r}

Figure 4: Plot of C_{Y} vs δ_{r} for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

3.2 Yaw Moment

Figure 5 shows the plot of C_{n} vs β and figure 6 shows the plot of C_{n} vs δ_{r}. From the graph, we can deduce the following data:

1. $C_{n_{\beta}}=0.252 / \mathrm{rad}$
2. $C_{n_{\delta_{r}}}=-0.223 / \mathrm{rad}$

Figure 5: Plot of C_{n} vs β for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

Figure 6: Plot of C_{n} vs δ_{r} for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

3.3 Roll Moment

Figure 7 shows the plot of C_{l} vs β and figure 8 shows the plot of C_{l} vs δ_{r}. From the graph, we can deduce the following data:

1. $C_{l_{\beta}}=-0.688 / \mathrm{rad}$
2. $C_{l_{\delta_{r}}}=0.0573 / \mathrm{rad}$

Figure 7: Plot of C_{l} vs β for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

Plot of C_{1} vs δ_{r}

Figure 8: Plot of C_{l} vs δ_{r} for $\mathrm{V}=6 \mathrm{~m} / \mathrm{s}$

