UMN UAV Simulation: Trim Tutorial
This tutorial walks through the steps of trimming the UMN UAV Simulation model. Most of these steps are handled in the "setup.m" and "trim_UAV.m" functions provided with the UMN UAV sim. However, this tutorial will give you an in-depth understanding of how these functions work.
Contents
- Setup and Configuration
- Set Aircraft Initial Conditions
- Create Operating Point Specification Object for the Simulation
- Specifying State Trim Conditions
- Setting Input Constraints
- Trimming the Model
- Setting Simulation Initial Conditions to Trim Values
- Specifying Output Trim Conditions
- Specifying Input Trim Conditions
- Using trim_UAV.m
Author: Austin Murch University of Minnesota Aerospace Engineering and Mechanics Copyright 2011 Regents of the University of Minnesota. All rights reserved. SVN Info: $Id: trim_tutorial.m 305 2011-03-16 16:17:53Z murch $
Setup and Configuration
Before we get started we need to make sure the MATLAB path is correct and we have all of the aircraft and simulation parameters are defined. This step is handled in setup.m.
% Add Libraries folder to MATLAB path addpath ../Libraries warning('off','Simulink:SL_LoadMdlParameterizedLink') % Configure Airframe, either 'Ultrastick' or 'FASER' [AC,Env] = UAV_config('Ultrastick'); % Simulation sample time SampleTime = 0.02; % sec
Aircraft configuration saved as: UAV_modelconfig.mat
Set Aircraft Initial Conditions
Next we need to define initial conditions for the simulation model inputs and state vector. These initial values serve as the starting point for the trim algorithm, so if the trim algorithm fails to converge, you can try a new set of initial conditions. This step is handled in setup.m.
% Set the initial model inputs TrimCondition.Inputs.elevator = 0.091; % rad TrimCondition.Inputs.aileron = 0; % rad TrimCondition.Inputs.rudder = 0; % rad TrimCondition.Inputs.flap = 0; % rad TrimCondition.Inputs.throttle = 0.559; % nd, 0 to 1 % Set initial state values TrimCondition.InertialIni = [0 0 -100]'; % Initial Position in Inertial Frame [Xe Ye Ze], [m] TrimCondition.LLIni = [45 -122]; % Initial Latitude/Longitude of Aircraft [Lat Long], [deg] TrimCondition.VelocitiesIni = [17 0 0.369]'; % Initial Body Frame velocities [u v w], [m/s] TrimCondition.AttitudeIni = [0 0.0217 0]'; % Initial Euler orientation [roll,pitch,yaw] [rad] TrimCondition.RatesIni = [0 0 0]'; % Initial Body Frame rotation rates [p q r], [rad/s] TrimCondition.EngineSpeedIni = 827; % Initial Engine Speed [rad/s]
The following steps are handled inside of the trim_UAV.m function. We'll cover how to use this function later on.
Create Operating Point Specification Object for the Simulation
The first step in trimming the model is to create an operating point specification object for our simulation model. This will allow us to specify target values, constraints, and initial guesses for all of the relevant simulation states, inputs, and outputs.
op_spec = operspec('UAV_NL')
Operating Specification for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0.0217 spec: dx = 0, initial guess: 0 (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0 (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb spec: dx = 0, initial guess: 17 spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0.369 (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: -100 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator spec: dx = 0, initial guess: 827 Inputs: ---------- (1.) UAV_NL/elevator initial guess: 0 (2.) UAV_NL/aileron initial guess: 0 (3.) UAV_NL/rudder initial guess: 0 (4.) UAV_NL/throttle initial guess: 0 (5.) UAV_NL/flap initial guess: 0 Outputs: ---------- (1.) UAV_NL/V_s spec: none (2.) UAV_NL/beta spec: none (3.) UAV_NL/alpha spec: none (4.) UAV_NL/h spec: none (5.) UAV_NL/phi spec: none (6.) UAV_NL/theta spec: none (7.) UAV_NL/psi spec: none (8.) UAV_NL/p spec: none (9.) UAV_NL/q spec: none (10.) UAV_NL/r spec: none (11.) UAV_NL/gamma spec: none
For some simulations, it may be easiest to directly specify your desired trim condition in the state variables. For our aircraft model, some of the relevant parameters (such as angle of attack) are not states, so we have made these parameters root-level Outports, which allows us to specify their value. For this example, we'll specify our trim target via the state variables, and then look at other possibilities.
Specifying State Trim Conditions
Now we will specify desired targets and/or constraints for the state variables. Let's first look at what we can specify:
get(op_spec.States)
5x1 struct array with fields: Block StateName x Nx Ts SampleType inReferencedModel Known SteadyState Min Max Description
Note there are several state entries (5x1 struct array), corresponding to each integrator block in our Simulink model. Each of these has a number of fields; the ones we are interested in are "x", "Known", "SteadyState", "Min", and "Max". Now we'll look at each set of States:
op_spec.States(1)
(1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi spec: dx = 0, initial guess: 0 spec: dx = 0, initial guess: 0.0217 spec: dx = 0, initial guess: 0
This gives us the block name, and what is currently specified. We see that this integrator actually has 3 states in it, the Euler angles phi, theta, and psi. In general we need to supply three pieces of information: if the state is "Known" (boolean), the known value of the state or initial guess, and whether the state is steady (i.e. the state derivative is zero).
For the Euler angles, in general we want to specify the yaw angle (psi) since this doesn't directly affect the trim condition. For this example, we will leave the bank and pitch angles (phi and theta) unknown. The initial values we set earlier in the TrimCondition data structure. We want all of the Euler angles to be steady state.
% phi, theta, psi -- Euler angles
op_spec.States(1).Known = [0 ; 0; 1];
op_spec.States(1).x = TrimCondition.AttitudeIni;
op_spec.States(1).SteadyState = [1; 1; 1];
Next we'll specify the angular rates (p,q,r). We'll leave all of these as unknown and steady state, even though we actually know what we want our angular rates to be (zero). If you over constrain your model, the trim algorithm will often fail. Its a good practice to constrain as few as states/inputs/outputs as possible.
% p, q, r -- Angular rates
op_spec.States(2).Known = [0; 0; 0];
op_spec.States(2).x = TrimCondition.RatesIni;
op_spec.States(2).SteadyState = [1; 1; 1];
Now we'll specify the body axis velocities (u,v,w). We would like a forward speed of 17 m/sec (which was set in the initial conditions above), so we'll set the first entry (u) to be known, and leave the rest unknown. Remember, we don't want to over constrain the problem, or the trim algorithm may fail. We also make use of the "Min" constraint for the forward velocity (u). We know this should always be positive, so we constrain the minimum value to be zero. We don't want to constrain the other states, so we use "-inf" as the minimum.
% u, v, w -- Body velocities
op_spec.States(3).Known = [1; 0; 0];
op_spec.States(3).x = TrimCondition.VelocitiesIni;
op_spec.States(3).SteadyState = [1; 1; 1];
op_spec.States(3).Min = [0 -inf -inf];
Next is the inertial positions (Xe,Ye,Ze). Here we'll specify the altitude, because this doesn't directly affect the trim solution. We'll also let the Xe and Ye states be non-steady; since the airplane is actually moving, these states are normally changing. Here we constrain the maximum value of Ze to be zero; recall that Ze is defined as positive downwards, so relative to the inertial frame, Ze should always be negative in this simulation.
% Xe, Ye, Ze -- Inertial position
op_spec.States(4).Known = [0; 0; 1];
op_spec.States(4).x = TrimCondition.InertialIni;
op_spec.States(4).SteadyState = [0; 0; 1];
op_spec.States(4).Max = [inf inf 0];
Finally we specify the motor speed, as unknown and steady.
% omega -- Motor Speed
op_spec.States(5).Known = 0;
op_spec.States(5).x = TrimCondition.EngineSpeedIni;
op_spec.States(5).SteadyState = 1;
Setting Input Constraints
Similar to the states, we need to specify constraints and initial values on the inputs to the model, which are the elevator, aileron, rudder, throttle, and flaps. We use the initial values specified earlier and leave all inputs unknown except for the flaps, which are normally set at zero.
% Elevator op_spec.Inputs(1).Known = 0; op_spec.Inputs(1).u = TrimCondition.Inputs.elevator; op_spec.Inputs(1).Max = AC.Actuator.elevator.PosLim; op_spec.Inputs(1).Min = AC.Actuator.elevator.NegLim; % Aileron op_spec.Inputs(2).Known = 0; op_spec.Inputs(2).u = TrimCondition.Inputs.aileron; op_spec.Inputs(2).Max = AC.Actuator.aileron.PosLim; op_spec.Inputs(2).Min = AC.Actuator.aileron.NegLim; % Rudder op_spec.Inputs(3).Known = 0; op_spec.Inputs(3).u = TrimCondition.Inputs.rudder; op_spec.Inputs(3).Max = AC.Actuator.rudder.PosLim; op_spec.Inputs(3).Min = AC.Actuator.rudder.NegLim; % Throttle op_spec.Inputs(4).Known = 0; op_spec.Inputs(4).u = TrimCondition.Inputs.throttle; op_spec.Inputs(4).Max = AC.Actuator.throttle.PosLim; op_spec.Inputs(4).Min = AC.Actuator.throttle.NegLim; % Flaps op_spec.Inputs(5).Known = 1; op_spec.Inputs(5).u = TrimCondition.Inputs.flap; op_spec.Inputs(5).Max = AC.Actuator.flap.PosLim; op_spec.Inputs(5).Min = AC.Actuator.flap.NegLim;
Trimming the Model
Finally, we will use the 'findop' function to trim the model (find an operating point). This function outputs two objects; an operating point object (op_point) and a report on the trim search (op_report). The op_point contains all of the trimmed values of the states and inputs. The op_report contains all of the same information, plus details on the trim search, the state derivatives, model outputs, and trim specifications.
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: -0.0176 dx: -2.22e-021 (0) x: 0.0522 dx: -9.62e-022 (0) x: 0 dx: 1.87e-022 (0) (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: -2.23e-021 dx: -7.25e-013 (0) x: -9.65e-022 dx: 3.91e-014 (0) x: 1.7e-022 dx: 9.35e-014 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 17 dx: 2.94e-012 (0) x: -0.195 dx: 1.52e-013 (0) x: 0.884 dx: -4.41e-012 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: -6.87e-015 dx: 17 x: -8.21e-015 dx: -0.18 x: -100 dx: 5.6e-012 (0) (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 827 dx: 6.6e-010 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.0769 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.0135 [-0.436 0.436] (3.) UAV_NL/rudder u: -0.000767 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.569 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 17 [-Inf Inf] (2.) UAV_NL/beta y: -0.0115 [-Inf Inf] (3.) UAV_NL/alpha y: 0.052 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: -0.0176 [-Inf Inf] (6.) UAV_NL/theta y: 0.0522 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: -2.23e-021 [-Inf Inf] (9.) UAV_NL/q y: -9.65e-022 [-Inf Inf] (10.) UAV_NL/r y: 1.7e-022 [-Inf Inf] (11.) UAV_NL/gamma y: 3.29e-013 [-Inf Inf]
We see near the top of the report, it tells us that the "Operating point specifications were successfully met." Scrolling down, we see the values of the state (x) and the derivatives (dx). The (0) symbol denotes if the state derivative is supposed to be zero (steady state). Farther down, we have the model inputs, with the value (u) being our trimmed control setting. The numbers in brackets represent the min/max range we set. The flaps don't show this range, as we specified the value as known. Finally, we have the model outputs, which correspond to the root-level outports in the model. We didn't specify any of these, but it shows us the trimmed value of each.
Setting Simulation Initial Conditions to Trim Values
Now that we have an operating point, we need to set these values as the initial conditions for the simulation, replacing the values we specified earlier.
% Pull state values from the trim solution TrimCondition.AttitudeIni = op_point.States(1).x; TrimCondition.RatesIni = op_point.States(2).x; TrimCondition.VelocitiesIni = op_point.States(3).x; TrimCondition.InertialIni = op_point.States(4).x; TrimCondition.EngineSpeedIni = op_point.States(5).x; % Pull input values from the trim solution TrimCondition.Inputs.elevator = op_point.Inputs(1).u; TrimCondition.Inputs.aileron = op_point.Inputs(2).u; TrimCondition.Inputs.rudder = op_point.Inputs(3).u; TrimCondition.Inputs.throttle = op_point.Inputs(4).u; TrimCondition.Inputs.flap = op_point.Inputs(5).u;
Now we are ready to run the simulation! Next we'll look at some other useful ways of specifying trim targets.
Specifying Output Trim Conditions
As mentioned previously, sometimes we want to specify a trim target that is not a state variable. There are two ways to do this; 1) Make the desired variable an output of the model by connecting it to root-level Outport block, and 2) use the "addoutputspec" function to specify a block output signal. We'll look at both methods.
First, lets look at specifying the model outputs. Our operating point specification object lists the model outputs:
op_spec.Outputs
(1.) UAV_NL/V_s spec: none (2.) UAV_NL/beta spec: none (3.) UAV_NL/alpha spec: none (4.) UAV_NL/h spec: none (5.) UAV_NL/phi spec: none (6.) UAV_NL/theta spec: none (7.) UAV_NL/psi spec: none (8.) UAV_NL/p spec: none (9.) UAV_NL/q spec: none (10.) UAV_NL/r spec: none (11.) UAV_NL/gamma spec: none
We see that there are 11 outputs, none with specifications. The names of these outputs correspond to the names of the root-level Outport blocks in the Simulink model. For this example, lets say we want to trim the aircraft to steady level flight at 19 m/s airspeed. We need to constrain the airspeed (V_s) to 19 m/s and the flight path angle (gamma) to 0 degrees.
% Airspeed output specification, in m/s op_spec.Outputs(1).y = 19; op_spec.Outputs(1).Known = 1; % Flight path angle output specification, in radians op_spec.Outputs(11).y = 0; op_spec.Outputs(11).Known = 1;
Now lets try to trim the model:
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Could not find a solution that satisfies all constraints. Relax the constraints to find a feasible solution. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: 0 dx: 0 (0) x: 0.0217 dx: 0 (0) x: 0 dx: 0 (0) (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: 0 dx: 1.22 (0) x: 0 dx: -11.4 (0) x: 0 dx: 0.106 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 17 dx: -0.0262 (0) x: 0 dx: 0 (0) x: 0.369 dx: 3.56 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: 0 dx: 17 x: 0 dx: 0 x: -100 dx: 4.21e-005 (0) (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 827 dx: -29.1 (0) Inputs: ---------- (1.) UAV_NL/elevator u: 0.091 [-0.436 0.436] (2.) UAV_NL/aileron u: 0 [-0.436 0.436] (3.) UAV_NL/rudder u: 0 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.559 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 17 (19) (2.) UAV_NL/beta y: 0 [-Inf Inf] (3.) UAV_NL/alpha y: 0.0217 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: 0 [-Inf Inf] (6.) UAV_NL/theta y: 0.0217 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: 0 [-Inf Inf] (9.) UAV_NL/q y: 0 [-Inf Inf] (10.) UAV_NL/r y: 0 [-Inf Inf] (11.) UAV_NL/gamma y: 2.47e-006 (0)
We see that the trim algorithm failed. What happened? We didn't remove the constraints we put on the state variables earlier, and thusly had an overconstrained model! You will need to use good engineering judgment when specifying constraints. For example, airspeed, angle of attack, and flight path angle are not independent, so you cannot constrain all three of these variables. As a general rule, you should never have two constraints that are similar (e.g. Vertical position steady state & flight path angle = 0). Let's remove the constraints on the forward velocity (u), and the vertical position (Ze) we set earlier.
% Remove Known constraint on forward velocity (u) op_spec.States(3).Known = [0; 0; 0]; % Remove steady state constraint on vertical position (Ze) op_spec.States(4).SteadyState = [0; 0; 0];
Now lets try to trim the model:
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: -0.244 dx: -1.54e-024 (0) x: 0.0677 dx: -1.02e-024 (0) x: 0 dx: -4.95e-025 (0) (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: -1.5e-024 dx: 3.91e-016 (0) x: -8.71e-025 dx: 5.05e-016 (0) x: -7.25e-025 dx: 5.16e-016 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 18.8 dx: -7.01e-016 (0) x: -2.61 dx: -4.67e-016 (0) x: 0.664 dx: -3.74e-015 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: -3.96e-013 dx: 18.9 x: -1.69e-012 dx: -2.38 x: -100 dx: 0 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 927 dx: 0 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.0615 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.0529 [-0.436 0.436] (3.) UAV_NL/rudder u: -0.0387 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.703 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 19 (19) (2.) UAV_NL/beta y: -0.138 [-Inf Inf] (3.) UAV_NL/alpha y: 0.0353 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: -0.244 [-Inf Inf] (6.) UAV_NL/theta y: 0.0677 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: -1.5e-024 [-Inf Inf] (9.) UAV_NL/q y: -8.71e-025 [-Inf Inf] (10.) UAV_NL/r y: -7.25e-025 [-Inf Inf] (11.) UAV_NL/gamma y: 0 (0)
Success! We see in the Outputs section of the op_report the airspeed (V_s) is at 19 and the flight path angle is at zero (-6.21e-18). Now lets look at the second method of specifying output constraints: using the addoutputspec function.
Say we wanted to specify a constraint on a variable that is not an output of the model; rather than go through the hassle of modifying the model, we can add an output specification to the output of any block in the simulation. One situation where this is necessary is trimming to a steady turn. The variable we need to constrain is the derivative of the heading (psi), or psidot. Psi is a state variable, but there isn't a way to specify a value other than zero for the state derivatives. We can use the addoutputspec function to constrain the value of psidot within the model. To use this function, you need to know the full path name to the block. An easy way to find this is to click through the model until you find the block; with the block selected, go to the MATLAB command window and type "gcb", or get current block, which will return the full path to the selected (current) block. We'll pass our op_spec object, the full path to the block (in this case the block that computes the Euler angle derivatives), and the block output signal number to addoutputspec. The function will return the modified op_spec object.
op_spec=addoutputspec(op_spec,... 'UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot',... 1);
Now we have an additional output in the op_spec object:
op_spec.Outputs
(1.) UAV_NL/V_s spec: y = 19 (2.) UAV_NL/beta spec: none (3.) UAV_NL/alpha spec: none (4.) UAV_NL/h spec: none (5.) UAV_NL/phi spec: none (6.) UAV_NL/theta spec: none (7.) UAV_NL/psi spec: none (8.) UAV_NL/p spec: none (9.) UAV_NL/q spec: none (10.) UAV_NL/r spec: none (11.) UAV_NL/gamma spec: y = 0 (12.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot spec: none spec: none spec: none
We can now specify a constraint on the third value of the 12th output (psidot):
% Psidot output specification, in radians/sec
op_spec.Outputs(12).y(3) = 15/180*pi;
op_spec.Outputs(12).Known(3) = 1;
However, we can't over constrain the model! We can leave our airspeed and flight path angle specifications (this will be a steady, level turn), but we will need to remove the steady state constraint we put on the psi state earlier:
% Remove steady state constraint on psidot state
op_spec.States(1).steadystate(3) = 0;
Now lets try to trim the model:
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: -0.0179 dx: -1.32e-016 (0) x: 0.0419 dx: 4.77e-017 (0) x: 0 dx: 0.262 (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: -0.011 dx: 3.83e-012 (0) x: -0.00468 dx: -3.69e-012 (0) x: 0.262 dx: 8.73e-013 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 18.2 dx: 4.77e-014 (0) x: -5.57 dx: -9.77e-015 (0) x: 0.662 dx: -3.25e-013 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: -8e-013 dx: 18.2 x: 1.1e-012 dx: -5.55 x: -100 dx: -7.33e-015 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 939 dx: 1.82e-011 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.0581 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.108 [-0.436 0.436] (3.) UAV_NL/rudder u: -0.0938 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.735 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 19 (19) (2.) UAV_NL/beta y: -0.297 [-Inf Inf] (3.) UAV_NL/alpha y: 0.0364 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: -0.0179 [-Inf Inf] (6.) UAV_NL/theta y: 0.0419 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: -0.011 [-Inf Inf] (9.) UAV_NL/q y: -0.00468 [-Inf Inf] (10.) UAV_NL/r y: 0.262 [-Inf Inf] (11.) UAV_NL/gamma y: -3.86e-016 (0) (12.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot y: -1.32e-016 [-Inf Inf] y: 4.77e-017 [-Inf Inf] y: 0.262 (0.262)
Success! We now have the aircraft trimmed at 19 m/s airspeed, level flight, a right-hand bank angle of 2.9 degrees, resulting in a turn rate of 15 deg/sec. 2.9 degrees is a pretty shallow bank angle for a turn rate this high; you may notice that the sideslip angle (beta) is quite large, at -12.5 degrees. This means we are in a skidding turn, using mainly the rudder to effect the turn. This is not only poor piloting technique, but can also be risky at slow airspeeds as it can quickly lead to an accelerated stall/spin condition! To correct this, we need to specify a constraint on the sideslip angle to keep this at zero, so we'll have a coordinated turn:
% Sideslip angle output specification, in radians
op_spec.Outputs(2).y = 0;
op_spec.Outputs(2).Known = 1;
Now lets try to trim the model:
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: 0.469 dx: -1.39e-012 (0) x: 0.0389 dx: 7.64e-013 (0) x: 0 dx: 0.262 (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: -0.0102 dx: 6.46e-013 (0) x: 0.118 dx: 1.78e-012 (0) x: 0.233 dx: 3.91e-012 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 19 dx: -5.25e-011 (0) x: 1.57e-020 dx: -3.58e-011 (0) x: 0.829 dx: -7.18e-011 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: 5.4e-012 dx: 19 x: -4.78e-013 dx: -0.375 x: -100 dx: 1.23e-011 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 922 dx: 2.31e-010 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.0804 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.0154 [-0.436 0.436] (3.) UAV_NL/rudder u: -0.00455 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.691 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 19 (19) (2.) UAV_NL/beta y: 8.24e-022 (0) (3.) UAV_NL/alpha y: 0.0437 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: 0.469 [-Inf Inf] (6.) UAV_NL/theta y: 0.0389 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: -0.0102 [-Inf Inf] (9.) UAV_NL/q y: 0.118 [-Inf Inf] (10.) UAV_NL/r y: 0.233 [-Inf Inf] (11.) UAV_NL/gamma y: 6.47e-013 (0) (12.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot y: -1.39e-012 [-Inf Inf] y: 7.64e-013 [-Inf Inf] y: 0.262 (0.262)
Success! Now we see beta is zero, the turn rate is still 15 deg/sec, but now the bank angle is about 30 degrees. This is much more appropriate! Now we will look at one last aspect of trimming: constraining the inputs.
Specifying Input Trim Conditions
Normally when we trim a model, our main goal is to find the inputs (and unknown state values) that will give us a certain set of desired states and outputs. We can, however, do this process in reverse: specify the inputs, and then figure out what states and outputs will result. This can be useful for determining the flight envelope of possible trim conditions for a given configuration of an aircraft.
Specifying input constraints is very similar to specifying output constraints. We simply set the Known flag and initial value. The key, again, is to make sure we don't over constrain the model. For this example, lets attempt to find out what the maximum level flight speed is for this aircraft. This condition will be at maximum throttle setting and a flight path angle of zero, but we don't know what the other inputs or states will be, so we'll need to free up some constraints we set earlier.
% Throttle op_spec.Inputs(4).Known = 1; op_spec.Inputs(4).u = 1; % maximum % Remove psidot output specification, in radians/sec op_spec.Outputs(12).y(3) = 0; op_spec.Outputs(12).Known(3) = 0; % Replace steady state constraint on psidot state op_spec.States(1).steadystate(3) = 1; % Remove airspeed output specification, in m/s op_spec.Outputs(1).y = 19; op_spec.Outputs(1).Known = 0;
Now lets try to trim the model:
[op_point,op_report] = findop('UAV_NL',op_spec);
Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: -0.0032 dx: 4.07e-027 (0) x: 0.016 dx: -3.01e-023 (0) x: 0 dx: -3.5e-024 (0) (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: 5.99e-026 dx: -3.21e-013 (0) x: -3.01e-023 dx: 3.05e-012 (0) x: -3.6e-024 dx: -2.09e-014 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 23.6 dx: -3.37e-014 (0) x: -1.22e-021 dx: 2.5e-015 (0) x: 0.376 dx: 3.93e-014 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: -1.51e-012 dx: 23.6 x: -5.64e-012 dx: 0.0012 x: -100 dx: -8.88e-016 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 1.14e+003 dx: -3.2e-012 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.0463 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.00981 [-0.436 0.436] (3.) UAV_NL/rudder u: 0.00297 [-0.436 0.436] (4.) UAV_NL/throttle u: 1 (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 23.6 [-Inf Inf] (2.) UAV_NL/beta y: -5.16e-023 (0) (3.) UAV_NL/alpha y: 0.016 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: -0.0032 [-Inf Inf] (6.) UAV_NL/theta y: 0.016 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: 5.99e-026 [-Inf Inf] (9.) UAV_NL/q y: -3.01e-023 [-Inf Inf] (10.) UAV_NL/r y: -3.6e-024 [-Inf Inf] (11.) UAV_NL/gamma y: -3.77e-017 (0) (12.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot y: 4.07e-027 [-Inf Inf] y: -3.01e-023 [-Inf Inf] y: -3.5e-024 [-Inf Inf]
Success! We see in the outputs that the airspeed is 23.4 m/sec. All other states are at reasonable values- note the angle of attack is actually at -0.83 degrees. This is because the zero lift angle of attack is actually negative (not at zero), so a slightly negative angle of attack is necessary to get the required CL for this airspeed.
Using trim_UAV.m
To simplify the trimming process, the UAV Research Group has written a function, "trim_UAV", which handles the details required to trim a model that we have just discussed. The trim_UAV function allows the user to simply specify the target trim values, and the function will take care of the rest.
trim_UAV requires two inputs: the trim condition data structure (TrimCondition) with initial values and trim targets, and the aircraft configuration data structure (AC). The TrimCondition data structure must have a field called "target", where you can specify your desired trim targets by adding fields corresponding to the following list of possibilities:
V_s - True airspeed (m/s) alpha - Angle of attack (rad) beta - Sideslip (rad), defaults to zero gamma - Flight path angle (rad), defaults to zero phi - roll angle (rad) theta - pitch angle (rad) psi - Heading angle (0-360) phidot - d/dt(phi) (rad/sec), defaults to zero thetadot - d/dt(theta) (rad/sec), defaults to zero psidot - d/dt(psi) (rad/sec), defaults to zero p - Angular velocity (rad/sec) q - Angular velocity (rad/sec) r - Angular velocity (rad/sec) h - Altitude above ground level (AGL) (m) elevator - elevator control input, rad. aileron - aileron control input, rad. rudder - rudder control input, rad. throttle - throttle control input, nd. flap - flap control input, rad. Defaults to fixed at zero.
Note that you don't need to specify every field, just the ones you are interested in (unspecified variables will be free). Some fields have default values; to override these, either specify a value for them, or set the value to an empty matrix ([]) to leave them free.
trim_UAV will return the TrimCondition data structure with the trim values embedded and a structure called OperatingPoint that contains the original specifications (op_spec), the operating point itself (op_point), and the report (op_report).
setup.m gives several examples of usage for trim_UAV; we'll look at one case here: a climbing turn. For this flight condition, we need to specify three variables: airspeed, flight path angle, and turn rate. With trim_UAV, we do that by creating a data structure in TrimCondition.target with those three variables and the desired values:
TrimCondition.target = struct('V_s',17,'gamma',5/180*pi,'psidot',20/180*pi); disp(TrimCondition.target)
V_s: 17 gamma: 0.0873 psidot: 0.3491
We now pass the require arguments into trim_UAV, which will trim the model and display the op_report:
[TrimCondition,OperatingPoint] = trim_UAV(TrimCondition,AC);
Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints were satisfied to within the default value of the constraint tolerance. No active inequalities. Operating Point Search Report: --------------------------------- Operating Report for the Model UAV_NL. (Time-Varying Components Evaluated at time t=0) Operating point specifications were successfully met. States: ---------- (1.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phi theta psi x: 0.542 dx: 3.06e-009 (0) x: -0.0328 dx: 1.62e-010 (0) x: 0 dx: 0.349 (2.) UAV_NL/Nonlinear UAV Model/6DoF EOM/p,q,r x: 0.0115 dx: 1.78e-009 (0) x: 0.18 dx: 3.76e-009 (0) x: 0.299 dx: 5.86e-009 (0) (3.) UAV_NL/Nonlinear UAV Model/6DoF EOM/ub,vb,wb x: 17 dx: -1.03e-007 (0) x: -1.06e-018 dx: -1.14e-007 (0) x: 1.08 dx: -1.94e-007 (0) (4.) UAV_NL/Nonlinear UAV Model/Auxiliary Equations/xe,ye,ze x: -3.5e-013 dx: 16.9 x: -3.09e-013 dx: -0.558 x: -100 dx: 1.48 (5.) UAV_NL/Nonlinear UAV Model/Forces and Moments/Electric Propulsion Forces and Moments/Engine speed Integrator x: 759 dx: 8.04e-007 (0) Inputs: ---------- (1.) UAV_NL/elevator u: -0.105 [-0.436 0.436] (2.) UAV_NL/aileron u: 0.0116 [-0.436 0.436] (3.) UAV_NL/rudder u: -0.00919 [-0.436 0.436] (4.) UAV_NL/throttle u: 0.41 [0 1] (5.) UAV_NL/flap u: 0 Outputs: ---------- (1.) UAV_NL/V_s y: 17 (17) (2.) UAV_NL/beta y: -6.25e-020 (0) (3.) UAV_NL/alpha y: 0.0636 [-Inf Inf] (4.) UAV_NL/h y: 79.1 [-Inf Inf] (5.) UAV_NL/phi y: 0.542 [-Inf Inf] (6.) UAV_NL/theta y: -0.0328 [-Inf Inf] (7.) UAV_NL/psi y: 0 [-Inf Inf] (8.) UAV_NL/p y: 0.0115 [-Inf Inf] (9.) UAV_NL/q y: 0.18 [-Inf Inf] (10.) UAV_NL/r y: 0.299 [-Inf Inf] (11.) UAV_NL/gamma y: 0.0873 (0.0873) (12.) UAV_NL/Nonlinear UAV Model/6DoF EOM/Calculate DCM & Euler Angles/phidot thetadot psidot y: 3.06e-009 [-Inf Inf] y: 1.62e-010 [-Inf Inf] y: 0.349 (0.349) Trim conditions saved as: UAV_trimcondition.mat
Success! We see the aircraft is now trimmed to a climbing turn. While trim_UAV does perform some checks, it is still possible to over constrain the model by specifying conflicting constraints. Good engineering judgment is still needed!
This concludes the trim tutorial. Please send any comments or questions to Austin Murch (murch@aem.umn.edu).