An Integrated, Multi-Layer Approach to Software-Enabled Control:
Mission Planning to Vehicle Control
Co-Investigators:
Project Overview:
The proposed SEC program will develop a software environment to demonstrate
integrated control system technologies which enable the use of multi-unmanned
combat air vehicles in strategic situations. Test case scenarios for splitting and
merging of Unmanned Combat Air Vehicles (UCAV's) will be selected based upon
concepts of operations. System requirements will included adaptation to subsystem
malfunctions, imperfect models, system uncertainty and unknown battlefield
characteristics to achieve high all level mission objectives. We will develop a software
architecture and framework for implementation of advanced integrated control
algorithms. The software implementation provides and integrated multi-layer
approach to provide autonomous reconfigurable vehicle control capability for UCAV's
from top level multi-vehicle mission management to inner-loop vehicle control. This
implementation will be demonstrated via real-life software simulation.
University of Minnesota has teamed with UC-Berkeley and Caltech in the
development, enhancement, and transition of integrated control and software
technologies. This team possesses the key ingredients needed to achieve program goals.
The strength of the university team members is in the area of robust system algorithm
and tool development. A three layer hierarchical problem structure is proposed for our
integrated, multi-layer approach to strategic use of UCAV's.
The top layer multi-vehicle mission planner is implemented via genetic algorithms,
the middle layer consists of a trajectory generation and conflict resolution
optimization using dynamic programming with the bottom layer, the foundation,
performing integrated on and off-line vehicle control. An indirect adaptive systems
approach will form the basis of this control architecture. System configuration will use
real-time parameter identification methods in conjunction with failure detection and
identification approaches to identify unforeseen changes in the system dynamics. This
information will be provided to all three layers of the control architecture.
The mission planning layer provides task assignment and outer-loop commands for
the UCAV vehicle management system (VMS). The trajectory generation and conflict
resolution layer algorithms make use of dynamic programming techniques combined
with engineering insight. Mathematical models of individual UCAV's are included at
the base level for use in the mission. The individual vehicle control combines on-line
receding-horizon schemes, real-time identification and failure detection with the
robust inner-loop control system. An off-line controller is designed using the most
advanced, robust nonlinear control theory, linear-parameter varying control, to ensure
a guaranteed level of stability and performance in the presence of specified
uncertainties.
The on-line controller will provide adaptation to unforeseen changes in the aircraft
dynamics. Our key technology innovation is integration of state-of-the-art
approaches to every aspect of multi-vehicle UCAV planning and usage in a common
design environment. This project provides a focal point for integrating all recent
advances in robust, nonlinear control, trajectory optimization and conflict resolution
with coordinated command, planning and control into a software design environment
for multiple UCAV's. The team will work in close coordination to provide
cost-effective, revolutionary advancements for UCAV systems.